Computational and wind tunnel studies of shelterbelts for reduction of wind flow and wind-induced loads on low-rise buildings

Thumbnail Image
Date
2008-01-01
Authors
Schmidt, Sarah
Major Professor
Advisor
Eugene S. Takle
Partha P. Sarkar
Ron M. Nelson
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Geological and Atmospheric Sciences
Abstract

Numerical and experimental tests were done to determine the optimum design parameters of a shelterbelt for wind damage mitigation to structures behind the shelterbelt. The Wang and Takle shelterbelt numerical model was used to study the shelterbelt's cross-sectional shape, height, spacing/line tightness, density/density distribution, line width, number of lines, and wind speed parameters. The numerical model was also used to study the effectiveness of more realistically shaped shelterbelt tree lines, rather than using the traditional blocks to represent each line of trees in the shelterbelt. Finally, experiments were conducted in a wind tunnel to test the effects of wind-induced load reduction with the implementation of a shelterbelt screen, studying forces rather than flow fields.

Comments
Description
Keywords
Citation
Source
Copyright
Tue Jan 01 00:00:00 UTC 2008