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Figure 2.8 On the left side graphs indicate the change of expression of
genes and the fitness before the simulation, and on the right
side graphs show the change of expression of genes and the
fitness of Model 2.
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Figure 2.9 The track of fitness indicates how new fitness is accepted during
simulation.

Model 3

We simulated total 5000 loops and and it took 944.029041 seconds. We obtained much higher

fitness than the initial fitness. [ Figure 2.10 ] indicates a result of simulated annealing algorithm

with model 3. [ Table 2.4 ] indicates the number of result of simulated annealing program. In [

Figure 2.10 ], it shows the change of the expression of G1, G2 and W before simulation on the

left side and the right side graphs indicate the change of the expression of G1, G2 and W after

simulation. This simulation indicates that the initial fitness was 0.0048 and the initial input

parameters were v11 = 0.1, v12 = 1.5, v21 = 1.5, v22 = 0.1, µ1 = 0.5, andµ2 = 0.5. However,

we obtained a high fitness of model 3 after simulation. The high fitness was 0.8505 and the

optimal parameters were v11 = 0.0302, v12 = 0.7453, v21 = 1.0581, v22 = 0.0112, µ1 = 0.9734,

andµ2 = 0.6681[ Table 2.4 ]. Also, we set the exponential random time period function, and

the time length is close to 120 made by multiplying between 10 and the exponential random

number. Therefore, two different environments are switched 10 times in 120 time length.

Model 3 is that there is no interaction between genes, and there is only degradation of each

gene. Thus, we thought the fitness is not changed like model 1. [ Figure 2.11 ] indicates the

track of fitness. it also shows that finally we obtained the highest fitness during the simulation.
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Table 2.4 Initial parameters and a fitness, and optimal parameters and a
high fitness of Model 3.

Element Initial Parameters Optimal Parameters
Fitness 0.0048 0.8505
v11 0.1 0.0302
v12 1.5 0.7453
v21 1.5 1.0581
v22 0.1 0.0112
mu1 0.5 0.9734
mu2 0.5 0.6681

Figure 2.10 On the left side graphs indicate the change of expression of
genes and fitness before the simulation, and on the right side
graphs show the change of expression of genes and fitness of
Model 3.
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Figure 2.11 The track of fitness indicateas how new fitness is accepted
during simulation.

2.4.1.1 Simulated annealing

When we set the initial temperature was 1, and the decreasing temperature rate was 10

%, the ending temperature was 1.3221e-23. It means the initial temperature, 1 was cooling

slowly and finally the temperature became 1.3221e-23. We think it is low temperature enough

because the fitness was not going down at the end of simulation. If the temperature is low

enough, the fitness only climbs up on the land scape of fitness because the system become a

stable and the smaller fitness is not accepted.

Also, we set the empirical step size, S is 0.8 and when new fitness is accepted a few times,

S is changed by S(̂1/1.2), then the new step size is bigger than before. On the other hand,

when new fitness is almost accepted, S is changed by S(̂1.2), then the new step size is smaller

than before. Thus, we can prevent that the fitness jumps around far away.

After simulating of each model, we compared between model 1 and model 2. From the

optimal parameters, we found that the concentration of gene 1 of model 1 is higher than the

concentration of gene 1 of model 2. Thus, we could show gene 1 of model 1 is expressed faster

than gene 1 of model 2 when the environments are changed[Figure 2.12].

We obtained interesting results from the simulation. First, we could obtain a high fitness

and optimal parameters inducing the high fitness in each model. Second, we could show how
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Figure 2.12 Blue line is model 1 and red line is model 2. Gene 1 of model
1 is expressed faster than gene 1 of model 2 when the environ-
ments are changed.

the gene network is evolved by parameters, and environments.

2.4.2 V and µ parameters

We simulated 200 times to find the pattern of parameters. Then, [ Figure 2.13 ] shows the

results: blue line is a simulation with the initial parameters and red line are other 60 simulation

results of 200 simulations. We had 0.6, cutoff fitness value. We could find a parameters’ pattern

of model 1 from [ Figure 2.13 ]: v11 is small, v21 is large, v21 is large, and v22 is small and

µ1, and µ2 are always large. This results prove [ Formula 2.13 ] and [ Formula 2.14 ]. When

we assumed other parameters didn’t affect the fitness of gene network model except v and

µ, we could expect gene 1 activates more than gene 2 in environment 2 and gene 2 activates

more than gene 1 in environment 1 from [ Formula 2.13 ] and [ Formula 2.14 ]. There is more

information in appendix.

The v11 parameter means how much gene 1 affect gene 2 in environment 1, v12 parameter

means how much gene 2 affect gene 1 in environment 1, v21 parameter means how much gene

1 affect gene 2 in environment 2, and v22 parameter means how much gene 2 affect gene 1 in

environment 2. Also, we set the Z11 = 0, Z12 = 1, Z21 = 1, and Z22 = 0 in the [ Formula 2.13
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] and [ Formula 2.14 ]. Thus, to obtain a high fitness, in the environment 1, v11 should be

small, v12 should be large, and in the environment 2, v21 should be large, v22 should be small

in the environment 2. Finally, [ Figure 2.13 ] shows same results with what would be expected

from these formulas. Thus, we could prove our simulation is working well from same results.

We analyzed the relation of v and µ parameters and we assumed other parameters didn’t

influence the fitness. From the [ Formula 2.3 ], we could analogize that

dG1

dt
=
v21 + (α21 ×G2)

(Gn1
1 +K1)

− µ1 ×G1 = 0, (2.15)

Because we set gene 1 is activated more than gene 2 in environment 1, we could assume

G1 = 1, G2 = 0. Then [ Formula 2.15 ] can be changed like this:

v21 + 0
(1 +K1)

− µ1 = 0, (2.16)

µ1 × (1 +K1) = v21 (2.17)

Therefore, we could expect v21 has direct proportion with µ1 × (1 + K1) because gene 1

is activated more in environment 2. Also, from the [ Formula 2.4 ], we could expect v12 has

direct proportion with µ2 × (1 +K2) because gene 2 is activated more in environment 1.

[ Table 2.5 ] shows the relation of v21 and µ1 × (1 + K1), and v12 and µ2 × (1 + K2). It’s

not perfectly proportional but [ Figure 2.15 ], and [ Figure 2.19 ] show the direct proportional

relation of v and µ parameters.

We made [ Talbe 2.5 ] to show the relations of v21 and µ1×(1+K1), and v12 and µ2×(1+K2),

then we draw [ Figure 2.15 ], and [ Figure 2.19 ] to prove the relations of v21 and µ1× (1+K1),

and v12 and µ2 × (1 + K2). There are some points are out of the direct proportion, and we

draw [ Figure 2.14 ], and [ Figure 2.18 ] to find the pattern of these points.

There are several lines are out of pattern in [ Figure 2.13 ]. We think it is possible because

it is multiple parameters combination. Thus, sometime, it is happens that v11 is large, v12 is

small, or v21 is small, and v22 is large when we obtain a high fitness. We choose five cases

from [ Figure 2.15 ]. [ Figure 2.14 ] shows the parameters of out of pattern points. In the [

Figure 2.14 ], blue lines are points have directly proportion and red lines indicate points are

out of the pattern. We could find the concentration of gene 1 and gene 2 are opposite, and v21
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and v22 is big changed in environment 2. To find the difference between these points, we picked

up 30, 60 points. Then [ Figure 2.16, Figure 2.17 ] indicate the change of genes expression in

real time. We found that both genes are expressed well in both environments in [ Figure 2.16

], on the other hand, we found that gene 2 is expressed well in environment 1 but gene 1 is not

expressed well in environment 2 from [ Figure 2.17 ].

Also, [ Figure 2.18 ] shows the parameters of out of pattern points, and red lines are

points are out of pattern of [ Figure 2.19 ] and blue lines are points have directly proportion.

From [ Figure 2.18 ], we could find the concentration of gene 1 and gene 2 are opposite, and

v11 and v12 is big changed in environment 1. We could find the difference between points

have directly proportion and points are out of the pattern from [Figure 2.20, Figure 2.21].

[Figure 2.20] indicates the change of genes expression and both genes are expressed well in

both environments, on the other hand, [ Figure 2.21 ] shows that gene 1 is expressed well in

environment 2 but gene 2 is not expressed well in environment 1 from [ Figure 2.21 ].

Thus, we could conclude points are out of the pattern indicate one of genes is not expressed

well in one of environments. These figures[ Figure 2.14, Figure 2.15, Figure 2.18, Figure 2.19,

Figure 2.16, Figure 2.17, Figure 2.20, Figure 2.21 ] explain why there is several lines are out

of the pattern of parameters [ Figure 2.13 ].
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Figure 2.13 200 times simulation: Blue line is a simulation with the initial
parameters. Red line is other 60 simulation results. The cut-
off value is 0.6. After collecting high fitnesses, we found the
pattern of parameters inducing a high fitness.
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Figure 2.14 Special casese of relations v21 and µ1(1 +K1) parameters. v21

and v22 is big changed in environment 2.

Figure 2.15 v21 and µ1(1 +K1) parameters are in direct proportion.
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Figure 2.16 Red line is the change of concentration of gene 1 and blue line
is the change of concentration of gene 2. Point 30 shows both
genes are expressed well in both environments.

Figure 2.17 Red line is the change of concentration of gene 1 and blue line
is the change of concentration of gene 2. Point 60 shows gene 2
is expressed well in environment 1 but gene 1 is not expressed
well in environtment 2.
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Figure 2.18 Special casese of relations v12 and µ2(1 +K2) parameters. v11

and v12 is big changed in environment 1.

Figure 2.19 v12 and µ2(1 +K2) parameters are in direct proportion.
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Figure 2.20 Red line is the change of concentration of gene 1 and blue line
is the change of concentration of gene 2. Point 40 shows both
genes are expressed well in both environments.

Figure 2.21 Red line is the change of concentration of gene 1 and blue line
is the change of concentration of gene 2. Point 16 shows gene 1
is expressed well in environment 2 but gene 2 is not expressed
well in environtment 1.
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Figure 2.22 X-axis is v21-mu1(1+K1), and y-axis is v12-mu2(1+K2).

We drew figures[ Figure 2.22, Figure 2.23, Figure 2.24 ], then we could check that gene 1 is

expressed more than gene 2 in the environment 2 from [ Figure 2.24] and gene 2 is expressed

more than gene 1 in the environment 1 from [ Figure 2.23]. Also we already show both genes

are expressed well in both environments in 30 point from [ Figure 2.16].
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Figure 2.23 Red line is the change of concentration of gene 1 and blue line
is the change of concentration of gene 2.

Figure 2.24 Red line is the change of concentration of gene 1 and blue line
is the change of concentration of gene 2.
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Table 2.5 Relations of v parameter and µ parameter: v21 is directly pro-
portional to µ1 × (1 + K1), and v12 is directly proportional to
µ2 × (1 +K2).

Simulation v21 µ1 × (1 +K1) v12 µ2 × (1 +K2)
1 1.0000 0.7500 1.0000 0.7500
2 1.3786 1.3856 1.2014 1.0688
3 0.4297 0.4748 1.2413 1.4935
4 1.1212 1.1729 1.9755 1.3752
5 1.5027 1.1694 0.6267 0.6865
6 1.9480 1.8038 1.3984 1.2318
7 1.4325 1.4612 0.9230 1.0519
8 1.5201 1.7061 1.1105 1.1870
9 1.1777 1.1162 0.7490 1.3378
10 1.8521 1.7650 0.5182 1.7864
11 0.4020 0.8440 1.0994 1.3158
12 1.7802 1.6434 0.5071 0.8802
13 0.9958 1.0596 1.2962 1.2367
14 1.1980 1.4508 0.2268 1.2148
15 1.6851 1.3855 0.7961 0.7616
16 0.6580 1.0273 0.2609 1.7202
17 0.6557 0.7504 0.3472 0.9917
18 1.5867 1.8843 1.9245 1.5849
19 0.7827 0.8452 1.2929 1.7374
20 1.9706 1.7550 1.3304 1.6223
21 0.0177 1.0552 0.8552 1.0345
22 1.9016 1.8243 1.1386 1.2775
23 0.4141 0.7095 1.1554 1.2722
24 0.7053 0.9656 1.2872 1.8486
25 0.5684 0.6131 0.3587 1.6680
26 1.6662 1.9410 0.8586 0.8428
27 1.3950 1.7909 1.2988 1.2247
28 1.5137 1.3419 0.4911 1.0410
29 1.6305 1.7275 0.2653 1.0222
30 1.0707 1.0548 1.4723 1.3013
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Simulation v21 µ1 × (1 +K1) v12 µ2 × (1 +K2)
31 1.3482 1.3199 0.8656 1.0216
32 0.7840 1.0235 0.2862 1.6779
33 1.6374 1.5268 0.8555 0.8588
34 1.2773 1.6578 1.1085 0.9441
35 1.2588 1.3898 1.2990 1.3598
36 1.6759 1.5682 1.3358 1.0352
37 0.7564 0.8660 1.6547 1.5547
38 1.4645 1.2947 0.8362 1.7974
39 1.6780 1.8485 0.9191 1.2472
40 1.0376 1.3758 0.7550 0.7220
41 0.7559 0.7025 0.0300 1.5501
42 1.0740 1.2857 0.9955 1.0747
43 0.7121 0.8836 0.9773 1.7675
44 0.0273 0.6329 1.2480 1.0930
45 1.1812 1.3164 0.6622 1.5462
46 1.0127 1.0454 1.5690 1.4778
47 0.8284 1.2932 0.1372 1.5615
48 1.5828 1.6675 0.7339 0.8263
49 0.4247 0.5463 0.4799 1.1163
50 0.8656 0.8622 0.0975 1.2544
51 0.7295 1.4961 1.5238 1.5548
52 0.0137 0.6762 1.8351 1.9287
53 1.5415 1.2135 1.9261 1.7206
54 0.0387 1.6347 1.0435 0.9590
55 1.1190 0.8942 0.5574 0.9124
56 1.3778 1.0634 0.4936 0.5299
57 0.4303 1.5068 0.8272 1.0204
58 1.1092 1.4861 1.0146 1.1579
59 1.2589 1.0825 1.1916 1.1831
60 0.7848 1.6060 0.8708 0.9558
61 1.2739 1.5565 0.4591 1.1904
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2.5 Discussion

2.5.1 A high fitness of gene network model

We described 3 different gene network models by ordinary differential equations. The first

model is gene 1 activates gene 2, and gene 2 activates gene 1, but each of them inhibits itself.

The second model is gene 1 inhibits gene 2, and gene 2 inhibits gene 1, but each of them

activates itself. Lastly, the third model is there is no interaction each other but each of them

inhibits itself.

From these models, we tried to calculate a fitness. Even though there are many options

and conditions for simulation, we found proper conditions and obtained a high fitness of each

model from simulated annealing algorithm. Also, we found which parameters induce the high

fitness, and how strongly these parameters influence the gene network models. Therefore, we

found how the gene network model is evolved by other condition such as environment, and the

concentration of genes.

We have two genes and describe two environments of each gene network model. We makes

different gene interaction as we can do. All three cases show similar fitness values at the end of

simulation. However, the process of evolution of each gene network model are different. Model

1 indicates the similar concentrations of gene 1 and gene 2 through the real time. Because

the model 1 is designed both genes activate each other. On the other hand, the model 2 is

designed both genes inhibit each other. Thus, one of gene’s concentration is much higher than

other. Also, after simulation, we found the concentration of gene 1 of model 1 is higher than

the concentration of gene 1 of model 2 from the optimal parameters.

We developed fitness functions, and set gene 1 activates more in environment 2, and gene

2 activates more in environment 1. Then, we applied simulated annealing algorithm to obtain

a high fitness. We could prove the simulated annealing algorithm is working well in this

simulation by results. Because we mostly obtain same results with what would be expected

from formula. Tomshine and Kaznessis also explored the gene network model using simulated

annealing algorithm (Tomshine and Kaznessis, 2006). They studied three genes and described
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the complete network of reactions well, but they didn’t mention about evolutionary concept

at all. On the other hand, we show how gene network models are evolve in evolutionary time

from the track of fitness. Also, we can reduce a running time from finding properly initial

temperature for simulation.

2.5.2 Parameters

We simulated 200 times to find the pattern of parameters. We could find the pattern: v11 is

small, v21 is large, v21 is large, and v22 is small and µ1, and µ2are always large. However, there

are special cases out of the patterns. Thus, we picked five cases of them and show what the

difference is between special cases and the pattern of parameters [ Figure 2.14, and Figure 2.18

]. The pattern of parameters indicates the maximal rate of activation of gene, v12 is higher

than v11 in environment 1, and v21 is higher than v22 in environment 2. However, the special

cases of [ Figure 2.15 ] show v22 is higher than v21 in environment 2, and the special cases

of [ Figure 2.19 ] show v11 is higher than v12 in environment 1. Even though it is not easy

to explain why these special cases can make high fitnesses, it’s possible because the fitness is

made by many parameters combinations.

2.5.3 Computation

We simulated a program based on the simulated annealing algorithm, and it took nearly

around 18 minutes for each model. The simulation iterated 5000 times to find the optimal

parameters and a high fitness of each gene network model. It didn’t take a long time, but

when we simulated 200 times to find the pattern of parameters [ Figure 2.13 ], it took 24.08

hours. Thus, the running time is still a problem. However, we could save the running time by

finding of the properly initial temperature.

2.5.4 Conclusion

There are many modeling techniques for gene regulatory network. However, we choose

mathematical method because, we thought it makes easy to understand these dynamic pro-
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cesses. We described several gene network models, showed the dynamic process of gene network,

and explored the gene network from evolutionary view point. From this research, we could find

how gene network evolve with parameters and two different environments, and we could apply

to design and optimize other gene network. Furthermore, these findings of proper parameters

and a high fitness of gene network model, and the track of fitness are useful to analysis of the

evolutionary gene network.

However, we think the gene network consisted of two genes is still small to apply a real

complicated gene network. Thus, we will expand our research to deal with several genes.

We thought about duplication concept. Gene duplication is one way to create new genes in

genomes, and regulatory interactions are inherited from the ancestral genes after duplication.

Thus, a duplicated gene has the same components of interaction. We will apply the duplication

concept to expand the gene network model. Finally, we believe that this research will help to

analyze the evolutionary gene networks.
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CHAPTER 3. GENERAL CONCLUSIONS

In this thesis, we explored the evolutionary gene network. we could developed 3 different

simple gene network models, and could describe these network by mathematical approach.

From the evolutionary view point, we figured out high fitnesses of gene network models, and

tracked the fitness to show how gene networks are evolved. We used ordinary differential

equations because it is useful to apply evolutionary time. Also, when we simulated to obtain

a high fitness of gene networks, we applied simulated annealing algorithm. The simulated

annealing algorithm is fit for finding good combinations of parameters that produce the high

fitness of the gene network and it is the closest analogy with the shifting balance theory in

populations(Kirkpatrick,et al., 1983). It’s not easy to find proper conditions for simulation,

but we found empirical value from many simulations.

After we developed the fitness formula, we could expect the results, then we obtain same

results with what would be expected from simulation. Thus, we could prove our formula is

working well and the simulation is working well from the results.

In summary, 3 different gene network models depicted to ordinary differential equations

and simulation applied simulated annealing algorithm. We could show how each model evolve

with two environments in evolutionary time, and how the parameters of each model affect to

the fitness of the gene network model. Furthermore, this study can be applied to design and

optimize other gene networks. Therefore, we think this research can encourage the evolutionary

gene network study. Also, we think this research is good start to expand analysis of the

evolutionary gene network.
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APPENDIX. ADDITIONAL MATERIAL

Track of parameters

We simulated with an initial temperature, 0.4305. First, we simulated with the initial

temperature,1 and we choose 38 times fitness point from [ Figure .1 ]. [ Figure .2 ] indicates a

result of simulation with the initial temperature 0.4305 and finally it shows the fitness clime

up until 0.8414. The previous simulation with the initial temperature, 1 indicates the fitness

is 0.8668 at the end of simulation. Both fitnesses are close to each other. Thus, this example

also proves we find the properly initial temperature.

There are 3 figures indicate the track of other parameters of 3 different gene network models

[ Figure .3, Figure .4, and Figure .5 ].

Figure .1 Track of fitness of model 1 with the initial temperature,1.
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Figure .2 Track of fitness of model 1 with the initial temperature, 0.4305.
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Figure .3 Track of Parameters of Model 1
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Figure .4 Track of Parameters of Model 2
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Figure .5 Track of Parameters of Model 3
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Figure .6 200 times simulation: Blue line is a simulation with the initial
parameters. Red line is other 166 simulation results. the cutoff
value is 0.4

200 simulations to show the pattern of parameters

We simulated 200 times and set the cutoff value is 0.4. 0.4 is not big enough but it makes

the pattern of parameters is much clearly. [ Figure .6 ] shows same pattern with [ Figure 2.13

] .

Also, there are 4 other figures to explain why there are several lines are out of the pattern

of parameters in [ Figure .6 ] .
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Figure .7 Special cases of relations v21 and µ1(1+K1) parameters.
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Figure .8 v21 and µ1(1+K1) parameters are in direct proportion.
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Figure .9 Special cases of relations v12 and µ2(1+K2) parameters.
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Figure .10 v12 and µ2(1+K2) parameters are in direct proportion.
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