Anomalous dynamical line shapes in a quantum magnet at finite temperature

D. A. Tennant
Technische Universitat Berlin

B. Lake
Technische Universitat Berlin

A. J. A. James
Brookhaven National Laboratory

F. H. L. Essler
Rudolf Peierls Centre for Theoretical Physics

S. Notbohm
Helmholtz-Zentrum Berlin fur Materialien und Energie

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/physastro_pubs

Part of the Condensed Matter Physics Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/physastro_pubs/646. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Physics and Astronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Physics and Astronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Anomalous dynamical line shapes in a quantum magnet at finite temperature

Abstract
The effect of thermal fluctuations on the dynamics of a gapped quantum magnet is studied using inelastic neutron scattering on copper nitrate, a model material for the spin-1/2, one-dimensional (1D) bond alternating Heisenberg chain. A large, highly deuterated, single-crystal sample of copper nitrate is produced using a solution growth method and measurements are made using the high-resolution backscattering spectrometer OSIRIS at the ISIS Facility. Theoretical calculations and numerical analysis are combined to interpret the physical origin of the thermal effects observed in the magnetic spectra. The primary observations are (1) a thermally induced central peak due to intraband scattering, which is similar to Villain scattering familiar from soliton systems in 1D, and (2) the one-magnon quasiparticle pole is seen to develop with temperature into an asymmetric continuum of scattering. We relate this asymmetric line broadening to a thermal strongly correlated state caused by hard-core constraints and quasiparticle interactions. These findings are a counter example to recent assertions of the universality of line broadening in 1D systems and are applicable to a broad range of quantum systems.

Disciplines
Condensed Matter Physics

Comments

Authors

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/physastro_pubs/646
Anomalous dynamical line shapes in a quantum magnet at finite temperature

D. A. Tennant,1,2 B. Lake,1,2 A. J. A. James,3 F. H. L. Essler,4 S. Notbohm,1,5 H.-J. Mikeska,6 J. Fielden,7 P. Kögerler,7 P. C. Canfield,7 and M. T. F. Telling8

1Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin, Germany
2Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
3Department of Condensed Matter Physics and Material Science, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
4Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
5School of Physics and Astronomy, North Haugh, St. Andrews, KY15 9SS, United Kingdom
6Department of Theoretical Physics, University of Hannover, D-30167 Hannover, Germany
7Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
8ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 OQX, United Kingdom

(Received 20 November 2011; published 4 January 2012)

The effect of thermal fluctuations on the dynamics of a gapped quantum magnet is studied using inelastic neutron scattering on copper nitrate, a model material for the spin-1/2, one-dimensional (1D) bond alternating Heisenberg chain. A large, highly deuterated, single-crystal sample of copper nitrate is produced using a solution growth method and measurements are made using the high-resolution backscattering spectrometer OSIRIS at the ISIS Facility. Theoretical calculations and numerical analysis are combined to interpret the physical origin of the thermal effects observed in the magnetic spectra. The primary observations are (1) a thermally induced central peak due to intraband scattering, which is similar to Villain scattering familiar from soliton systems in 1D, and (2) the one-magnon quasiparticle pole is seen to develop with temperature into an asymmetric continuum of scattering. We relate this asymmetric line broadening to a thermal strongly correlated state caused by hard-core constraints and quasiparticle interactions. These findings are a counter example to recent assertions of the universality of line broadening in 1D systems and are applicable to a broad range of quantum systems.

DOI: 10.1103/PhysRevB.85.014402 PACS number(s): 75.10.Pq, 75.40.Gb, 75.50.Ee

I. INTRODUCTION

The behavior of quantum systems at finite temperature is of great importance for real applications as well as fundamental science. In spite of this, relatively few experimental studies have been undertaken on quantum magnets. The standard paradigm for temperature effects in a quantum system is lifetime damping of the quasiparticles. This manifests as a paradigm for temperature effects in a quantum system is often associated with low-dimensional systems with thermally activated strong correlations. This asymmetric broadening has been missed in previous work4,6 and shows the limitations that these theories of thermal effects in magnets, a phenomenon that occurs even though the lifetime broadening is an order of magnitude smaller than the mode frequency. We propose this behavior to be non-system-specific and applicable to a broad range of low-dimensional systems with thermally activated strong correlations. This asymmetric broadening has been missed in previous work4,6 and shows the limitations on the parameter regime in which universal behavior may emerge. Notwithstanding the former remark, a more recent approach7,8 does predict asymmetric line broadening for one-dimensional systems described by gapped continuum integrable field theories. The application of this approach to systems that are not exactly solvable9,10 also predicts an asymmetric broadening. It is then vital to see the degree to which the experiment agrees with the theoretical predictions match the experimental situation. Accordingly, we take the theory, suitably adapted to the specific case of copper nitrate, and compare it to the inelastic neutron-scattering results, finding qualitative and quantitative agreement for temperatures smaller than the gap. The theory takes the form of an expansion in particle number, or, equivalently, temperature, and is therefore not expected to be applicable at higher temperatures. Therefore, we also compare to exact diagonalization results, which, though limited to small system sizes, are not restricted to low temperatures in the same fashion.

Furthermore, such systems will also display intraband scattering at finite temperatures when there is a thermally induced population of quasiparticles. Both the experiment and theory described here are capable of accessing the resulting low-frequency response, and we take advantage of this situation to perform an additional test of their agreement.
Probing the aforementioned system of hard-core quasiparticles with neutrons requires it to be manifested as some form of spin system. The alternating Heisenberg chain (AHC) of spin-1/2 moments with strong alternation constitutes such a system. The AHC is described by the Hamiltonian $H = \sum_i J_0 S_i \cdot S_i + J' S_i \cdot S_{i+1}$, where J and J' are antiferromagnetic exchange constants, with $J > J'$ and alternation parameter α defined as J'/J (here, strong alternation corresponds to small α). The AHC has been an important paradigm in quantum magnetism for a long time. Recently, it has attracted the attention of the quantum information community as an example for detecting and quantifying entanglement in solids, as well as encoding and transporting qubits.

In the AHC, the dominant antiferromagnetic exchange interaction (J) between two neighboring sites (separated by distance ρ and with chain repeat distance d) couples the spins into pairs, or “dimers,” whose ground state is a singlet $1/\sqrt{2}[|↑↓⟩ − |↓↑⟩]$. The dimer excited states are a spin-1 triplet with quantum numbers $S = 1, 0, -1$. To first approximation, the global ground state of the chain is a product of dimer singlets. However, the interdimer exchange (J') admixes a small amount (of the order $\sqrt{3}/8$) of polarized dimer pairs with total spin $s = 0$ as ground-state fluctuations [Fig. 1(e)]. The elementary excitations are a triplet of spin-1 states, or magnons. These are momentum k Bloch states obtained by exciting one dimer singlet to a triplet state. The interdimer coupling allows the excitation to hop from dimer to dimer along the chain, as illustrated in Fig. 1(f). To the lowest order in J', this one-magnon dispersion is $\omega(k) = J − (J'/2) \cos(kd)$. The AHC then provides an excellent example of a one-dimensional system of hard-core quasiparticles if α is small.

Copper nitrate closely realizes the AHC, the Cu$^{2+}$ ions have spin-1/2 moments, and the dominant exchange couplings are $J = 0.443 \pm 0.002$ meV and $\alpha = 0.227 \pm 0.005$. For these parameters, the magnon bandwidth is small compared to the gap. This parameter range is complementary to the one analyzed in recent studies. Crucially the smallness of J'/J leads to a clear separation in energy between single-magnon excitations and two-magnon excitations, even at high temperatures. This allows for a detailed experimental investigation of the corresponding features in the dynamic response for a wide range of temperatures. Copper nitrate then is a particularly attractive material for studying the crossover in the dynamics between the low-temperature regime dominated by quantum fluctuations and the high-temperature phase characterized by thermal fluctuations.

Systems of one-dimensional hard-core bosons may also be realized as spin ladders, when the ratio of exchange parameters favors dimers forming on the rungs. Again, the hard-core constraint of magnons not being able to simultaneously occupy sites is enforced by the dimer units, which can only be in an unoccupied (singlet) or occupied state (one of the three triplet states). The thermal development of spectral weight in these ladder systems has been studied, but the bond operator approaches used did not yield information about the linewidths, so that the results are somewhat complementary to those presented here.

The plan of the paper is as follows. In Sec. II, we outline the theoretical approach to calculating the finite-temperature response for the AHC. Section III covers the specifics of copper nitrate as a manifestation of the AHC. In Sec. IV, we compare the experimental results to the theoretical predictions. We also compare the data with exact diagonalization results in Sec. V. Finally, in Sec. VI, we make some concluding remarks.

II. THEORY

An intrinsic property of the magnon excitations in the AHC is that they obey a hard-core constraint: each dimer site can be occupied by at most one magnon at a time. In addition to this hard-core repulsion, particles occupying neighboring

FIG. 1. (Color online) Excitation spectra of copper nitrate at $T = 0.12$ K (≈0 K). (a) and (c) show background-subtracted two- and one-magnon experimental data, respectively, while (b) and (d) show the simulated $T = 0$ spectra. (e)-(g) presents schematically the excitation spectrum in terms of the single-dimer states. The $(|G⟩,|+1⟩,|0⟩, and |−1⟩)$ open and filled circles represent unoccupied and occupied states. (e) represents the ground state where a small amount of the $s = 0$ two-magnon vacuum fluctuations mix with the dimer singlet. (f) shows the one-magnon excitation, where a singlet is promoted into a triplet and can then propagate along the chain, maintaining its polarization. (g) describes the two-magnon state where the $s = 0$ two-magnon fluctuations are excited; again these particles can propagate, maintaining polarization.
sites interact with each other through the interdimer exchange (J'). This interaction only exists for nearest neighbors and is absent for larger dimer separations. The nearest-neighbor potential V_i is $-J'/2, -J'/4, J'/4$ for pairs with combined total spin $s = 0, 1, 2$, respectively, and provides an attraction that has important effects on multiparticle states. There are two types of solutions to the two-particle Schrödinger equation: The first has the form of a continuum of states, where k_1 and k_2 are momenta of the magnons along the chain, with total momentum along the chain $Q = k_1 + k_2$ and energy $\hbar \omega = \hbar \omega(k_1) + \hbar \omega(k_2)$. The scattering matrix (S matrix) describing the interchange of two particles in a state with total spin s is given by S_{k_1,k_2}^s, and the corresponding phase shift is $\phi^s_{k_1,k_2} = -(i/2) \ln(S_{k_1,k_2}^s)$. We note that in general the S matrix differs from the noninteracting hard-core value $S_{k_1,k_2}^s = -1$, but reduces to the latter in the limit of vanishing momenta.

The second solution to the two-particle Schrödinger equation has the form of an exponentially decaying bound mode, which exists over all Q for $s = 0$ and around the nodes in the continuum ($Q \sim \pi/d$, where d is the chain repeat distance) for $s = 1$. For $s = 2$, the mode occurs at energies above the two-magnon continuum ("antibound mode").

A. Temperature

A fundamental result of this paper is the observation of the development of an asymmetric continuum with temperature. In general, the calculation of dynamical correlation functions at finite temperature is a highly nontrivial task. In Refs. 7 and 8 (and subsequently in Ref. 20), a method was developed and coupled with the property of integrability in certain one-dimensional systems to render the calculation tractable. However, the method can be applied without appealing to integrability if one is willing to work with approximate expressions for matrix elements (controlled by some small parameter, such as α). This has been done for both the AHC and a dimerized spin ladder. Other results for the dynamical correlations in the AHC at finite temperature have relied on exact diagonalization. Here we calculate the spin response using the method described in Ref. 9, which is summarized below for convenience.

In the limit $\alpha = 0$ of decoupled dimers, the ground state for periodic boundary conditions is a product of local singlets,

$$|0\rangle = \prod_{j=1}^{N/2} |0\rangle_j = \prod_{j=1}^{N/2} |\downarrow_1\rangle_{2j-1} |\downarrow_2\rangle_{2j} |\downarrow_1\rangle_{2j-1} |\downarrow_2\rangle_{2j}. $$

(1)

We have taken the stronger exchange J as between sites $j = 1, 2$ and the weaker J' between $j = 2, 3$, and so on for the rest of the chain. Single-particle excitations are obtained by exciting one dimer to a triplet state, e.g.,

$$t^+_0(m)|0\rangle_m = \frac{1}{\sqrt{2}} [|\uparrow\rangle_{2m-1} |\downarrow\rangle_{2m} + |\downarrow\rangle_{2m-1} |\uparrow\rangle_{2m}].$$

To the lowest order in degenerate perturbation theory, an excitation with $S' = \sigma$ and momentum p is then given by (the repeat distance d is set to 2)

$$|p,\sigma\rangle = \frac{1}{\sqrt{N}} \sum_{m=1}^{N/2} e^{i2pm} t^+_0(m)|0\rangle_m.$$

(2)

The energy of the one-particle states $|p,\sigma\rangle$ is

$$\epsilon(p) = J - J' \cos(2p).$$

(3)

By virtue of the periodic boundary conditions, the momenta take the values $p = 2\pi n / N, n = 0, 1, \ldots N/2 - 1$. The leading-order expressions in degenerate perturbation theory for two-particle states with total spin s, z component of spin σ, and momenta p_1, p_2 are

$$|p_1, p_2, s, \sigma\rangle = N_{p_1, p_2}^{s} \sum_{m=1}^{N/2} \psi_s(p_1, p_2|m,n) \times \sum_{l(n_1)} c^{s,\sigma}_{l(n_1)} t^+_s(m) t^+_\sigma(n)|0\rangle,$$

(4)

where N_{p_1, p_2}^{s} is a normalization constant, $c^{s,\sigma}_{l(n_1)}$ are Clebsch-Gordan coefficients, and the wave functions take the form

$$\psi_s(p_1, p_2|m,n) = e^{2i(p_1m + p_2n)} S_{p_1, p_2}^s e^{2i(p_1n + p_2m)}.$$

(5)

The scattering matrix is given by

$$S_{p_1, p_2}^s = \frac{1 + e^{-2i(p_1 + p_2)} - 2\Delta_0 e^{-2ip_2}}{1 + e^{-2i(p_1 + p_2)} - 2\Delta_0 e^{-2ip_1}}.$$

(6)

where $\Delta_0 = 1, \Delta_1 = 1/2$, and $\Delta_2 = -1/2$. Imposing periodic boundary conditions yields a set of coupled algebraic equations identical to the Bethe ansatz equations for the spin-1/2 Heisenberg XXZ chain with anisotropy Δ_s,

$$e^{ipN} = S_{p1, p2}^s, \quad e^{ipN} = S_{p2, p1}^s.$$

(7)

Explicit expressions for the wave functions are obtained by solving these equations numerically for the allowed values of $p_{1,2}$. Using these explicit forms of the wave functions, one can determine the matrix elements of the spin operators and, via a spectral representation, dynamical correlation functions. The dynamical susceptibility is given by

$$\chi_{z\bar{z}}(\omega, Q) = - \int_0^\beta d\tau e^{i\omega_\tau} \frac{1}{N} \sum_{l,r} e^{-iQ(l-r)} \left| S_{\tau}^l S_{\bar{\tau}}^r \right|_{\epsilon_{\bar{\tau}} \rightarrow \delta - i\omega},$$

(8)

where $\beta = 1/k_B T$. Using a spectral representation in imaginary time as well as translational invariance by two sites, we can express the susceptibility as

$$\chi_{z\bar{z}}(\omega, Q) = \frac{1}{2} \sum_{r,s=0}^{\infty} C_{rs},$$

$$C_{rs} = - \int_0^\beta d\tau e^{i\omega_\tau} \frac{1}{N} \sum_{l,l'=0}^{N/2-1} e^{-2iQ(l-l')} \times \sum_{\gamma, \gamma'} e^{-\beta E_{\gamma s}} e^{-\beta \left| E_{\gamma r} - E_{\gamma'} \right|} \times e^{2i(l-l')(P_{\gamma r} - P_{\gamma'})} \left| M_{\gamma r, \gamma'} \right| e^{i\omega_\tau} \delta - i\omega."
excited state $|\gamma_i\rangle$, and

$$
M_{\gamma_{\gamma_i}} = |\langle \gamma| S_{\gamma_i} |\gamma_i\rangle|^2 + e^{iQ} |\langle \gamma| S_{\gamma_i} |\gamma \rangle |\langle \gamma| S_{\gamma_i}^\dagger |\gamma_i\rangle| + e^{-iQ} |\langle \gamma| S_{\gamma_i}^\dagger |\gamma \rangle |\langle \gamma| S_{\gamma_i} |\gamma_i\rangle|.
$$

(10)

Carrying out the Fourier transform, we have

$$
C_{\gamma_{\gamma_i}} = \sum_{\gamma_{\gamma_i}} \frac{N}{4} \delta_{Q+P_{\gamma_i}+P_{\gamma}} - e^{-\beta E_{\gamma}} - e^{-\beta E_{\gamma}} M_{\gamma_{\gamma_i}}.
$$

(11)

The terms $C_{\gamma_{\gamma_i}}$ in the expansion of the susceptibility contain contributions that diverge as system size to some power and are canceled by the partition function. In order to make these cancellations explicit, we denote the n-particle contribution to Z by Z_n and insert the expansion

$$
Z^{-1} = \left(\sum_{n=0}^{\infty} Z_n \right)^{-1} = 1 - Z_1 - (Z_2 - Z_1^2) + \cdots
$$

(12)

into the spectral representation of the susceptibility to obtain a low-temperature expansion of the form

$$
\chi^{zz}(\omega, Q) = C_{01} + C_{10} + C_{11}
+ [C_{12} + C_{21} - Z_1(C_{01} + C_{10})] + \cdots
$$

(13)

At $T > 0$, this expansion is found to exhibit divergences when $\omega \to \epsilon(Q)$ that grow with the number of particles. In order to obtain physically meaningful results, it is necessary to carry out a resummation following Ref. 7. We first note that the result for the single-magnon contribution at $T = 0$ is obtained by taking into account only the ground state and one-particle states in the expansion of $\chi^{zz}(\omega, Q)$, resulting in

$$
D(\omega, Q) = \frac{1}{4} \cos(Q) \left[\frac{1}{\omega + i\delta - \epsilon(Q)} - \frac{1}{\omega + i\delta + \epsilon(Q)} \right].
$$

(14)

Casting the susceptibility at finite temperature in the form of a Dyson equation,

$$
\chi^{zz}(\omega, Q) = \frac{D(\omega, Q)}{1 - D(\omega, Q) \Sigma(\omega, Q, T)},
$$

(15)

we obtain an expression $\chi^{zz} = [D(\omega, Q) + D^2(\omega, Q) \Sigma(\omega, Q, T) + \cdots]$ that exhibits the same type of divergences encountered in the spectral representation, which allows us to derive a low-temperature expansion for $\Sigma(\omega, Q, T)$ by matching the two expansions. To the leading order in $e^{-\beta}$, we find

$$
\Sigma(\omega, Q, T) \approx D^{-2}(\omega, Q) [(C_{11} + C_{12} + C_{21})
- (Z_1 [1 - e^{-\beta(\epsilon(Q))} + e^{-\beta(\epsilon(Q))}] D(\omega, Q))].
$$

(16)

The contributions $C_{12}, C_{21},$ and C_{11} are determined using the explicit forms of one- and two-magnon states given above and by solving the quantization conditions for magnon momenta numerically (which is easily done for systems of several thousand sites). This results in a low-temperature expansion of the dynamical susceptibility, controlled by the smallness of the density of thermally excited magnons. The derivation presented here is for a straight chain, but is easily adapted to more physically realistic systems.
run, a mass ratio of 99.0% and an atomic ratio of 98.9% are obtained by mixing 253.2 g of D₂O to the solution and, during the pumping, 259.6 g of liquid are extracted. For the last process, 230.0 g of D₂O are added and a mass ratio of 99.7% and an atomic ratio of 99.7% are reached. In this last distillation, 232.1 g of solution have to be extracted from the mixture to ensure a saturated solution for the growth process and, during the actual run, 233.7 g of liquid are pulled out. This amount is within the limits of having a saturated solution at 80 °C, leading to the decision not to add more D₂O in order to limit the air contact of the solution and thus a possible exchange between hydrogen and deuterium. By performing these five distillation runs, the target deuteration ratio of >99% is achieved.

This saturated solution in a sealed glass container is placed into a temperature-controlled oil bath at 85 °C. The liquid is cooled to 35 °C, well above the second phase-transition temperature, over several hours, producing needle-shaped seeds of approximate size 1 cm × 2 mm × 1 mm. Choosing one seed and placing the rest back into the solution to avoid any changes in the solubility, a thread is tied around the upper part of the seed and it is placed vertically into the solution. The thread has to be kept outside of the solution, ensuring the growth of the crystal below it and an easy removal after the completion of the growth process. The new starting temperature with the suspended seed consists of 65 °C to avoid any dissolving of the seed, and a cooling rate of 0.5 °C per hour until 45 °C is achieved, which is necessary for a homogeneous growth. The whole growth process is performed in a nitrogen-filled glove bag and resulted in the growth of the 8-g single crystal used in our neutron experiment. An example crystal grown using this method is shown in Fig. 2.

B. Neutron scattering

The single and multiparticle states were measured using the OSIRIS indirect geometry time-of-flight spectrometer at the ISIS Facility, Rutherford Appleton Laboratory, United Kingdom. The crystal was precisely aligned with the (h,0,1) reciprocal lattice plane in the horizontal scattering plane. Cu(NO₃)₂·2.5(D₂O) is monoclinic (I12/c1) with lattice parameters (at 3 K) of a = 16.1, b = 4.9, and c = 15.8 Å and β = 92.9°. Equivalent chains lie along the [1,1,1]/2 and [1,−1,1]/2 directions and project onto the same direction on the (h,0,l) plane. A dilution insert provided sample temperatures down to 120 mK and a rotation stage allowed the magnetic chains to be rotated to different angles relative to the incident beam of neutrons. A white beam is pulsed at 50 Hz with neutrons arriving at the sample over the initial 34-m flight path at different times according to their energy. An array of pyrolytic graphite analyzers scatter neutrons with energy of 1.845 meV from 002 reflections into a bank of 42 detectors, covering scattering angles from 11° to 150° arrayed at 0.5 m around the sample, provided an energy resolution of 25 µeV full width at half maximum. The cooling of the analyzers in OSIRIS provides a very low background by removing thermal diffuse scattering. The energy and wave-vector transfer of scattering events are calculated from the crystal angle and converted to the partial differential cross section expressed in terms of the projection of the wave vector along the chain axis. Nonmagnetic backgrounds have been subtracted from the displayed data sets.

At very low temperatures compared to the exchange energy J, neutrons essentially measure the S = 1 spectrum by exciting from the ground state. The entire scattering plane was measured and the single-magnon excitation spectrum was fitted to determine the exchange couplings using a simple cosinusoidal dispersion, \(hω(Q) = J − 1/2 \sum_d J_d \cos(Q ⋅ d) \). This analysis showed that the strongest exchange, \(J = 0.443 ± 0.002 \) meV, is across the bond [0.234, ±0.473, 0.270] with intradimer \(J_{[0.266,0.027,0.230]}/J = 0.101 \) meV, giving the alternation ratio \(α = J/J_c = 0.227 ± 0.005 \). The interchain coupling along the [1,0,0] and [0,0,1] directions are \(J_a = 0.066 ± 0.003 \) meV and \(J_c = 0.0018 ± 0.0005 \) meV. The improved exchange-parameters determination was possible due to the comprehensive and high-quality data sets obtained from OSIRIS.

IV. RESULTS AND DISCUSSION

A. One-magnon, two-magnon, and bound states

In Fig. 1, the excitations to the one-magnon modes are easily seen and follow accurately the predicted cosinusoidal behavior. The wave-vector modulation of the intensity is due to interference in scattering between the two spins composing the dimer. The two-quasiparticle states can also be observed. Neutrons scatter from the weakly admixed polarized (s = 0) dimer pairs composing the ground-state fluctuations to the two-magnon states [Fig. 1(g)]. This scattering is far more sensitive to the composition, interactions, and phase factors between particles than the one-magnon signal, and our measurements, given in Fig. 3, are in quantitative agreement with the interacting two-particle Schrödinger wave functions, calculated in the appendix of Ref. 19. In particular, we resolve the spin-1 bound mode of the AHC, which is a direct signature of the two-particle interaction, given in Figs. 3(c) and 4. The binding energy and intensity of the bound mode are in perfect agreement with the perturbative calculation. This confirms that copper nitrate accurately realizes an interacting gas of hard-core magnons in one dimension and shows an attractive...
FIG. 3. (Color online) The two-magnon states. (a) The superimposed line gives the upper and lower boundaries of the two-magnon scattering and the position of the bound mode, lying just below the node. (b) is a cut of the scattering intensity at $Q = 2\pi/d$ as a function of energy; scattering is observed between the upper and lower two-magnon envelopes. (c) is a cut at the node position ($Q = 3\pi/d$). The node occurs at an energy of 0.88 meV (shaded region), however, at this wave vector, it is predicted to have very little intensity. Red lines are calculations based on the two-particle Schrödinger solution. A peak is nevertheless observed and occurs at the lower energy of 0.855 meV; this is the expected position of the bound mode.

coupling—the bound state appears below the continuum—between pairs of magnons in a spin-1 total state. Magnons in the spin-0 total state are even more attractive and form a deeper bound state not visible to neutrons, while the magnons are repulsive in spin-2 states and form an antibound state above the continuum, again not visible to neutron scattering due to spin conservation selection rules.

The spin-1 bound mode, shown in Fig. 3(c), is extracted from a crystal orientation that covers the whole wave-vector extent of the continuum. In this geometry, the node in the continuum has very little intensity and only the bound mode is apparent. Other crystal rotations, while not covering the whole wave-vector range simultaneously, can provide the possibility to observe bound mode and continuum scattering simultaneously, as shown in Fig. 4.

B. Thermal effects

At low temperatures, the dynamics of the strongly alternating Heisenberg chain can be thought of in terms of a low-density gas of hard-core magnons. We follow the thermal evolution of correlations in this quasiparticle gas: The density of thermally excited magnons per dimer can be estimated from the zero-bandwidth limit to be $n(T) \approx 3 \exp(-J/kT)/(1 + 3 \exp(-J/kT))$ (black dash-dotted line in Fig. 5). Neutron-scattering measurements were made at temperatures of $T = 0.12, 2, 3, 4, 6$ K, where the magnon densities are approximately $n = 6 \times 10^{-19}, 0.19, 0.35, 0.45, 0.56$, respectively, and where the density at infinite temperature is $n(\infty) = 0.75$. With increasing temperature, the following picture emerges: first, the two-magnon scattering all but disappears; second, a new band of scattering emerges around zero energy with the same bandwidth as the one-magnon scattering; and third, the one-magnon mode develops into a scattering continuum; see Fig. 6.

The decrease in the two-particle scattering with increasing temperature is a direct result of the hard-core constraint. A neutron cannot create a further two magnons on a given pair of

FIG. 4. (Color online) Measurement showing bound mode at ~ 0.86 meV, as indicated by the red dashed line, resolved from the continuum at the higher energy of ~ 0.89 meV, with gray hatching indicating the nominal extent of the continuum. The measurement here was made with a different crystal rotation angle from that in Fig. 3(c) and cuts through a location with more intensity near the continuum node. The red line is that of two resolution-broadened Gaussians at the expected bound mode and continuum positions.

FIG. 5. (Color online) Calculated integrated intensity of the one-magnon band (black stars), two-magnon band (red circles; note the intensity is scaled by a factor of 20 to be visible on the same scale), and central quasielastic band (blue crosses), as computed in Ref. 21 using 16 spin diagonalizations for copper nitrate. The temperature is rescaled to the dimer energy J. The black dash-dotted line is the zero bandwidth limit result discussed in Sec. IV B, and the blue dashed line is the corresponding value for the central peak (see Ref. 7). The red solid line is the intensity predicted for the two-magnon scattering from perturbation theory; see Sec. IV B.
ANOMALOUS DYNAMICAL LINESHAPES IN A QUANTUM . . .

PHYSICAL REVIEW B 85, 014402 (2012)

D. Thermal line broadening

Finally, we discuss the asymmetrically broadened line shape of the one-magnon scattering at finite temperature. In a
Figure 7 shows the thermal evolution of the one-magnon band. The most striking feature is the formation with increasing temperature of a continuum of scattering weighted toward higher (lower) energies for $Q = 2\pi/d$ ($Q = \pi/d$ and $Q = 3\pi/d$). In the analysis of experimentally obtained lineshapes that show asymmetric thermal broadening, such as those presented here, it is useful to have a function that can be fit to the data, parametrizing the asymmetry. We find a suitable function to be

$$I(Q, \omega) = A(Q) \int_{-\infty}^{\infty} dt \exp\left[-\frac{(\omega - \Gamma(Q)\omega - d(Q))^2}{2\sigma^2}\right] \frac{1}{\pi} \frac{1}{1 + \left[\omega - \alpha(Q)\omega^2 + \gamma(Q)\omega^3\right]^2}. \quad (17)$$

This incorporates the effect of the experimental resolution by taking a convolution with a Gaussian of variance σ (we have made a substitution, shifting and rescaling the integration dummy parameter to simplify the integrand). The remaining function takes the form of a modified Lorentzian, where the usual argument has been replaced by a polynomial that includes an asymmetry term, $\alpha(Q)\omega^2$, and a further damping term, $\gamma(Q)\omega^3$. As $T \to 0$, the asymmetry vanishes $[\alpha(Q)\omega^2 + \gamma(Q)\omega^3 \to 0]$ and the line shape becomes Lorentzian (broadened by the experimental resolution). Taking the $T = 0.12$ K data as symmetric, we extract the resolution, $\sigma = 0.12$ meV, and use this as an input parameter for fits at $T = 2,3,4$, and 6 K. The extracted parameters are then $\Gamma(Q), \alpha(Q), \gamma(Q)$, and the overall amplitude $A(Q)$. Some of the fits obtained are shown in Fig. 8. A simple measure of the asymmetry is given by $\alpha(Q)$, which is increasingly positive (negative) for a tail weighted toward higher (lower) energies. In Fig. 9, we plot the values of $\alpha(Q)$ and $\Gamma(Q)$ obtained using Eq. (17).

E. Interacting particle gas

To gain insight into the development of the asymmetric line shape, a calculation was presented in Sec. II, treating the thermally excited particles as a strongly correlated quantum ensemble. These calculated lineshapes (blue line) for the one-magnon scattering in copper nitrate using inelastic neutron scattering (INS). The data was interpreted as a conventional Lorentzian line shape and modeled using a random phase approximation (RPA) calculation. The dispersion of these particles was found to renormalize with temperature with the bandwidth of the excitation spectrum narrowing compared to an RPA calculation. Here we find that the lineshapes are in fact highly asymmetric in energy. This suggests that a Lorentzian broadening occurs only at very low temperatures (compared to the magnon gap), which is a fact that is borne out by calculations above in Sec. II. At higher T, magnon interaction effects are such that a simple description in terms of a lifetime no longer applies. The line shape then constitutes a fingerprint of the magnon interactions.

In such a picture, a symmetric Lorentzian line shape is predicted, whose width is a measure of the lifetime or coherence of the particles. The issue was first addressed experimentally by Xu et al. who also studied one-magnon scattering in copper nitrate using inelastic neutron scattering (INS). The data was interpreted as a conventional Lorentzian line shape and modeled using a random phase approximation (RPA) calculation. The dispersion of these particles was found to renormalize with temperature with the bandwidth of the excitation spectrum narrowing compared to an RPA calculation. Here we find that the lineshapes are in fact highly asymmetric in energy. This suggests that a Lorentzian broadening occurs only at very low temperatures (compared to the magnon gap), which is a fact that is borne out by calculations above in Sec. II. At higher T, magnon interaction effects are such that a simple description in terms of a lifetime no longer applies. The line shape then constitutes a fingerprint of the magnon interactions.

Figure 7 shows the thermal evolution of the one-magnon band. The most striking feature is the formation with increasing temperature of a continuum of scattering weighted toward higher (lower) energies for $Q = 2\pi/d$ ($Q = \pi/d$ and $Q = 3\pi/d$). In the analysis of experimentally obtained lineshapes that show asymmetric thermal broadening, such as those presented here, it is useful to have a function that can be fit to the data, parametrizing the asymmetry. We find a suitable function to be

$$I(Q, \omega) = A(Q) \int_{-\infty}^{\infty} dt \exp\left[-\frac{(\omega - \Gamma(Q)\omega - d(Q))^2}{2\sigma^2}\right] \frac{1}{\pi} \frac{1}{1 + \left[\omega - \alpha(Q)\omega^2 + \gamma(Q)\omega^3\right]^2}. \quad (17)$$

This incorporates the effect of the experimental resolution by taking a convolution with a Gaussian of variance σ (we have made a substitution, shifting and rescaling the integration dummy parameter to simplify the integrand). The remaining function takes the form of a modified Lorentzian, where the usual argument has been replaced by a polynomial that includes an asymmetry term, $\alpha(Q)\omega^2$, and a further damping term, $\gamma(Q)\omega^3$. As $T \to 0$, the asymmetry vanishes $[\alpha(Q)\omega^2 + \gamma(Q)\omega^3 \to 0]$ and the line shape becomes Lorentzian (broadened by the experimental resolution). Taking the $T = 0.12$ K data as symmetric, we extract the resolution, $\sigma = 0.12$ meV, and use this as an input parameter for fits at $T = 2,3,4$, and 6 K. The extracted parameters are then $\Gamma(Q), \alpha(Q), \gamma(Q)$, and the overall amplitude $A(Q)$. Some of the fits obtained are shown in Fig. 8. A simple measure of the asymmetry is given by $\alpha(Q)$, which is increasingly positive (negative) for a tail weighted toward higher (lower) energies. In Fig. 9, we plot the values of $\alpha(Q)$ and $\Gamma(Q)$ obtained using Eq. (17).
For hard-core particles with no contact potential, the quasiparticles are fermionic in the sense that their scattering matrix is \(-1\). They are hard core in that even if the fermions have different spin quantum numbers, they will never occupy the same dimer site. The broadening of the magnon line is found to be highly asymmetric in this case. The presence of a further interaction in the form of a contact potential (“stickiness”) between quasiparticles is seen to modify the line shape. This demonstrates that as expected on general grounds, the interaction in the form of a contact potential (“stickiness”) to be highly asymmetric in this case. The presence of a further interaction in the form of a contact potential (“stickiness”) between quasiparticles is seen to modify the line shape. This demonstrates that as expected on general grounds, the interaction in the form of a contact potential (“stickiness”) to be highly asymmetric in this case. The presence of a further interaction in the form of a contact potential (“stickiness”) between quasiparticles is seen to modify the line shape. This demonstrates that as expected on general grounds, the interaction in the form of a contact potential (“stickiness”) to be highly asymmetric in this case. The presence of a further interaction in the form of a contact potential (“stickiness”) between quasiparticles is seen to modify the line shape. This demonstrates that as expected on general grounds, the interaction in the form of a contact potential (“stickiness”) to be highly asymmetric in this case. The presence of a further interaction in the form of a contact potential (“stickiness”) between quasiparticles is seen to modify the line shape. This demonstrates that as expected on general grounds, the interaction in the form of a contact potential (“stickiness”) to be highly asymmetric in this case. The presence of a further interaction in the form of a contact potential (“stickiness”) between quasiparticles is seen to modify the line shape. This demonstrates that as expected on general ground...
intraband scattering is centered on zero energy transfer. This is particularly hard to measure because the incoherent scattering of hydrogen from the sample gives a large background signal centered at 0 meV. The excellent energy resolution of OSIRIS allows the magnetic intraband signal to be extracted at around twice the FWHM of the energy resolution. In fact, reliable data is extracted from 0.048 meV transfer and above. The accurate handling of background effects in the neutron-scattering data is again demonstrated by the comparison with the computed lineshapes. The temperature dependence of the intraband scattering agrees very well in intensity, and line shape changes with the computations, as shown in Fig. 11.

Finally, we draw attention to Fig. 3 from Ref. 21, which shows $S(Q,\omega)$ calculated via the 16 spin diagonalization. It shows a cut at π/d, and at $2\pi/d$ with no instrumental resolution (cf. Fig. 8 in this paper). For both π/d and $2\pi/d$, the asymmetry of the line shape is very clearly seen at the different temperatures. Note that the copper nitrate parameters were used, and the temperature and energy scales are in units of the dimer coupling, $J = 0.443 \pm 0.002$ meV. This shows that the line asymmetry indeed survives up to all orders of perturbation (i.e., to temperatures of the order of the gap and above) and is a striking physical effect.

VI. SUMMARY AND CONCLUSION

We have undertaken an in-depth study of the effects of temperature on a gapped quantum magnet. By using inelastic neutron scattering, the dynamics in the model one-dimensional magnet, copper nitrate, was determined at a series of temperatures. The primary observations are (1) a thermally induced central peak due to intraband scattering, and (2) the one-magnon quasiparticle pole is seen to develop with temperature into an asymmetric continuum of scattering, rather than showing the conventional Lorentzian line broadening.

To complement the experimental measurements, theoretical calculations and finite chain diagonalizations specialized to the spin-1/2 one-dimensional (1D) bond alternating Heisenberg chain describing copper nitrate are combined to interpret the physical origin of the thermal effects observed. The central peak is shown to have a physical origin similar to Villain scattering familiar from soliton systems in 1D. However, here the excitations are boson quasiparticles, which do not have the same dimensional constraints of topological solitons and so generalize to dimensions greater than one and this should be searched for in other materials. As regards the one-particle band, we relate this asymmetric line broadening to hard-core constraints and quasiparticle interactions, and this can be explained as a scattering process whereby a quasiparticle is inserted into a partially filled multiparticle band. The asymmetry originates from a combination of the density of states of the transitions available and the interaction potential modifying the cross section. These findings are a counter example to recent assertions of the universality of line broadening in 1D systems, which assume a Lorentzian line broadening. Indeed, the computations show asymmetry relevant at even the lowest temperatures. The results are applicable to a broad range of quantum systems.

In conclusion, our study shows that the effects of temperature in a low-dimensional quantum magnet are not those of simple decoherence of the quasiparticles, but instead promote the formation of a strongly correlated gas of quasiparticles. A description of this state has been achieved using non-perturbative methods. The findings here should apply to a large range of quantum systems and present a model of such behavior.

ACKNOWLEDGMENTS

We thank Rick Paul (NIST) for measuring the deuterium of the sample, S. Pfannenstiel (HZB) for storage, Felix Groitl
(HZB) for photography, and K. Damle (TFIR Mumbai) for enlightening discussions. Work at the Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358.