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Figure 25 illustrates the methodology used for image processing.  The location of the 

injector orifice was determined in the image by locating the first vertical location where the 

image intensity was greater than five times the averaged background value.  For example, the 

location of the injector orifice in Figure 24 can be seen as a steep rise in intensity values. 

 

 

  

 

Figure 24: Eight intensity traces from the calibration cell signal of a single injection event 

Figure 25: Illustration of calibration cell averaged intensity values. 



 

 

49

 
300 K 

 
 
 
 
 

400 K 
 
 
 
 

500 K 
 
 
 
 

600 K 

For an image matrix of [I] of n x m dimensions, a given row “ni” of “m” values was 

normalized by ni.  In summary, the images were processed by the following method: 

 

Corrected Image Pixel ni=(Raw Image – (Background+Scattering)) / Correction Factor ni 

 

Since the absorption of light in fuel was relatively low for 355 nm, the attenuation was not 

corrected for.  Figures 26, 27, and 28 show the corrected image sequences for 100, 125, and 

150 MPa injection pressures, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: 100 MPa injection sequence into N2 @ 3550 kPa 
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Figure 27: 125 MPa injection sequence into N2 @ 3550 kPa 
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Figure 28: 150 MPa injection sequence into N2 @ 3550 kPa 
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Since the images of Figures 26-28 were acquired at 10 kHz, the spacing between 

images is approximately 100 us.  The continuous dense liquid core of the spray can clearly be 

seen in the first several images of each sequence.  Images from early in the injection show 

that initially the tip of the spray plume is very dense prior to breaking up.  Once the injector 

is fully open, however, the spray appears to reach a steady liquid phase distribution.  As the 

laser pulses become weaker later in the sequence, it becomes increasingly difficult to resolve 

the concentration distribution. 

After imaging the spray at 10 kHz, it was desired to investigate the spray with greater 

temporal resolution.  This was achieved using excitation pulses at 20 kHz.  As such, Figure 

29 is an sequence of raw images from an injection event at 90 MPa injection pressure into 

nitrogen at 3550 kPa pressure.  The spatial laser variation is evident in the calibration cell at 

the left side of each spray image.  

 

 

Figure 29: Raw Image Sequence at 20 kHz 



 

 

53

Figure 30 shows the normalized images from Figure 29.  The correction was performed using 

the same method as for the 10 kHz case. 

 

 

 

 

 

 

  

 

 

The corrected spray images of Figure 30 show the high concentration areas of the 

spray near the injector tip early in the injection.  As the spray entered the chamber, the first 

droplets were observed to decelerate significantly.  The fuel behind this region, however, 

maintained its initial velocity and propagated through the deceleration region at high velocity 

until losing momentum to the surrounding gas.  This type of event was observed to occur two 

to three times per injection event for the distances examined.  This illustrates that the tip 

velocity of the spray can either increase or decrease at a given time after start of injection.   

 As the images progress in time, there is observed to be an abundance of signal around 

the periphery of the spray.  This was likely due to signal scattering and reflection from the 

opposite side of the constant volume vessel.  Since the camera aperture open time was 50 us, 

there was significant integration time for extra light to populate the CCD array.   

Figure 30: Image Sequence at 20 kHz 
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In addition to the normalized images from Figure 30, seven additional injection 

events were acquired to investigate the shot-to-shot penetration variation.  Figure 31 shows 

penetration curves for eight injection events. 
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Figure 31: Diesel spray penetration curves 

   

As can be seen in Figure 31, the overall penetration distance tends to vary 

increasingly the further it propagates.  Shot-to-shot spray propagation variability could be a 

contributor to instability in soot and NOx production in diesel flames.  This effect could be 

determined by investigating diesel diffusion flames at high frequency. 
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

 A constant volume combustion vessel was refurbished for use at Iowa State 

University in collaboration with John Deere.  The vessel contains four points of optical 

access which are used to image diesel injection events.  Due to the high velocity of typical 

diesel sprays, images were acquired using planar laser-induced fluorescence.  Preliminary 

studies were performed to determine shot-to-shot variations in spray penetration. 

 Following preliminary studies, a high-frequency planar laser induced fluorescence 

method was implemented to image individual diesel fuel injection events.  Laser excitation 

was provided using the output of a pulse-burst laser system.  The beam was formed into a 

sheet of approximately   In concert with the pulse burst diagnostic system, a calibration 

system was developed for the shot-to-shot normalization of individual sprays.  This was 

accomplished by filling a calibration cell with a mixture of methanol and LD489 laser dye.  

The mixture concentration was adjusted as necessary to optimize the signal intensities of the 

calibration fluid and spray. 

Spray penetration was resolved for fuel injections into atmospheric (1.135 kg/m3) and 

high density (38 kg/m3) nitrogen for a variety of gas temperatures and injection pressures.  

The results indicate that the minimum excitation frequency for temporally resolving diesel 

injection events is approximately 10-20 kHz, depending on the gas pressure. 

The raw images were corrected for spatial variations in laser energy to yield images 

detailing the liquid phase concentration distribution of diesel sprays. 

 Using a similar technique, high-frequency, quantitative planar images of molecules 

such as OH, NO, and CH could be acquired for a single injection event.  This would allow 

temporally resolved tracking of species concentrations.  The intent of such a study could be 
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to validate CFD models or test diesel engine components.  The system could also be well 

suited to optical engine tests, which could yield individual cycle species distribution and 

evolution. 
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APPENDIX: ADDITIONAL MATERIAL 

Structural Analysis 

In this section, a chronological procession of the structural analysis is presented.  This 

analysis is intended to serve as a guideline for determining the allowable operating 

conditions.  In order to determine operational limits, classical calculations were first 

performed.  According to Chattopadhyay [52], the maximum stress seen in an internally 

pressurized cylindrical pressure vessel with a circular hole is 

2 4

,max 2 4

3 3
4

4t

a a

r r

σ
σ

 
= + + 

 
, 

Where, a is the hole radius, r is interior radius of the pressure vessel, and σ corresponds to 

the theoretical hoop stress seen in the pressure vessel as specified by tσ  in the following 

equation: 

2
0

2 2
1

1t

rP

m r
σ

 
= + −  

 

The hoop stress is determined as a function of the internal vessel pressure P, the ratio of the 

outer radius to the inner radius m, and the outer and the dimensions of the inner radii ro and r, 

respectively. 
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The next step of the analysis was to develop a finite element model for the pressure 

vessel.  This was done using the Cosmos Works FEA package within Solid Works software.  

In order to validate the results of the classical calculations, a number of simulations were run.  

The purpose of these simulations was to determine the approximate magnitude of the 

maximum stress experienced by the pressure vessel.  The location of maximum stress 

indicated by FEA was also used as a guideline to ensure results were reasonable. 

Figure A2 contains the results from both the classical calculations and FEA.  As can 

be seen, there is reasonable agreement between the classical calculations and FEA results.  

The most likely source of discrepancy between the values shown in this case is the assumed 

geometry for the combustion vessel.  In the case of the classical calculations, a simple 

Figure A1: Factor of Safety Curves. 
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geometry consisting of a pure cylinder with two holes on opposite sides was assumed.  The 

finite element model, however, takes into account variations in the combustion vessel 

geometry.  The differences in the assumed geometries can be seen in Figure x below. 

If the combustion vessel rig were to consistently be operated at room temperatures, 

this analysis would have been finished at this point.  Due to the fact that significant heat input 

was required, however, the effect of heat energy on the structural integrity of the rig was 

evaluated.  This was done using the rules set forth by the ASME Boiler and Pressure Vessel 

Code.  According to the code, the maximum allowable stress for elevated temperature service 

of pressure vessels is the minimum of the following: 

 

I) 
1

3.5
* UTS at Room Temperature 

II)  
1

4
* UTS at Elevated Temperature 

III)  
2

3
* YS at Room Temperature 

IV)  
2

3
*YS at Elevated Temperature 

V) The stress value known to produce creep of 1% in 100,000 hours 

VI)  
4

5
* The stress value known to produce failure due to creep in 100,000 hours 

 

For this analysis, the maximum stress seen in the combustion vessel as a function of 

pressure was coupled with the maximum allowable stress subject to rules I–VI to determine 

the maximum allowable pressure in the combustion vessel as a function of temperature.  
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Figure A2 illustrates these six criterion, with the minimum value at a specific temperature 

corresponding to the maximum allowable pressure.  As can be seen in Figure A2, it would be 

unwise to operate the pressure vessel at a temperature greater than 500 C, due to the potential 

 

Figure A2: Maximum allowable vessel pressures as a function of temperature 

 

of eventual creep rupture.  Because of this, the apparatus is installed with an interior 

refractory liner, as well as insulation.  The purpose of these measures is to inhibit heat 

transfer, and allow higher temperatures to be achieved in the combustion vessel without 

exceeding the structural limitations.  In order to monitor the vessel temperature, a 

thermocouple has been installed on the outer edge of the thermal insulation.  This 

temperature is assumed to represent the overall temperature of the metal. 
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Image Processing Code 

 CREATE A MATRIX OF ZEROS 
B=zeros([1024 1280 1 1],'uint16'); 
B=zeros([1024 1280 1 25],'uint16'); 
 
 READ IN IMAGES-CHOOSE FILENAMES AND QUANTITIES 
for frame=1:25 
A50(:,:,:,frame),map]=imread('D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\50 micro.tif',frame); 
A250(:,:,:,frame),map]=imread('D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\250 micro.tif',frame); 
A450(:,:,:,frame),map]=imread('D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\450 micro.tif',frame); 
A650(:,:,:,frame),map]=imread('D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\650 micro.tif',frame); 
A850(:,:,:,frame),map]=imread('D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\850 micro.tif',frame); 
A1050(:,:,:,frame),map]=imread('D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\1050 micro.tif',frame); 
end 
 
 BACKGROUND SUBTRACTION & ELIMINATE EXTRANEOUS NOISE 
for frame=1:25 
A50(:,:,:,frame)=A50(:,:,:,frame)-Background_avg2; 
A250(:,:,:,frame)=A250(:,:,:,frame)-Background_avg2; 
A450(:,:,:,frame)=A450(:,:,:,frame)-Background_avg2; 
A650(:,:,:,frame)=A650(:,:,:,frame)-Background_avg2; 
A850(:,:,:,frame)=A850(:,:,:,frame)-Background_avg2; 
A1050(:,:,:,frame)=A1050(:,:,:,frame)-Background_avg2; 
A50(759:764,193:194,frame)=0; 
A250(759:764,193:194,frame)=0; 
A450(759:764,193:194,frame)=0; 
A650(759:764,193:194,frame)=0; 
A850(759:764,193:194,frame)=0; 
A1050(759:764,193:194,frame)=0; 
end  
 
WRITE PROCESSED .TIF FILES 
for frame=1:25 
imwrite(A50(:,:,:,frame),'D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\Processed\50 micro processed.tif','WriteMode','append'); 
imwrite(A250(:,:,:,frame),'D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\Processed\250 micro processed.tif','WriteMode','append'); 
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imwrite(A450(:,:,:,frame),'D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\Processed\450 micro processed.tif','WriteMode','append'); 
imwrite(A650(:,:,:,frame),'D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\Processed\650 micro processed.tif','WriteMode','append'); 
imwrite(A850(:,:,:,frame),'D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\Processed\850 micro processed.tif','WriteMode','append'); 
imwrite(A1050(:,:,:,frame),'D:\Diesel Injection\ISU Injection\October 2008\500 psi\90 
MPA\Processed\1050 micro processed.tif','WriteMode','append'); 
end 
 
EVALUATE PENETRATION DISTANCE-CHOOSE INTERROGATION REGION AND 
SENSITIVIY 
 
for frame=1:25 
 for row=60:200 
  for col=560:780 
   B50(1,(col-559),frame)=A50(row,col,frame); 
   continue 
  end 
 
   [c]=find(B50>60); 
   test=isempty([c]); 
 
   if test==0; 
    penetration50(frame,1)=row-59; 
    continue 
   else 
   end 
 end 
end  
 
WRITE EXCEL FILES-FILENAMES, MATRICES TO WRITE, WORKSHEET NAME, 
COLUMN LOCATIONS 
 
xlswrite('D:\Diesel Injection\ISU Injection\October 2008\500 psi\Centerline PD_s 
Hi_Press',penetration50,'90 MPa','B3:B27'); 
xlswrite('D:\Diesel Injection\ISU Injection\October 2008\500 psi\Centerline PD_s 
Hi_Press',penetration250,'90 MPa','C3:C27'); 
xlswrite('D:\Diesel Injection\ISU Injection\October 2008\500 psi\Centerline PD_s 
Hi_Press',penetration450,'90 MPa','D3:D27'); 
xlswrite('D:\Diesel Injection\ISU Injection\October 2008\500 psi\Centerline PD_s 
Hi_Press',penetration650,'90 MPa','E3:E27'); 
xlswrite('D:\Diesel Injection\ISU Injection\October 2008\500 psi\Centerline PD_s 
Hi_Press',penetration850,'90 MPa','F3:F27'); 
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xlswrite('D:\Diesel Injection\ISU Injection\October 2008\500 psi\Centerline PD_s 
Hi_Press',penetration1050,'90 MPa','G3:G27'); 
 
 
 FOR FILE "D:\Diesel Injection\100 shot cuvette 266nm.tif\" 
 
Norm=zeros([844 30 1 100],'uint16'); 
NormRows=zeros([844 1 1 100],'uint16'); 
 
for frame=1:20 
 for row=140:765 
  for col=711:947 
   spray_eval(row-139,col-710,frame)=spray(row,col,frame); 
   continue 
  end 
  continue 
 end 
continue 
end  
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