Wind effects on dual probe heat pulse method measured soil thermal properties

Thumbnail Image
Supplemental Files
Date
2020-01-07
Authors
Sang, Yujie
Liu, Gang
Horton, Robert
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Horton, Robert
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Agronomy
Abstract

When a dual probe heat pulse (DPHP) sensor is installed in soil near the soil-atmosphere interface, the basic assumptions of the infinite line heat source (ILS) model and its improvement, the infinite line heat source model with an adiabatic boundary condition (ILS-ABC), might not be satisfied because of wind. This study aims at exploring the effects of wind on DPHP measurements and comparing the performance of the ILS and ILS-ABC models with different values of wind velocity (υ) and burial depth (d). Our study shows that the results of laboratory experiments, COMSOL simulations, and field experiments are consistent with each other. For dry sand with d ≤ 4 mm, the effects of wind is non-negligible when υ ≥ 3.5 m s-1, and the DPHP method does not provide accurate estimations whether the ILS model or the ILS-ABC model is used. Field experiments are prone to large background temperature fluctuations which can cause the linear de-trend method of Jury and Bellantuoni (1976) to perform poorly. In general, υ is less than 2.7 m s-1 in field and for d = 5 mm the ILS-ABC model provides more accurate estimations with relative error < 15% in thermal conductivity (λ) and relative error < 9% in heat capacity (c).

Comments

This is a manuscript of an article published as Sang, Yujie, Gang Liu, and Robert Horton. "Wind effects on dual probe heat pulse method measured soil thermal properties." Soil Science Society of America Journal (2020). doi: 10.1002/saj2.20041. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2020
Collections