Anisotropic Hc2 of K0.8Fe(1.76)Se(2) determined up to 60 T

Eundeok D. Mun
Los Alamos National Laboratory

M. M. Altarawneh
Los Alamos National Laboratory

C. H. Mielke
Los Alamos National Laboratory

V. S. Zapf
Los Alamos National Laboratory

Rongwei Hu
Iowa State University and Ames Laboratory

See next page for additional authors
Anisotropic Hc2 of K0.8Fe(1.76)Se(2) determined up to 60 T

Abstract
The anisotropic upper critical field, Hc2(T), curves for K0.8Fe1.76Se2 are determined over a wide range of temperatures down to 1.5 K and magnetic fields up to 60 T. Anisotropic initial slopes of Hc2 ~ −1.4 T/K and −4.6 T/K for magnetic field applied along c axis and ab plane, respectively, were observed. Whereas the c axis Hcc2 (T) increases quasilinearly with decreasing temperature, the ab plane Habc2(T) shows a flattening, starting near 25 K above 30 T. This leads to a nonmonotonic temperature dependence of the anisotropy parameter γH≡ Habc2/Hcc2. The anisotropy parameter is ~2 near Tc~32 K and rises to a maximum γH~ 3.6 around 27 K. For lower temperatures, γH decreases with T in a linear fashion, dropping to γH~2.5 by T~18 K. Despite the apparent differences between the K0.8Fe1.76Se2 and (Ba0.55K0.45)Fe2As2 or Ba(Fe0.926Co0.074)2As2, in terms of the magnetic state and proximity to an insulating state, the Hc2(T) curves are remarkably similar.

Disciplines
Condensed Matter Physics

Comments

Authors

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/physastro_pubs/679
Anisotropic H_{c2} of $\text{K}_0.8\text{Fe}_{1.76}\text{Se}_2$ determined up to 60 T

E. D. Mun, M. M. Altarawneh, C. H. Mielke, and V. S. Zapf

National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

R. Hu, S. L. Bud’ko, and P. C. Canfield
Anmes Laboratory, US DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

(Received 2 March 2011; published 30 March 2011)

The anisotropic upper critical field, $H_{c2}(T)$, curves for $\text{K}_0.8\text{Fe}_{1.76}\text{Se}_2$ are determined over a wide range of temperatures down to 1.5 K and magnetic fields up to 60 T. Anisotropic initial slopes of $H_{c2} \sim -1.4 \text{T/K}$ and -4.6T/K for magnetic field applied along c axis and ab plane, respectively, were observed. Whereas the c axis $H_{c2}^c(T)$ increases quasilinearly with decreasing temperature, the ab plane $H_{c2}^{ab}(T)$ shows a flattening, starting near 25 K above 30 T. This leads to a nonmonotonic temperature dependence of the anisotropy parameter $\gamma_H \equiv H_{c2}^{ab} / H_{c2}^c$. The anisotropy parameter is ~ -2 near $T_c \sim 32$ K and rises to a maximum $\gamma_H \sim 3.6$ around 27 K. For lower temperatures, γ_H decreases with T in a linear fashion, dropping to $\gamma_H \sim 2.5$ by $T \sim 18$ K. Despite the apparent differences between the $\text{K}_0.8\text{Fe}_{1.76}\text{Se}_2$ and (Ba0.5K0.5)Fe2As2 or (Ba(Fe0.95Co0.05)2As2, in terms of the magnetic state and proximity to an insulating state, the $H_{c2}(T)$ curves are remarkably similar.

DOI: 10.1103/PhysRevB.83.100514 PACS number(s): 74.70.Xa, 74.25.Op, 74.25.Dw

Since the discovery of superconductivity in the FeAs-based family, intensive research efforts have focused on finding Fe-based superconductors with a higher transition temperature, T_c, and clarifying the pairing mechanism of superconductivity.1–6 As additional families have been discovered, the Fe-based superconductors have been categorized into several types including 11 type (P4/nmm, FeSe), 122 type (I4/mmm, AFe2As2, $A = \text{K, Sr, Ba}$), and 1111 type (P4/nmm, RFeAsO, $R = \text{rare earth}$). Among these, FeSe is a simple binary system with $T_c \sim 8$ K that can be increased up to 37 K by external pressure.7 Very recently, higher critical fields, H_{c2}, values are comparable to K- and Co-doped members of the FeAs-based family.8–11

The single crystals of $\text{K}_0.8\text{Fe}_{1.76}\text{Se}_2$ were grown from $\text{K}_0.8\text{Fe}_{1.76}\text{Se}_2$ were determined over a wide range of temperatures down to 1.5 K and magnetic fields up to 60 T. Anisotropic initial slopes of $H_{c2} \sim -1.4 \text{T/K}$ and -4.6T/K for magnetic field applied along c axis and ab plane, respectively, were observed. Whereas the c axis $H_{c2}^c(T)$ increases quasilinearly with decreasing temperature, the ab plane $H_{c2}^{ab}(T)$ shows a flattening, starting near 25 K above 30 T. This leads to a nonmonotonic temperature dependence of the anisotropy parameter $\gamma_H \equiv H_{c2}^{ab} / H_{c2}^c$. The anisotropy parameter is ~ -2 near $T_c \sim 32$ K and rises to a maximum $\gamma_H \sim 3.6$ around 27 K. For lower temperatures, γ_H decreases with T in a linear fashion, dropping to $\gamma_H \sim 2.5$ by $T \sim 18$ K. Despite the apparent differences between the $\text{K}_0.8\text{Fe}_{1.76}\text{Se}_2$ and (Ba0.5K0.5)Fe2As2 or (Ba(Fe0.95Co0.05)2As2, in terms of the magnetic state and proximity to an insulating state, the $H_{c2}(T)$ curves are remarkably similar.

DOI: 10.1103/PhysRevB.83.100514 PACS number(s): 74.70.Xa, 74.25.Op, 74.25.Dw

Since the discovery of superconductivity in the FeAs-based family, intensive research efforts have focused on finding Fe-based superconductors with a higher transition temperature, T_c, and clarifying the pairing mechanism of superconductivity.1–6 As additional families have been discovered, the Fe-based superconductors have been categorized into several types including 11 type (P4/nmm, FeSe), 122 type (I4/mmm, AFe2As2, $A = \text{K, Sr, Ba}$), and 1111 type (P4/nmm, RFeAsO, $R = \text{rare earth}$). Among these, FeSe is a simple binary system with $T_c \sim 8$ K that can be increased up to 37 K by external pressure.7 Very recently, higher critical fields, H_{c2}, values are comparable to K- and Co-doped members of the FeAs-based family.8–11

The solid lines in Fig. 1(b) are warming curves of the rf shift $\Delta \nu / \Delta T$ for two different samples. As the temperature

Figure 1(a) shows the temperature dependence of the normalized resistivity for the $\text{K}_0.8\text{Fe}_{1.76}\text{Se}_2$ sample. A sharp drop, corresponding to the superconducting transition, was observed around 32 K. At high temperatures, the resistance increases with decreasing temperature and exhibits a broad maximum at around 220 K.12–15 The offset and zero-resistance ($R < 3 \times 10^{-5} \Omega$) temperatures were estimated to be $T_{\text{c,offset}} \simeq 32.2$ K and $T_{\text{c,zero}} \simeq 32$ K, respectively, as shown in Fig. 1(b). The solid lines in Fig. 1(b) are warming curves of the rf shift $\Delta \nu / \Delta T$ at $H = 0$ for two different samples. As the temperature decreases, the rf shift suddenly increases at T_c, where $T_c = 32$
and 32.4 K for two samples were determined from \(d\Delta F/dT\). A clear anisotropy in the response of the superconductivity under applied fields was observed between \(H = 0\) (closed symbols) and 14 T (open symbols) and the warming curves of rf shift (\(\Delta F\)) for two samples (solid lines). Vertical arrows indicate \(T_{\text{offset}}\) and lines on the top of the 14-T data are guide to the eye. (c) Comparison of the \(ab\) plane resistance \(R(H)\) and \(\Delta F\) for \(H \parallel ab\) at \(T = 31\) K. (d) Comparison of the \(ab\) plane resistance \(R(H)\) and \(\Delta F\) for \(H \parallel c\) at \(T = 28\) K. The dashed lines in (c) and (d) are the \(\Delta F\) taken at \(T = 35\) K as a normal-state background signal. The solid lines in (c) and (d) are guides to the eye for offset and onset criteria of \(H_c\) and vertical arrows indicate the deviation of \(\Delta F\) from the background signal (see text).

Using the deviation from normal-state criterion just discussed, the \(\Delta F\) versus \(H\) plots shown in Figs. 2 and 3 can be used to infer the temperature dependence of the upper critical field \(H_{c2}(T)\) by taking the slope of the rf signal intercepting the slope of the normal-state background or by simply taking the first point deviating from the normal-state background. Importantly, the difference between these two related criteria is small and does not affect the \(H_{c2}(T)\) curve. In the high-temperature region, the point at which the \(\Delta F\) signal deviates from the background is close to the \(T_{\text{offset}}\) of the resistance data as shown in Figs. 1(c) and 1(d). Therefore, \(H_{c2}\) was determined at the point at which \(\Delta F\) deviates from the background signal. Arrows in Figs. 2 and 3 indicate the determined \(H_{c2}\). The difference between the \(H_{c2}\) values determined by the first deviation and slope-

FIG. 1. (Color online) (a) Temperature dependence of the normalized \(ab\) plane resistivity \(\rho(T)\) of the \(K_{0.8}\)Fe\(_{1.76}\)Se\(_2\) single crystal at \(H = 0\), where \(\rho(300K) = 0.12\) cm\(^2\). (b) Low-temperature region of the resistance for two samples at \(H = 0\) (closed symbols) and 14 T (open symbols) and the warming curves of rf shift (\(\Delta F\)) for two samples (solid lines). Vertical arrows indicate \(T_{\text{offset}}\) and lines on the top of the 14-T data are guide to the eye. (c) Comparison of the \(ab\) plane resistance \(R(H)\) and \(\Delta F\) for \(H \parallel ab\) at \(T = 31\) K. (d) Comparison of the \(ab\) plane resistance \(R(H)\) and \(\Delta F\) for \(H \parallel c\) at \(T = 28\) K. The dashed lines in (c) and (d) are the \(\Delta F\) taken at \(T = 35\) K as a normal-state background signal. The solid lines in (c) and (d) are guides to the eye for offset and onset criteria of \(H_c\) and vertical arrows indicate the deviation of \(\Delta F\) from the background signal (see text).

FIG. 2. (Color online) Frequency shift (\(\Delta F\)) as a function of magnetic field for \(H \parallel ab\) at selected temperatures. Open symbols are \(\Delta F\) taken at \(T = 35\) K as a normal-state background signal. The arrows indicate \(H_{c2}\) determined from the point deviating from background signal. (Inset) The low-temperature data close to \(T_c\). The straight lines on the \(T = 25\) K curve are guides to the eye for determining the point at which the rf signal intercepts the slope of the normal-state background.
The zero temperature limit of \(H_c \) can be estimated by using the Wertherman-Helfand-Hohenberg (WHH) theory, which gives \(H_c(0) = 0.67T_c(dH_c/dT)_{T_c} \). The value of \(H_c(0) \) for \(H || ab \) and \(H || c \) is estimated to be \(\sim 102 \) and \(\sim 31 \) T, respectively, where \(T_c = 32 \) K, \(dH_c^{ab}/dT = -4.67 \) T/K, and \(dH_c^c/dT = -1.4 \) T/K were used. Clearly, these values do not capture the salient physics for this compound. On the other hand, in the simplest approximation, the Pauli limit \((H_P) \) is given by \(1.84T_c \), giving \(H_P \sim 59 \) T. This low-temperature value of \(H_c \) may indeed capture some of the basic physics associated with \(K_{0.8}Fe_{1.76}Se_2 \). To explain the observed \(H_c \) curves in detail, a more complete theoretical treatment is needed, one that does not exclude the strong electron-phonon coupling and multiband nature of Fe-based compounds. Anisotropic superconducting coherence length can be calculated using \(\xi_c = \sqrt{\hbar c/dH_c^c} \) and \(\xi_{ab} = \sqrt{\hbar c/dH_c^{ab}} \). If \(H_c^{ab} = 60 \) T and \(H_c^{ab}^{27} \) is assumed to be between 60 and 100 T, then \(\xi_{ab} \sim 2.3 \) nm and 1.4 nm \(\lesssim \xi_c \lesssim 2.3 \) nm.

On the basis of this study for \(K_{0.8}Fe_{1.76}Se_2 \), the behavior of \(H_c(T) \) is found to be very similar to that of several 122-type systems as well as doped FeSe. It should be noted that the \(H_c \) curves for two orientations in the K-doped \(BaFe_2As_2 \) system seem to cross at low temperatures due to the flattening of \(H_c^{ab}(T) \) curve. Additionally, the \(H_c \) curves for FeTe\(_{0.6}Se_{0.4}\) shows a crossing between \(H || ab \) and \(H || c \) curves below 4.5 K because of the subsequent flattening of the \(H_c^{ab}(T) \) curve. However, in the Co-doped system, the anisotropic \(H_c(T) \) curves do not show such crossing. A result similar to what was found in this study. Thus, an intriguing feature of \(H_c^{ab}(T) \) curves for Co- and K-doped \(BaFe_2As_2 \), FeTe\(_{0.6}Se_{0.4}\), and \(K_{0.8}Fe_{1.76}Se_2 \) systems is that the anisotropy near \(T_c \) is as large as 3 but drops toward \(\sim 1 \) as \(T \rightarrow 0 \) K. The \(H_c(T) \) anisotropy in \(K_{0.8}Fe_{1.76}Se_2 \) is particularly noteworthy given that it exists deep within an antiferromagnetically ordered state. In the Co-doped system, the \(H_c(T) \) value of \(\gamma_T(T) \sim 1 \) when \(T < T_N \) with clear anisotropy emerging only when the antiferromagnetic state is suppressed. These results raise the following question: To what extent is the antiferromagnetism in \(K_{0.8}Fe_{1.76}Se_2 \) interacting with lower-temperature superconductivity? Clearly more work will be needed to answer this key query.

In summary, the \(H_c(T) \) phase diagram for \(K_{0.8}Fe_{1.76}Se_2 \) has been constructed by means of measuring both the electrical resistance in a dc superconducting magnet \((H < 14 \) T) and the rf contactless penetration depth in a pulsed magnetic field up to 60 T. The upper critical field of \(K_{0.8}Fe_{1.76}Se_2 \) is determined as \(H_c^{ab}(18 \) K) \(\sim 54 \) T and \(H_c^{ab}(1.6 \) K) \(\sim 56 \) T. The anisotropy parameter \(\gamma_T \) initially increases with decreasing temperature, passes through a maximum of \(\sim 3.6 \) near 27 K, and then decreases to \(\sim 2.5 \) at 18 K. The observed \(\gamma_T \) values show a weakening anisotropic effect at low temperatures. Although the Fe-based superconductors have a layered crystal structure, a weak anisotropy of \(H_c \) may be a common feature, suggesting that the interlayer coupling and the three-dimensional Fermi surface may play an important role in the superconductivity of this family.

We thank V. G. Kogan for edifying and uplifting discussions. Work at the NHMFL-PFF is supported by the NSF, the DOE, and the State of Florida. R.H. and P.C.C. are supported by AFOSR MURI Grant No. FA9550-09-1-0603. S.L.B. was supported in part by the State of Iowa through the Iowa State University and the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Synthesis and low field characterization were performed in Ames Laboratory which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.