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ABSTRACT 

The quality of ratings provided by expert raters in evaluating language learners’ 

constructed responses in performance assessment is typically investigated by means of statistical 

modeling. Several rater effects, including severity/leniency, central tendency, and randomness, 

have been well documented in the psychometrics literature (Myford & Wolfe, 2003). This study 

applies the Many-Facets Rasch Models to detect these rater effects for an in-house speaking 

assessment for international teaching assistants (ITAs) in a US university. The goal of this study 

is to evaluate the extent to which the models, estimation procedures, and statistics/numerical 

indices that are adopted in this study would work as intended in this context. Two simulation 

studies are conducted where different model parameters are simulated from different 

distributions, and a parametric bootstrap procedure is applied to attest to the statistical properties 

(i.e., consistency, variability, and mean squared error) of the parameter estimates and fit 

statistics. Then, the model parameters are estimated from the actual data, and the estimates are 

compared using different estimation procedures (Joint Maximum Likelihood (JML) vs. Marginal 

Maximum Likelihood (MML)) and different computational implementations (R vs. Facets). The 

parametric bootstrap procedure is also applied to provide an estimate of the sampling 

distributions of the parameters and fit statistics through replications. Finally, the indices for rater 

effects detection are compared using both numerical summaries and plotting techniques.  

Results indicated that, when the model parameters and rater effects were simulated, the 

estimated severity parameters and the fit statistics were sensitive in detecting the intended 

effects. In comparison, MML estimation method showed certain superiority, in terms of 

statistical consistency and variability, over JML estimation method. But neither estimation 

method was free of bias. This was also true when the actual data were analyzed. Moreover, in 
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terms of detecting the centrality or randomness effects in the actual data, evidence from the fit 

statistics could be used in conjunction with other indices from Facets and visualization 

techniques. However, the bootstrap results for the fit statistics indicated that, when the empirical 

distributions of the fit statistics were considered, disagreements between MML and JML were 

relatively large and the rule-of-thumb critical ranges of the fit statistic may be questionable.
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CHAPTER 1.    INTRODUCTION  

In the United States, financial pressure on universities promoted “sustained reliance” on 

graduate teaching assistants (GTAs) for instructional responsibilities (e.g., Barrington, 2001; 

Muzaka, 2009; Birch & Morgan, 2005, in Justice, Ziefler, and Garfield, 2017). The vast majority 

of the GTAs come from overseas and speaks English as a second or foreign language. These 

ITAs’ inadequacy of academic oral English proficiency has been a significant concern for the 

quality of undergraduate education (Bresnahan & Kim, 1993; Hendel et al., 1993; Hinofotis & 

Bailey, 1981, in Choi, 2017; Bailey, 1983, 1984; Ruderman, 2000, in Cotos and Chung, 2018). 

To respond to this concern, ITA assessment and certification before entering the classroom are 

required by many state’s legislative mandates (Brown, Fishman, & Jones, 1990; Dick & 

Robinson, 1994, in Cotos and Chung, 2018). Thus, different commercial assessment forms have 

been adopted, and institutionalized training and screening procedures have been put to practice in 

many US universities (Cotos and Chung, 2018).  

In the local context of Iowa State University, the prospective ITAs need to take the Oral 

English Certification Test (OECT) before being assigned TA duties. The OECT aims to measure 

how proficient and effective the ITA examinees are in communicating in academic and 

classroom settings (Yang, 2016, p. 42). OECT consists of two main components, namely an oral 

proficiency interview (OPI) section and a simulated mini-lecture (TEACH) section. For the OPI 

tasks, the examinees need to respond to three impromptu speaking prompts of different topics 

and a role-play prompt about academic life. The TEACH section aims to provide evidence of 

oral English proficiency of ITA examinees in classroom settings of their own scientific or 

technical discipline and to identify “specific communication problems the new ITAs may have 

so that appropriate remedial instruction can be offered if needed” (Douglas, 2000, p. 161). Based 
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on the OECT results, students are assigned different TA duties, ranging from lecturing to 

grading, in their corresponding department. Also, depending on the OECT results, students are 

placed in one of the three English speaking classes for ITAs (ENGL 180 A, B, or D).  

Assessing the examinees’ constructed responses require subjective evaluations from 

expert raters, who “engage in a highly sophisticated, complex mental process to arrive their 

decisions – observing, recalling information, combining, weighting, and integrating that 

information to draw inferences about individuals” (Myford & Wolfe, 2003, p. 387). 

Unfortunately, human raters, despite their training, are not “neutral and objective recorders of 

some physical reality” (Hill, O’Grady, & Price, 1988, p. 346). Their evaluations of constructed 

responses, rather than being “clear-cut”, “systematic”, or “identical” (Myford & Wolfe, 2003, p. 

387), are prone to human perception, bias, and errors, causing distortions to the quality and 

validity of the ratings. Inevitably, raters bring “their own perspectives, emphases, interpretations, 

and experiences to the judging process given that every piece of students’ work is likely to be 

original and unique” (e.g., Cook et al., 2009; Barret, 2001; Wiegle, 1998, in Wu, 2017).  

Several statistical approaches have been developed, over the years, for analyzing the data 

involving the different measurement facets, such as raters and/or tasks, so that the measurement 

errors can be reduced or reliability can be increased. For instance, the approaches rooted in the 

Classical Test Theory (CTT) (Novick, 1966) conceptualized the observed scores as an addition 

of the true scores and random errors. However, the fundamental limitation of such 

conceptualization is that the true scores depend on particular raters who evaluated the ratees’ 

performances. In other words, the CTT reliability indices are unable to separate these two 

sources of variability, contributing to the observed score variability (Stemler, 2004). 
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George Rasch (1960), a Danish mathematician, developed a probabilistic model that can 

independently calibrate test taker ability and item difficulty, providing a basis of comparison of 

the test takers and items on a latent scale, thus transforming binary (e.g., yes/no responses) or 

ordinal (e.g., Likert scale responses) observations into linear measures. Among the many 

extensions to the Rasch model, the Many-Facets Rasch Model (MFRM) (Linacre, 1989) has 

enjoyed wide popularity in language assessment. While preserving the mathematical properties 

(e.g., measurement invariance) of the original Rasch model, MFRM can model extra factors that 

are believed to play a role in an assessment context, including rater severity, task difficulty, and 

criteria difficulty. For MFRM, the observed ratings or sores are decomposed into the additive 

effects of ratee’ abilities, raters’ severities, and task difficulties, which are scaled on the common 

logit metric so that the estimates are directly comparable. 

This study applies the MFRMs to detect rater effects (i.e., severity/leniency, central 

tendency/randomness) for an in-house ITA speaking assessment in a US university. To evaluate 

the extent to which the adopted models, estimation procedures, and statistics/numerical indices 

would work as intended, two simulation studies first conducted, where the model parameters are 

simulated from the distributions and Monte Carlo method is applied during the parametric 

bootstrap process to attest to the statistical properties (i.e., consistency, variability, and mean 

squared error) of the parameter estimates and fit statistics. Then, the model parameters are 

estimated from the actual data and the estimates are compared using different estimation and 

different computational implementations. The parametric bootstrap procedure is also applied to 

provide an estimate of the sampling distributions of the parameters and fit statistics through 

replications. Finally, the indices for rater effects detection are compared using both numerical 

summaries and plotting techniques.  
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CHAPTER 2.    LITERATURE REVIEW 

Rater Effects Studies 

Rater effects refer to particular rating patterns employed by the raters when evaluating 

the quality of responses. Over the last century, examining these rating patterns within and across 

raters has received tremendous research focus to determine the degree to which the ratings can 

be accurate indicators of the examinees’ abilities (Elliot, 2005; Saal, Downey, & Lahey, 1980, in 

Wind, Wolfe, Engelhard, Foltz, & Rosenstein, 2018). Myford and Wolfe (2003) categorized five 

major types of rater effects: leniency/severity, central tendency, randomness, halo, and 

differential leniency/severity (pp. 387-397). Myford and Wolfe (2004) provided the following 

working definitions for the common rater effects under the context of measurement models: 

• Leniency/severity effect: a rater’s tendency to assign ratings that are, on average, 

lower/higher than those that other raters assign, even after the performance of the 

particular examinees that the rater has evaluated are taken into account 

• Central tendency effect: overusing the middle categories of a rating scale 

• Randomness effect: a rater’s tendency to apply one or more trait scales in a manner 

inconsistent with the way in which the other raters apply the same scales 

• Halo effect: a rater’s tendency to assign examinees similar ratings on conceptually 

distinct traits 

• Differential leniency/severity effect: a rater’s tendency to assign ratings to a particular 

group of examinees that are, on average, lower/higher than the measurement model 

would expect for that group, given other raters’ ratings of the group (i.e., rate shows bias 

in the ratings of the group) 

(Myford & Wolfe, 2004, pp. 194-214) 
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The rater effects in terms of severity and consistency/accuracy have been mostly studied 

in language assessment (e.g., Eckes, 2005; Schaefer, 2008; Kim, 2009; Myford & Wolfe, 2009). 

Specifically, the differential patterns with which the rater effects may display when interacting 

with the other facets of a given assessment situation are of central interest (e.g., Winke, Gass, & 

Myford, 2012; In’nami & Koizumo, 2015). As Wu (2017) argued, some rater effects may be 

more useful than others in terms of providing more information for the stakeholders of the 

assessment (p. 454).  

Rater behaviors have also been studied in the specific context of ITA speaking 

assessment. Yang (2010) found that the raters demonstrated different levels of severity while 

showing an acceptable level of consistency across test sessions. Hsieh (2011) reported that ESL 

teachers and undergraduate raters showed no difference in severity with respect to oral 

proficiency, but their ratings differed when evaluating accentedness and comprehensibility 

criteria. Yan (2014) also reported varying severity levels from the raters, while an acceptable 

level of inter-rater reliability could be maintained. Furthermore, he found that the disagreement 

in rating scores could be attributable to examinees’ proficiency levels and rater’s perceptions 

towards L2 accents. Two studies have been conducted specifically for the OECT. Yang (2016) 

reported that OPI scores reliably separated the examinees into distinct speaking ability levels, 

and the rater consistently used the scales within the same test administration, while the same 

level of consistency was not observed for rater severity. Won (2019) showed that the raters, 

during the rating sessions, would adapt their levels of severity based on their understanding of 

the task/prompt complexity.  In summary, it can be seen that rater effects detection is a complex 
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research topic as the degree to which the potential rater effects could be detected depends on the 

modeling procedures and the various facets in an assessment situation.  

 

Many-Facet Rasch Model 

In performance-based assessment where examinees’ produce constructed responses, a 

persistent challenge is that the ability/proficiency “measurement accuracy depends strongly on 

rater and tasks characteristics” and “to resolve this shortcoming, various item response theory 

(IRT) models that incorporate rater and task characteristic parameters have been proposed “ (Uto 

& Ueno, 2017, p. 1). In general, the IRT modeling approaches have been based on the concept or 

“virtual items”, which are the “set of all combinations of original items and raters” (Robitzsch & 

Steinfeld, 2018, p. 103).  

 

Model Specifications 

Suppose data U consists the polytomous item responses Xnir’s for person n (for n ∈ 𝒩 = 

{1, …, N}) to item i (for i ∈ ℐ = {1, …, I}) rated by rater j (for j ∈ 𝒥 = {1, …, J}). In other 

words, the data U is a set such that U = {Xnir | n ∈ 𝒩, i ∈ ℐ, j ∈ 𝒥 }. Based on the “virtual items” 

(e.g., rater-task combinations) conceptualization, the many-facet Rasch model (Linacre, 1989, 

2017) decomposes the ratings into the additive effects of persons, items, and rater on the logit 

metric (Robitzsch & Steinfeld, 2018, p. 103): 

𝐿𝑛 (
𝑷𝒏𝒊𝒋𝒌

𝑷𝒏𝒊𝒋𝒌−𝟏
)  = θn – δi – αj – τk,              (1) 

where  

Pnirk = probability of examinee n being rated k on trait i by rater j, 

Pnirk-1 = probability of examinee n being rated k-1 on trait i by rater j, 

θn level of performance for rate n 

δi = difficulty of trait i 

αj = severity of rater j, and  
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τk = difficulty of scale category k relative to scale category k -1 

The algebraically equivalent form can be used to express the probabilities as: 

Pnijk = 
𝑒𝑥𝑝[𝑘(𝜽𝒏 – 𝜹𝒊 – 𝜶𝒋−∑ 𝝉𝒎𝒌

𝒎=𝟎  )]

∑ 𝑒𝑥𝑝[𝑙(𝜽𝒏 – 𝜹𝒊 – 𝜶𝒋−∑ 𝝉𝒎𝒍
𝒎=𝟎  )]𝐾

𝑙=0

                         (2) 

where 

m = a counting index ranging from 0 to k 

l = a counting index ranging from 0 to K, and  

τ0 = 0 

(Eckes, 2015) 

 

Invariance Property 

To illustrate how the MFRM preserves the important property of measurement invariance 

or specific objectivity (Bond & Fox, 2015; DeMars, 2010; Engelhard, 2013), consider two 

examinees with abilities θ1 and θ2, respectively, who are evaluated by the same rater αj from the 

same task δi, then the log odds for these two examinees are: 

𝐿𝑛 (
𝑷𝟏𝒊𝒋𝒌

𝑷𝟏𝒊𝒋𝒌−𝟏
) = θ1 – δi – αj – τk                          (4) 

𝐿𝑛 (
𝑷𝟐𝒊𝒋𝒌

𝑷𝟐𝒊𝒋𝒌−𝟏
) = θ2 – δi – αj – τk                          (5)   

Taking the difference between the above log odds yields: 

𝐿𝑛 (
𝑷𝟏𝒊𝒋𝒌

𝑷𝟏𝒊𝒋𝒌−𝟏
) - 𝐿𝑛 (

𝑷𝟐𝒊𝒋𝒌

𝑷𝟐𝒊𝒋𝒌−𝟏
) = θ1 - θ2,                                                                                  (6)                                                            

(Eckes, 2015) 

which is the difference in comparing the abilities between the two examinees. This result 

indicates that, given the set of observations that fit the model, examinee measures are invariant 

across the set of items and tasks, and vice versa (Wright, 1967, 1999). The measurement 

invariance property has an important implication – the total score is a sufficient statistic for 

estimating the examinees’ abilities. The MFRM is a flexible framework as there is no restriction 
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of the number of facets (in their interactions) to model and number of categories in the rating 

data. It can serve as a diagnostic tool as it calibrates the effects from the various measurement 

facets onto the same logit scale in order to make meaningful comparisons. All model parameters 

can be estimated simultaneously.  

 

Estimations 

Under the general framework maximum likelihood estimation procedure, the parameters 

in MFMM can be estimated based on Joint Maximum Likelihood (JML), Marginal Maximum 

Likelihood (MML), or Conditional Maximum Likelihood (CML) procedures. For JML (Lord, 

1980), parameters are estimable under almost all conditions including “idiosyncratic data 

designs, arbitrary and accidental patterns of missing data, arbitrary anchoring (fixing) of 

parameter estimates, unobserved intermediate categories in rating scales […]” (Linacre, 2020), 

as long as the rating data are minimally connected or there are no disjoint subsets. All units/ 

elements in each facet are treated as equal, and their standard errors and fit statistics can be 

directly derived. To ensure stability of the estimates across samples, it is suggested that there 

should be at least 30 observations per element and at least 10 observations per rating-scale 

category (Linacre, 2020). The JML estimation procedure can be described as follow: 

1. All the parameters are given reasonable starting values. 

2. The estimate of each parameter (element measure or Andrich threshold) is updated as 

though the values of all the other parameters are known. 

3. Then all the parameters are re-estimated using the updated estimates of all the other 

parameters. 

4.  3. is repeated until no parameter value changes by more than the convergence limit. 
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5. At convergence, for every element or rating-scale category, the expected score = the 

observed score. 

 (Linacre, 2020) 

The main limitation of JML is that the number of estimated parameters increases with the 

number of persons in the sample, which is the well-known bias in JML estimation (Andersen, 

1980).  The reason for the JML bias lies in difficulty to handle persons with extremely high or 

low scores (Robitzsch & Steinfeld, 2018).  This bias may result in estimates that span more 

widely on the logit scale (Linacre, 2020). However, “estimation bias is usually of minor concern 

because either the dataset is large or the structure of the data negates the importance of 

estimation bias.” (Wright, 1988; Linacre, 2020). The JML estimation is only computationally 

stable for Rasch-MFRMs and is implemented in the Facets software (Linacre, 1989, 2017) 

(Robitzsch & Steinfeld, 2018).  

On the other hand, MML assumes the person ability estimates are random draws from a 

certain distribution (e.g., standard normal), and integrates out the person ability (as a latent 

variable) in the likelihood equation, which reduces the estimation problem into estimating just 

the fixed effects of the item or rater parameters and the mean and variance/covariance parameters 

for the person ability distribution (Robitzsch & Steinfeld, 2018). The MML is more stringent in 

that it poses the distributional assumptions for the persons’ abilities in the data. However, this 

assumption allows direct inferences to be made about the persons’ ability distribution in the 

population (i.e., population model) (Adams & Wilson, 1996). To maximum the marginal 

likelihood function, the expectation maximization (EM) algorithm (Bock & Aitken, 1981; 

Aitkin, 2016) is typically invoked (Robitzsch & Steinfeld, 2018).  
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Finally, CML (Anderson, 1980) estimation, similar to JML, does not require 

distributional assumptions of the person parameters (person ability can be assumed to be either 

fixed or random effects). CML focuses on the consistent property of the item parameters after 

conditioning of the sufficient statistic (i.e., the total score) (van der Linden, 1994). However, 

CML becomes inefficient and even intractable when it comes to complex rating designs where 

not all examinees are evaluated by the same set of raters (Robitzsch & Steinfeld, 2018, p. 112).  

 

Fit Statistics 

Under the MFRM framework, there are three ways to evaluate the fit between data and 

model: 1). Global model fit, 2) group-level fit statistics, and 3) individual-level fit statistics. For 

global model fit, a log-likelihood chi-square (-2 X (sum of natural logarithms of the model 

probabilities of al observations), which approximate df = (number of responses used for 

estimation) – (number of parameters estimated)) is typically output from MFRM analysis (Eckes, 

2015). However, empirical data, with a large sample size, will almost always lead to the rejection 

of the global model fit based on this chis-square statistic because the Rasch models are 

idealizations of empirical observations (Bond & Fox, 2015; Linacre, 1997b, in Eckes, 2015). It 

is, thus, more important to explore the model’s practical utility or practical significance in terms 

of pinpointing where exactly misfit occurs (Sinharay & Haberman, 2014).  

The extent to which the observed ratings match or deviate from the expected ratings 

generated by the MFRM can be evaluated either global (for a group of raters) or individually (for 

individual raters). Eckes (2015) provided detailed calculations for the global fit indices and 

individual fit statistics related to the rater facet. For example, the rater separation ratio measures 

the spread of rater severity estimates relative to their precisions. For a particular rater j, the rater 

separation ratio: 



 11 

𝐺𝐽 =
𝑆𝐷𝑡(𝐽) 

𝑅𝑀𝑆𝐸𝐽
                              (7) 

where 𝑆𝐷𝑡(𝐽)
2 =  𝑆𝐷𝑜(𝐽)

2 −  𝑀𝑆𝐸𝐽                           (8) 

and 𝑀𝑆𝐸𝐽 =  
∑ 𝑆𝐸𝑗

2𝐽
𝑗=1

𝐽
                 (9) 

The mean-square error (MSEJ) is the average of the standard errors estimated for each rater j and 

the true variance of the severity estimates equals the observed variance minus the MSE. The rater 

separation ratio is formed by taking the square root of the ratio between the true variance and 

MSE. The higher the separation rater, the more spread the rater severity measures. The rater 

separation index/ number of strata index (Wright & Master, 1982; 2002) measures the number of 

statistically distinct levels of rater severity (separated by at least three units of standard errors): 

𝐻𝐽 =
(4𝑆𝐷𝑡(𝐽)+ 𝑅𝑀𝑆𝐸𝐽 )

3𝑅𝑀𝑆𝐸𝐽
=  

(4𝐺𝐽+1)

3
              (10) 

Finally, the reliability of separation measures the extent to which the rater severity measures can 

be separated. It is the ratio between the true variance and observed variance of rater severity 

measures: 

𝑅𝐽 =  
𝑆𝐷𝑡(𝐽)

2

𝑆𝐷𝑜(𝐽)
2 =  

𝐺𝐽
2

1+ 𝐺𝐽
2                (11) 

According to a systematic review of methodologies applied in different areas of rater studies, 

Wind and Peterson (2018) argued that, to inform interpretation and use of rating scores and 

improve the quality of rater-mediated assessment, the rating quality indices should go beyond 

group-level indicators or inter-rater reliability to provide individual-specific information, and 

incorporate diagnostic information from other facets of the assessment. MFRM offers individual-

specific information about raters based on standardized residuals, or the differences between 

observed and expected ratings. Suppose Xnij is the observed rating for examinee n evaluated by 
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rater j on criterion i, and enij be expected rating based on the MFRM model’s parameter 

estimates, the standardized residual in this case can be expressed as: 

 𝑍𝑛𝑖𝑗 =  
𝑋𝑛𝑖𝑗− 𝑒𝑛𝑖𝑗

𝑤
𝑛𝑖𝑗
1/2               (12) 

where 𝑒𝑛𝑖𝑗 =  ∑ 𝑘𝑃𝑛𝑖𝑗𝑘
𝑚
𝑘=0  (𝑃𝑛𝑖𝑗𝑘 is defined as in (2))            (13) 

and 𝑤𝑛𝑖𝑗 =  ∑ (𝑘 −  𝑒𝑛𝑖𝑗)
2

𝑃𝑛𝑖𝑗𝑘
𝑚
𝑘=0               (14) 

Squaring the standardized residuals averaging over the elements of the other facets (e.g., 

examinees and tasks) for each rater yields the residual-based indices of data-model fit, which 

takes the form of mean squared error (MSE) fit statistics that are asymptotically distributed as 

scaled chi-square statistics divided by their degrees of freedom (Smith, 2004b; Wrigth & 

AMster, 1982; Wright & Panchapakesan, 1969, in Eckes, 2015). The unweighted MSE fit 

statistic for rater j averaged overall all examines n = 1, …, N and criteria i = 1, …, I can be 

obtained by: 

𝑀𝑆𝑈(𝑗) =  
∑ ∑ 𝑧𝑛𝑖𝑗

2𝐼
𝑖=1

𝑁
𝑛=1

𝑁.𝐼
             (15) 

The unweighted MSE fit statistic calculated above is also called outfit statistic (short for “outlier 

sensitive fit statistic”). An example of outlying situation can be a severe rater assigns a lenient 

rating to a high proficient examinee on a medium difficulty criterion, which will increase the 

outfit statistic. Weighting the Znij by the model variance Wnij results in the weighted MSE fit 

statistic: 

𝑀𝑆𝑊(𝑗) =  
∑ ∑ 𝑤𝑛𝑖𝑗𝑧𝑛𝑖𝑗

2𝐼
𝑖=1

𝑁
𝑛=1

∑ ∑ 𝑤𝑛𝑖𝑗
𝐼
𝑖=1

𝑁
𝑛=1

             (16) 

This statistic is also called infit statistic (“information weighted fit statistic”), because it is 

sensitive to “inlying” unexpected responses or the situation where the location of the rater is 

close to the those of the other facets on the measurement scale. The infit statistic usually has 



 13 

higher estimation precision and is considered more important than outfit statistic (Linacre, 

2002c; Myford & Wolfe, 2003, in Eckes, 2015).  

The outfit and infit MSE statistics can be used as a diagnostic tool to evaluate the extent 

to which the ratings assigned by a particular rater match or deviate from the model’s 

expectations because they both have an expected value of 1.0 and range from 0 to +∞ (Linacre, 

2002c; Myford & Wolfe, 2003, in Eckes, 2015). Rater with fit values greater than 1.0 show more 

variation than expected in their rating; this called misfit (or underfit). By contrast, raters with fit 

values less than 1.0 show less variation than expected, indicating that their ratings are too 

predictable or provide redundant information; this is called overfit (Eckes, 2015). Some rule-of-

thumb critical range of the MSE fit statistics have been proposed: from 0.15 to 1.5 (Linacre, 

2002c, 2014b, in Eckes, 2015) or from 0.8 – 1.2 (Bond & Fox, 2015; McNamara, 1996; Wright 

& Linacre, 1994, in Eckes, 2015). However, it has been shown that the variance of the fit 

statistics is inversely proportional to sample size (Wang & Chen, 2005; Wu & Adams, 2013, in 

Eckes, 2015). Thus, critical values of the fit statistics using sample size information have been 

proposed (Smith, Schumaker, & Bush, 1998; Wu & Adams, 2013, in Eckes, 2015). According to 

Eckes (2015), more sophisticated statistical approaches to dealing with the sample dependence 

issue involve making use of resampling methods. These promising methods, unfortunately, have 

been limited in MFRM’s applications.  

 

Monte Carlo Method 

Monte Carlo (MC) studies can be seen as statistical sampling experiments with an 

underlying model (Harwell, Stone, Hsu, & Kirisci, 1996). In psychometrics, MC method may be 

appropriate for 1) determining the sampling distribution of test statistic, or comparison of 

estimators, in situations, where analytic results are difficult to obtain (e.g., robustness of a test 
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statistic), 2) comparison of several algorithms available to perform the same function (Harwell, 

Stone, Hsu, & Kirisci, 1996, p. 103). Moreover, MC studies can be used for a variety of research 

questions, such as “evaluating the accuracy of existing statistical models under unfavorable 

conditions (e.g., small sample and non-normality), answering a novel statistical question […]” 

(Feinberg & Rubright, 2016; Hallgren, 2013; Harwell et al., 2006, in Bult & Sunbul, 2017, pp., 

268-267). The common application of MC method includes conducting numerical approximation 

to integrals to obtain the expected value (of a complex function) needed for maximum likelihood 

estimation and evaluating integrals that quantify the behavior of a statistical estimator, such as 

bias and MSE. Formally, suppose we would like to evaluate an expected value: 

𝐸[𝑔(𝜃)] =  ∫ 𝑔(𝜃)𝑓(𝜃) 𝑑𝜃
∞

−∞
                 (17)  

where 𝜃 is a vector of person ability estimates, 𝑔(𝜃) is a function 𝜃, and 𝑓(𝜃) is the likelihood 

function of the entire data (i.e., multiplication of the individual probabilities as in Equation (2)).  

A Monte Carlo approximation for 𝐸[𝑔(𝜃)] is: 

𝐸𝑀[𝑔(𝜃)] =  
1

𝑀
∑ 𝑔(𝜃𝑚

∗ )𝑀
𝑚=1                                       (18)  

where 𝜃𝑚
∗  are independent and identical random draws from the distribution of 𝑓(𝜃), m = 1, …, 

M. Note that EM[g(𝜃)] does not equal to E[g(𝜃)]. Rather, it only approximates E[g(𝜃)] by large 

number of M. Because the variance of the Monte Carlo mean is 

𝑉{𝐸𝑀[𝑔(𝜃)]} =  𝑉{𝑀−1 ∑ 𝑔(𝑋𝑚
∗ )𝑀

𝑚=1 } =  𝑀−1𝑉{𝑔(𝑋)}                                               (19) 

a standard error of EM[g(θ)] (square root of the estimated variance) is: 

√𝑣(𝐸𝑀[𝑔(𝑋)])̂ =  √[𝑀(𝑀 − 1)]−1 ∑ ((𝑔(𝑋𝑚
∗ ) −  𝑀−1 ∑ 𝑔(𝑋𝑚

∗ )𝑀
𝑚=1 ))

2𝑀
𝑚=1               (20) 

Using the standard error above and by the Central Limit Theorem, we can construct the 100 (1 - 

α)% confidence interval for E[g(𝑋)] as: 
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𝐸𝑀[𝑔(𝑋)] ±  𝑍1− 
α

2

√𝑣(𝐸𝑀[𝑔(𝑋)])̂  ,                        (21) 

where 𝑍1− 
α

2
 is the 1 −

α

2
  quantile of a standard normal distribution.  

MC studies have been used in IRT to investigate how valid the models and procedures 

are when applied to realistic data sets (e.g., small number of items or examines, 

multidimensional data) (Harwell, Stone, Hsu, & Kirisci, 1996, p. 101). For example, Baur and 

Lukes (2009) investigate the validity of the IRT models (1PL, 2PL, and 3PL) in terms of the 

accuracy of the estimates of students’ ability and item characteristics for different sample sizes 

and exam lengths in the Graduate Record Exam (GRE). Results indicated that the 3PL model 

was problematic as the estimated model parameters (difficulty, discrimination, and guessing 

parameters) were biased, and the correlation between the estimated students’ ability and the 

actual ability was deficient. Noting the difficulty of understanding the various IRT model’s 

features, Uto and Ueno (2018) conducted an empirical comparison of the performances of the 

various IRT models with rater parameters through simulation and actual data experiments. 

Results indicated that the accuracy of ability measurement depended on the appropriately 

modeling of the rater and task characteristics, and fewer number of parameters would lead to 

more accurate estimation of the ability parameter. Specifically, they pointed out that MFRM, as a 

parsimonious model with the fewest parameters, was suitable when a large number of rating data 

could not be obtained. However, MFRM was constrained to only model the rater and task 

difficulty dimensions.  

 

Bootstrap Approach 

Advancement in modern computing has made it possible to look at data graphically and 

numerically in ways previously inconceivable. Bootstrapping is a statistical approach that 
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quantifies uncertainty by re-using the data, specifically random resampling with replacement. In 

other words, the bootstrap is a statistical procedure to assess the accuracy of an estimator (e.g., 

standard error, confidence interval). Formally, to estimate the distribution of Tn(Y, F), where Tn is 

a random variable/ statistic calculated based on the data Y = (Y1, …, Yn)’ from the statistical 

model F(y1, …, yn), we would use the bootstrap estimate Tn(Y*, 𝐹̂), which is the statistic 

calculated based on the bootstrap data Y* = (Y*
1, …, Y*

n)’ generated from the fitted values (𝐹̂) 

from the parametric model F. As summarized by Shao and Tu (1995), “the spirit of bootstrap is 

to use the sampling behavior of (𝐹̂, Y*, Tn(Y*, 𝐹̂)) to mimic the behavior of (F, Y, Tn(Y, F))” (p. 

16). Often, when there is no closed form solution, Monte Carlo method is applied to approximate 

the empirical distribution of Tn(Y*, 𝐹̂) or desired moments of such distribution.  

The bootstrap procedure has been applied to investigate the properties of the fit statistics 

(e.g., infit and outfit mean square errors and their t-transformed statistics) for the family of Rasch 

models, which are typically used as a diagnostic tool for screening poorly fitting items. For 

example, Su, Sheu, and Wang (2007) pointed out that the conventional critical values were likely 

to be accurate as the t-transformed statistic did not follow the standard normal distribution 

(Wang and Chen, 2005). Moreover, as the sampling distribution for the fit statistics could not be 

derived analytically, most computer programs did not report confidence intervals for the fit 

statistics. Thus, they developed a computer program that used the parametric bootstrap procedure 

to report the confidence intervals of the item infit and outfit MSE. Results from using the 

Winsteps (Linacre, 2001) to conduct item calibration on the simulated data sets confirmed that 

the infit and outfit MSE statistics, being effect-size measures, could be useful for assessing the 

magnitude of misfit. However, due to random variations governed mainly by sample size, one 

needed the empirical confidence interval to quantify the uncertainty of the point estimate of the 
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MSE statistics. Wolfe (2008) developed a SAS macro program that utilizes the a bootstrap 

procedure (Efron, 1981; Hesterberg, Moore, Monaghan, Clipson, & Epstein, 2005) to estimate 

the critical values for both person and item fit statistics (the unweighted and weighted mean 

square and the standardized unweighted and weighted mean square; Wright & Masters, 1982; 

Wright & Stone, 1979), item-total score correlations, item slope estimates, and item lower 

asymptote estimates. Seol (2016) used the bootstrap method to evaluate the critical range of 

misfit statistics in polytomous Rasch model. Results, based on 25 simulated data sets and 1,000 

replications across the 25 testing conditions, showed that “the rule-of-thumb critical values for 

assessing the magnitude of misfits were not applicable because the infit and outfit MSE statistics 

showed different magnitude of variability over testing conditions and standardized fit statistics 

did not exactly follow the standard normal distribution. (p. 937). Thus, the author recommended 

using bootstrap CIs to identify misfiting items or persons as an alternative solution.  

Recent studies investigating rater effects have also considered simulation techniques. 

Wolfe and McVay (2012) conducted a rater effects study that included both simulated and actual 

data to demonstrate the procedure of detecting centrality, inaccuracy, and differential 

dimensionality in a large-scale writing assessment. The simulation study showed that the indices 

could effectively identify the known rater effects. The actual data application showed that in 

real-world context the proportion of raters exhibiting rater effects was non-negligible. Wind 

(2019) investigated the impacts of rater severity, centrality, and misfit on students’ achievement 

estimates on classification decisions. The simulated data analysis supported that these rater 

effects had substantial impact. Wind and Guo (2019) conducted a simulation study to investigate 

a combination of differential rater functioning and misfit. Results showed that the effects might 
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be difficult to distinguish using only the numeric indicators and the combination of rater effects 

were easier to detect for complete rating designs.  

 

Computational Implementations of MFRM 

The computer program FACETS (Linacre, 2011) implements MFRM, providing 

estimates of each measurement facets of interest (using JML estimation procedure) and provides 

information about the reliability of each modeled facets in the form of standard error (SE) and fit 

statistics (Barkaoui, 2013). In addition, FACETS permits rating scale diagnosis and bias 

interaction analysis, allowing us “to move beyond and beneath raw scores to understand the 

effects of the conditions of assessment on test scores” (Davidson, 1991; McNamara, 1996; 

Pollitt, 1997; North, 2000; Bond & Fox, 2007, in Barkaoui, 2013, p. 5).  

The R software (R Development Core Team 2012) has become a successful language for 

statistical computing and graphics (Rusch, Mair, & Hatzinger, 2013). It is a free and open-source 

software and programming language well suited for many statistical problems, including those 

from psychometrics and IRT (Rusch, Mair, & Hatzinger, 2013). Recently, there is an increasing 

number of R packages that have been developed to conduct psychometric analyses, such as IRT, 

classical test theory, factor analysis, and structural equation modeling (e.g., “Psychometrics Task 

View” in Mair and Hatzinger 2007b) (Rusch, Mair, & Hatzinger, 2013, p.1).  

The Test Analysis Modules (TAM) (Robitzsch, Kiefer, & Wu, 2020) implements both 

MML and JML for unidimensional and multidimensional item response models, including Rasch 

model, 2PL model, 3PL model, generalized partial credit model, multi-faceted Rasch model, 

nominal item response model, structured latent class model, mixture distribution IRT models, 

and located latent class models (Adams, Wilson, & Wang, 1997; Adams, Wilson, & Wu, 1997; 

Formann, 1982; Formann, 1992). The JML method implements the joint maximum likelihood 
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estimation procedures compatible with those in Winsteps and Facets software (Linacre, 1994). 

The MML method poses univariate normality assumption and uses the Gaussian quadrature 

method as the default integration method for the marginal likelihood function. Formally, the 

TAM implementation formulated the Rasch models as a Random Coefficient Multinomial Logit 

model (RCML), providing and unifying and flexible framework for the Rasch model family 

(Adams & Wilson, 1996). In the RCML parameterization, the (conditional) response probability 

model in category x of item i is: 

Pr(𝑋𝑖 = 𝑥)  =  𝑓𝑖(𝑥; 𝑨, 𝝃 |𝜃) =  
𝑒𝑥𝑝{𝜃𝐵𝑖(𝑥)+ 𝒂𝑖𝑥

′ 𝝃}

∑ 𝑒𝑥𝑝{𝜃𝐵𝑖(𝑥)+ 𝒂𝑖𝑥
′ 𝝃}𝐾

𝑘=1

 ,         (22) 

where the θ ~ g(θ; α) (population model with parameters α) as the probability density function 

(PDF) or G(θ; α) as the cumulative density function (CDF). Bi(x) is the scoring function, which 

assigns a score (e.g., 0, 1, 2, 3) for the observed response x to item i. ξ’ = (ξ1, ξ2, …, ξp) denotes 

the p item parameters, which are related to the responses through a design matrix A = {aik}, for i 

= 1, …, p and k = 1, …, Ki. In estimating the parameters in RCML, solutions/maximizers to the 

log likelihood function can be found by maximizing the expected value of the likelihood of the 

joint item response model: 

𝑓𝑖(𝒙, 𝜃;  𝑨, 𝝃, 𝜶) =  𝑓(𝒙; 𝑨, 𝝃 |𝜃) 𝑔(𝜃;  𝜶)            (23) 

(See Adams & Wilson, 1996; Raymond, Adams, Wilson, & Wu, 1997 for more detailed 

mathematical derivation for the solution of EM algorithm and quadrature procedure for normally 

distributed person ability estimates). 

 

Research Questions 

Based on the literature review, it can be seen that most of the IRT simulation studies or rater 

effects studies are conducted under the condition of either fully-crossed rating design or 
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minimally connected rating design (see an example in Wind & Guo, 2019). As arbitrarily 

connected rating design is less studied, the statistical properties of the parameter estimates and 

the sensitivity of the rater effects detection indices are largely unknown. For the studies 

investigating rater effects, though the MSE fit statistics are commonly suggested as well-

functioning indicators for certain rater effects, their performances through statistical replications 

are often ignored. Based on these observations, the following research questions are formulated: 

1) How well do the MML and JML perform in terms of parameter recovery and 

accuracy of the MSE fit statistics for detecting the rater effects in the simulated data?   

2) How well do the MML and JML perform in terms of parameter recovery and 

accuracy of the MSE fit statistics for detecting the rater effects in the actual data?   
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CHAPTER 3.    METHODOLOGY 

Description of Data 

The data came from the 2017 fall-semester administrations of the OECT, as there was a 

relatively larger number of examinees for the fall-semester testing periods. Data preprocessing 

consisted of recoding the score variable from the original 0-300 scale to 1-4 scale based on the 

official score conversion table (OECT Score Guide, 2020). The preprocessed data set consisted 

of 171 examinees evaluated by 9 raters. 

 

Simulated Data Analysis 

In order to evaluate the extent to which the computational implementations and the 

analytical procedures would work as intended for rater effects detection, two simulation studies 

were conducted. In the first simulation study, the data were simulated based on a rating scale 

model (RSM, see Equation (1)).  Following the recommendations from Linacre (2007), Seol 

(2016) and Wind (2019), the true values of the MFRM parameters were simulated as follow:  

• Person ability parameters ~ Normal (0, 1)1 

• Task difficulty parameters ~ Normal (0, 1) 

• Step difficulty parameters ~ Uniform ( -2, 2) and the sum of the step parameters equal 

zero 

• Normal rater parameters ~ Uniform (-3.5, 3.5) 

• Lenient rater parameter ~ Uniform (-4.5, -3.5) 

• Sever rater parameter ~ Uniform (3.5, 4.5) 

 
1 “~” means random draws from a particular distribution and the numbers(s) in the parenthesis denotes the 

parameters of a particular distribution. For example, Normal (0,1) means a normal distribution with mean = 0 and 

variance = 1. 
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In this parameter generation configuration, one rater was randomly selected to assign a higher-

than-usual severity parameter value, and another rater was randomly selected to assign a lower-

than-usual severity parameter value. Using these parameter values, a simulated data set was 

generated by the following steps: 

1) For each examinee-rater combination in the original dataset, calculate the predicted 

probabilities for the four score categories using Equation (2) for the OPI and TEACH 

task separately 

2) Using the Probability Inverse Transformation (Casella and Berger, 2002) to obtain the 

predicted OPI or TEACH scores: 

a. Random generated a number ~ Uniform (0,1) 

b. Determine the predicted score based on the cumulative probabilities calculated 

from Equation (2) 

3) Append the predicted OPI and TEACH scores to the original data set with examinees’ 

and raters’ IDs’  

4) one rater (Rater 17) was randomly selected to exhibit centrality effect by converting its 

ratings of 0s’ and 3s’2 to 1s’ and 2s’ such that the ratings had no extreme scores. 

5) Another rater (Rater 6) was randomly selected to exhibit randomness effect by converting 

its ratings to random integers from 0 to 3.  

In the second simulation study, the steps for simulating the predicted OPI and TEACH scores 

and manipulating the central and random ratings were repeated (Steps 1 – 5 above). However, 

the second simulation study generated the data based on a generalized version of the RSM by 

adding a rater slope parameter and calculates the predicted probabilities by: 

 
2 For computational stability with R implementation, the original 1-4 scale was converted to 0-3 scale.  
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𝐿𝑛 (
𝑷𝒏𝒊𝒓𝒌

𝑷𝒏𝒊𝒓𝒌−𝟏
)  = βj (θn – δi – αj – τk),            (24) 

where,  

βj = slope for the item characteristic curve associated with rater j. 

(Myford & Wolfe, 2004) 

Following the suggestions from Myford and Wolfe (2004), the parameters in the second 

simulation study were simulated as follow: 

• Person ability parameters ~ Normal (0, 1) 

• Task difficulty parameters ~ Uniform (-1, 1) 

• Step difficulty parameters = {-1.5, 0, 1.5} 

• Normal rater parameters ~ Normal (0, 0.04) 

• Lenient rater parameter = -1 

• Sever rater parameter = 1 

• Slope parameter ~ Normal (1, 0.05) 

Two raters (Rater 17 and Rater 5) were randomly selected to have a lower slope parameter value 

(0.5) and a higher slope parameter value (1.5), respectively. As the MFRM assumed the slope 

parameter = 1, the fit statistics were expected to reflect the differences in the slope parameters. 

Moreover, to reflect the nuances in the degree of randomness, another rater (Rater 7) was 

randomly selected to consistently generate equal probabilities (0.25) of producing the expected 

scores, and another rater (Rater 6) was randomly selected such that only 25% of its ratings were 

drawn randomly from those of the normal rater (Rater 9).  
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Using this simulated data, the data-generation accuracy was first checked by fitting the 

simulated data to the TAM’s implementation (both MML and JML3) of the RSM. In this initial 

analysis, the distributions of the ability estimates, the differences in rater severity estimates, and 

the accuracy of the misfit statistics were recorded. Moreover, particularly in the second 

simulation study, the various rater effects detection indices (e.g., separation reliability) and 

graphical techniques (e.g., category probability curves) were incorporated. Then,  the parametric 

bootstrap procedure was implemented to investigate the parameter recovery and misfit statistics 

accuracy. For both analyses, the number of iterations was set to 500. For each iteration, a 

bootstrap sample was obtained following the Steps 1-5 described above. The bootstrap samples/ 

simulated data sets were fitted to the TAM’s implementation (both MML and JML) of the RSM 

iteratively to obtain the bootstrap estimates of the model parameters. Finally, numeric summaries 

(e.g., Monte Carlo means and standard errors) and graphs were used to evaluate parameter 

recovery and misfit accuracy.  

 

Actual Data Analysis 

The modeling and analytical procedures, described in the simulation studies, carried over 

to the actual data analysis. However, the analysis of the actual data used the parameters 

estimated from the data rather than simulated from the distributions. In other words, the true 

values of the parameters were unknown, and the bootstrap procedure provided an 

approximation/estimation to the true parameter values. The lack of knowledge of the true 

distributions for the parameters may imply that the rater effects detection indices may not be 

sensitive to the actual data. Therefore, different from simulated data analysis, which only relied 

 
3 For JML implementation, estimation bias was uncorrected (to better match Facet’s implementation) and the 

maximum number of iterations for estimation was set to 100.  
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on the severity estimates and MSE fit statistics, the actual data analysis considered a variety of 

statistics and indices and used a preponderance of evidence for detecting centrality and 

randomness effects. 

First, the initial model parameter estimates and fit statistics, together with the 

corresponding standard errors (SEs), were obtained from the TAM and Facets software. Then, to 

demonstrate the similarity/differences in the distributions of the parameter estimates, the 

construct maps/ Wright maps for the facets of examinee abilities, rater severities, task 

difficulties, as well as the predicted probability plots (i.e., item characteristic curves) were 

compared. To investigate whether the raters as a group exercise different levels of severity, the 

indices related to the rater facets were calculated and compared. Moreover, server/leniency and 

centrality/randomness effects were investigated based on the global indices, individual fit 

statistics, and other detection indicators. Finally, the bootstrap procedure was implemented in R 

to evaluate the accuracy of the parameter estimators and fit statistics. In the bootstrap process, 

the data generation accuracy was first assessed by checking the percentages of matches between 

the initial/actual data values and the simulated data values. The statistical properties of the 

estimates were then evaluated by obtaining the Monte Carlo means, biases, SEs, and the 95% 

confidence intervals using both the MML and JML implementations from TAM. In order to 

connect the initial parameter estimates and the Monte Carlo results, empirical p-values were 

calculated to assess the extent to which the initial estimates were plausible values from the 

bootstrap distributions. Finally, the empirical coverage rate/ Type I error rate was calculated to 

evaluate the quality of the confidence intervals as a result of the bootstrap procedure.  
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CHAPTER 4.    RESULTS 

This chapter presents the results in the simulated data analyses (Simulation Study 1 and 

Simulation Study 2) and the actual data analysis. For both parts of the analyses, results for the 

initial analysis (parameter estimates and fit statistics from the initial bootstrap sample or the 

actual data) are first presented, followed by the bootstrap results. The actual data analysis section 

also presents the results from other indices to detect central and randomness effects. 

Simulation Study 1 

Initial Analysis 

 The initial analysis presents the results of person parameter estimates, rater parameter 

estimates, and fit statistics calculated from the initial bootstrap sample in Simulation Study 1. 

Person parameter estimates 

The Figure 1 and 2 shows the distribution of the person estimates: 

Figure 1.  

Initial MML Person Estimates in Simulation1 

 

Figure 2.  

Initial JML Person Estimates in Simulation1 
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In the initial bootstrap sample, while roughly exhibiting a “bell-shape” curve, the person 

estimates are distributed with certain deviations to that of a standard normal distribution. As 

Simulation Study 1 simulated relatively extreme rater severity parameters, the heavier tails of the 

person parameter distribution may be conceivable. Both MML and JML estimation procedures 

yield values exceeding -1 and 1. The person estimates from JML are more widely spread than 

those from MML.  

Rater parameter estimates 

As the rater parameters are simulated from the uniform distributions, the true values for 

the parameters are known. The comparison between the estimated values and the true values 

provides a basis for quantifying the magnitude of bias in the estimation. As a first step, Table 1 

compares the initial parameter estimates with the true parameter values: 

Table 1.  

Initial Parameter Estimates in Simulation 1 

Parameters 

MML 

Estimates 

MML 

SE 

JML 

Estimates 

JML 

SE 

Actual 

Values 

opi -0.71 0.074 -0.929 0.083 -1.207 

teach 0.318 0.080 0.321 0.092 0.277 

step1 -1.772 0.082 -2.219 0.090 -2.005 

step2 0.551 0.098 0.680 0.104 0.561 

step3 1.221 0.128 1.539 N/A 1.444 

Rater 14 -4.053 0.147 -5.191 0.164 -4.491 

Rater 16 -1.754 0.136 -1.801 0.151 -1.872 

Rater 17 0.472 0.095 0.796 0.108 1.163 

Rater 18 -0.237 0.099 -0.129 0.111 0.100 

Rater 19 0.85 0.111 1.063 0.125 1.355 

Rater 5 -0.198 0.107 -0.524 0.120 0.315 

Rater 6 -0.203 0.114 -0.361 0.127 -1.521 

Rater 7 2.141 0.121 2.568 0.137 2.964 
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Rater 9 2.982 0.332 3.579 N/A 3.792 

For both MML and JML estimation methods, differences exist between the parameter estimates 

and the actual parameter value. However, the two methods ranked the rater severity estimates in 

exactly the same order. Notably, the most lenient (Rater 14) and sever raters (Rater 9) can be 

indicated, based on either estimation method. Interestingly, both MML and JML show the largest 

difference for Rater 6, who was set to be the noisy rater, indicating some potential interaction 

between severity and randomness effects. In comparison, JML estimation, in general, seems to 

produce estimates that are more variable than those of MML. In terms of the estimation 

precision, the SEs for MML are slightly smaller than those of JML. As the last level in the steps 

and raters’ facet are set to zero in order to have uniquely identifiable parameters, the SEs for 

these elements are N/As.  

Fit statistics 

To detect the centrality or randomness effects, the fit statistics can be calculated and 

compared to 1. Table 2 shows outfit and infit MSE statistics from the initial bootstrap sample: 

Table 2.  

Initial Fit Statistics in Simulation 1 

Parameter MML Outfit MML Infit JML Outfit JML Infit 

Rater 14 0.968 0.960 1.082 1.385 

Rater 16 0.969 1.020 0.924 0.967 

Rater 17 0.737 0.645 0.532 0.498 

Rater 18 1.051 1.096 0.886 0.820 

Rater 19 0.933 0.927 0.721 0.735 

Rater 5 0.960 0.936 1.139 1.021 

Rater 6 1.176 1.331 2.543 2.541 

Rater 7 0.989 1.020 1.038 0.949 

Rater 9 0.910 0.948 0.968 0.878 
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Rater18 

  
Rater19 

  
Rater5 

  
Rater6 
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Rater7 

 
 

Rater9 

 

 

 

The expected score curves show how the expected scores (Y-axis) change as a function of the 

persons’ abilities (X-axis). The dots in these curves are several example observations in the data. 

We can see that the curves of each rater are not parallel with some curves steeper than others. As 

the numbers of responses in each category are sufficient statistics for estimating the δik parameter 

in Rasch models, the shape of the expected score curve is determined by the frequencies of 

responses in each score category and flatter curves can be associated with more respondents in 

the middle category (Wu, 2017, pp. 460 - 462).  

It can be seen that Rater 16, 17, 18, 19, and 7 have fatter curves than the other raters. For 

these raters, there is almost a plateau around the range of -10 to -5 ability logits. Among the 

raters who have steeper curves (Rater 14, 5, 6, and 9), Rater 14 has a relatively flat curve, while 

Rater 9 shows the steepest expected score curve, which approximates an S shape. This may 

indicate that Rater 9 is a well-functioning rater, and Rater 14 is relatively central. This result is 
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consistent with the frequency counts in the score categories for each rater. However, these 

frequency counts are not so useful because different raters evaluated different examinees (Wu, 

2017). The expected score curves are useful for centrality detection as the comparisons are made 

based on the model’s estimates rather than raw frequency counts.  

When checking the category probability curves, Rater 16, 17, 18, 19, and 7 all have a 

dominant probability curve for the central category (Category 2). In comparison, for the raters 

who used all the categories, though their probability curves for Category 2 are much narrower, 

their probability curves for Category 3 are dwindled, as compared to the raters who didn’t use 

Category 1.  

Only figures for OPI scores are shown here, as the plots for OPI and TEACH scores are 

similar (see the plots for TEACH scores in Appendix D). The task difficulty estimates are similar 

on the logit scale. Notably, Rater 14, who did not use Category 1 in OPI rating, but used this 

category in TEACH rating, shows similar expected score curves, with the curve for TEACH 

slightly steeper than that of OPI. As for the plots from JML estimates (see Appendix E), the 

expected score curves, in general, are less steep. Also, Category 3 receives higher probabilities 

(for those raters who used all the categories), and Category 2 has larger spans (especially for 

Rater 14 and 5) in JML.  

 

Summary of the Initial Analysis 

 Using the preponderance of evidence from the suggested rater effects detection indices, 

Table 20 summarizes the results in the initial analysis by recording the ranking order based on 

the numeric values in the fit statistics, SR-ROR, and discrimination measures. Moreover, the 

table also summarizes the results from the residual plots and PCM’s probability curves by 

indicating problematic raters (R denotes randomness and C denotes central). 
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Table 20.  

Summary of Rater Effects Detection in the Initial Analysis 

 

Raters 

Outfit 

MSE 

Infit 

MSE 

SR-

ROR 

Discrimination 

Measure 

 

Residuals 

PCM 

graphs 

Rater 14 8 8 2 2 R  

Rater 16 1 1 5 9  C 

Rater 17 4 5 6 6  C 

Rater 18 5 2 8 7  C 

Rater 19 6 6 3 3 R C 

Rater 5 9 9 1 1 R  

Rater 6 2 3 7 8   

Rater 7 3 4 4 5 R C 

Rater 9 7 7 9 4   

Based on both the numerical summaries and plots, Rater 16 and 18 can be identified as 

exhibiting centrality, while Rater 5 and 14 can be identified as exhibiting randomness. Rater 6 

can also be associated with centrality effect, and Rater 19 can also be associated with 

randomness effect. However, some ambiguity can be seen when these indices are used together. 

For example, Rater 9, who has relatively high fit values, can be identified as a well-functioning 

rater based on SR-ROR and discrimination measure. Rater 19 and Rater 7, while showing 

dominant Category 2 probability curves, also show small portions of large standardized 

residuals.   

 

Parameter Recovery 

 During the bootstrap process, each bootstrap sample (n=500) is stored and compared with 

the original/ actual data to evaluate the degree to which the simulation procedure can reproduce 

the original data table. Table 21 shows the data-generation accuracy in terms of the average 

matches of data points between the bootstrap sample and the original data set.  
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Table 21.  

Data-Generation Accuracy 

Method OPI TEACH 

Null 0.251 0.252 

MML 0.663 0.652 

JML 0.697 0.693 

The data-generation accuracy is measured by the percentages of identical elements/data points 

between the simulated and actual data sets. The baseline model simulated the ratings from each 

rater on a particular examinee from a certain task by naively drawing a value independently from 

a multinomial distribution of equal probabilities (i.e., p1 = 0.25, p2 = 0.25, p3 = 0.25, p4 = 0.25). 

We can see that the data-generation accuracy is significantly improved when we use the RSM 

model compared to the baseline. The accuracy further increased when using the JML estimation 

method. However, there is about 30% unexplained/unmodeled portion in the data.  

 Table 22 presents the bootstrap results for the parameters, including MC means, MC bias, 

MC SE, MC MSE, MC p-value, and MC coverage, for MML. The empirical p-value is the 

proportion of values in the distribution of the bootstrap estimates more extreme than the initial 

parameter estimated from the data. The empirical coverage is the proportion of the values in the 

bootstrap estimates that are within the 95% confidence intervals constructed using the normal 

distribution quantiles7. 

Table 22.  

Bootstrap Results for the MML Parameters Estimates from Actual Data 

Parameters 

MC Mean 

MML 

MC Bias 

MML 

MC SE 

MML 

MC MSE 

MML 

Empirical  

p-value 

MML 

Empirical 

coverage 

MML 

 
7 Uncontrolled Type I error rate for multiple testing 
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opi -1.603 -0.108 0.134 0.030 0.176 0.956 

teach -1.994 -0.072 0.134 0.023 0.296 0.954 

step1 -4.610 -0.035 0.246 0.062 0.43 0.956 

step2 1.371 0.171 0.134 0.047 0.094 0.95 

step3 3.239 -0.136 0.179 0.051 0.206 0.942 

Rater 14 -0.253 0.007 0.268 0.072 0.212 0.942 

Rater 16 0.493 0.006 0.380 0.144 0.462 0.96 

Rater 17 -0.110 0.007 0.179 0.032 0.498 0.944 

Rater 18 -0.380 -0.054 0.224 0.053 0.374 0.954 

Rater 19 0.208 0.039 0.224 0.052 0.482 0.948 

Rater 5 0.819 -0.115 0.246 0.074 0.376 0.952 

Rater 6 0.731 -0.268 0.246 0.132 0.202 0.954 

Rater 7 -1.041 0.156 0.246 0.085 0.256 0.946 

Rater 9 -0.467 0.061 0.179 0.036 0.348 0.958 

Table 23 shows the results for JML: 

Table 23.  

Bootstrap Results for the JML Parameters Estimates from Actual Data 

Parameters 

MC Mean 

JML 

MC Bias 

JML 

MC SE 

JML 

MC MSE 

JML 

MC  

p-value 

JML 

MC 

coverage 

JML 

opi -2.346 -0.34 0.179 0.139 0.056 0.954 

teach -2.968 -0.398 0.201 0.2 0.028 0.964 

step1 -8.286 -1.588 0.537 2.612 0.002 0.952 

step2 2.312 0.577 0.268 0.349 0.038 0.95 

step3 5.974 1.011 0.358 1.122 0.002 0.956 

Rater 14 -1.025 -0.114 0.402 0.177 0.416 0.952 

Rater 16 0.998 0.25 0.604 0.388 0.392 0.946 

Rater 17 -0.105 -0.011 0.313 0.094 0.454 0.948 

Rater 18 -0.318 -0.091 0.358 0.163 0.418 0.956 

Rater 19 0.29 0.1 0.358 0.147 0.376 0.948 

Rater 5 1.477 0.143 0.38 0.174 0.34 0.952 

Rater 6 1.646 0.092 0.425 0.191 0.432 0.954 

Rater 7 -2.004 -0.255 0.402 0.201 0.292 0.946 

Rater 9 -0.959 -0.114 0.268 0.079 0.38 0.96 
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We can see that the MC means for the parameter estimates are close to those estimates from the 

initial analysis. Differences in JML are slightly larger than MML. The variability associated with 

the estimates (i.e., bootstrap SE) is generally larger than those from the initial analysis, indicating 

larger number of iterations needed to improve the MC estimation precision. The bootstrap SEs 

for JML, which are of similar magnitude as those from Facets’, are generally larger than those in 

MML.  

Consistent with the results from the simulation, the MC results for the actual data 

analysis show that the estimations of the model parameters are not bias-free, particular when 

estimation is implemented using JML. It can also be seen as the biases associated with estimating 

the tasks and steps parameters are larger in the actual data than those in the simulation. However, 

the biases associated with the estimating rater parameters are smaller in the actual data (except 

for Rater 6 and 7 for MML and Rater 7 and 9 for JML). As a result, the MSEs from MML are 

significantly lower than those from JML. The statistical properties of consistency and variability 

are visualized in the trace plots (see Appendix F).  

The large empirical p-values in MML indicate that the initial parameter estimate is very 

likely to be drawn from the distribution of bootstrap estimates, whereas there are some small 

empirical p-values in JML. For both estimation methods, the empirical coverages are close to the 

nominal Type I error level (0.05). Figure 8 shows the plots of confidence intervals (unadjusted 

Type I error for the z-quantiles) constructed using the point estimates and SEs for the parameters. 

The construction of these intervals makes use of Wald theory inference, which assumes 

asymptotic normal distributions for the parameters.  
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Figure 12.  

Confidence Intervals for MML Bootstrap 

Estimates of Parameters 

 

Figure 13.  

Confidence Intervals for JML Bootstrap 

Estimates of Parameters 

 

 

 Using the MC means and MC SEs, Table 24 presents the group-level indices for rater 

severity. 

Table 24.  

Group-Level Indices Based on Bootstrap Estimates 

 MC_TAM_MML MC_TAM_JML 

Rater separation ratio 2.202 2.928 

Rater separation index (Strata) 3.270 4.237 

Rater separation reliability 0.829 0.896 

Fixed chi-square 48.902 (8) 

p-value < 0.0001 

78.641 (7) 

p-value < 0.0001 

 

The bootstrap results are consistent with the initial analyses in that it indicates that the raters, as a 

group, exercised different levels of severity. Specifically, the result from the fixed chi-square test 

shows that at least two raters exercised statistically different levels of severity. The rater 

separation ratio shows that the difference between rater severities is about 3 times larger than the 



 62 

precision with which the severity parameters are estimated. The rater separation ratio or strata 

indicates that there are about 3 to 4 distinct levels of severity exercised by the raters. Finally, the 

high reliability of rater separation (0.829 – 0.896) suggests that the raters are separated or there 

are discernible levels of severity among the raters.  We also note that the differences between the 

MML and JML results are smaller as compared to the initial analysis.  

 

Misfit Accuracy 

 The bootstrap procedure provides empirical distributions for the fit statistics (see 

Appendix G for the trace plots). Table 25 shows the bootstrap results for the outfit statistics in 

terms of the MC means, MC biases, MC SEs, and empirical p-values. The MC mean is the 

sample mean of the bootstrap estimates of the outfit and infit MSE statistics. The MC bias is the 

difference between the MC mean and the fit statistics calculated from the original data. The MC 

SE is the sample standard deviation of the bootstrap estimates. The empirical p-value is the 

proportion of values in the distribution of the bootstrap estimates of the fit statistics that are more 

extreme than the initial fit statistics estimated from the data. 

Table 25.  

Bootstrap Results of Outfit Statistics from Actual Data 

 

 

 

Parameters 

MC 

Mean 

Outfit 

MML 

MC 

Bias 

Outfit 

MML 

MC  

SE  

Outfit 

MML 

Empirical 

P-Value 

Outfit 

MML 

MC 

Mean  

Outfit 

JML 

MC 

Bias  

Outfit 

JML 

MC  

SE  

Outfit 

JML 

Empirical 

P-Value 

Outfit 

MML 

Rater 14 0.959 -0.037 0.247 0.39 0.677 -0.285 0.218 0.11 

Rater 16 0.963 0.346 0.350 0.122 0.634 0.230 0.277 0.23 

Rater 17 0.935 0.145 0.158 0.168 0.610 0.033 0.138 0.466 

Rater 18 0.906 0.110 0.187 0.29 0.595 0.053 0.160 0.412 

Rater 19 0.932 0.083 0.205 0.374 0.621 -0.216 0.219 0.13 

Rater 5 0.982 -0.015 0.207 0.422 0.685 -0.379 0.249 0.06 
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Rater 6 0.962 0.297 0.232 0.078 0.651 0.180 0.216 0.232 

Rater 7 0.884 0.156 0.256 0.228 0.644 0.056 0.243 0.446 

Rater 9 0.920 -0.002 0.151 0.49 0.658 0.081 0.147 0.178 

Table 26 shows the empirical distributions for the outfit statistics using MML in terms of 2.5%, 

5%, 50%, 95%, and 97.5% quantiles. 

Table 26.  

Distribution of Outfit Statistics Calculated by MML from Actual Data 

 

 

Parameters 

Outfit Outfit Outfit Outfit Outfit 

MML MML MML MML MML 

2.50% 5% 50% 95% 97.50% 

Rater 14 0.572 0.613 0.949 1.383 1.471  

Rater 16 0.466 0.505 0.921 1.538 1.646  

Rater 17 0.668 0.706 0.939 1.219 1.254  

Rater 18 0.594 0.631 0.893 1.288 1.347  

Rater 19 0.579 0.623 0.931 1.326 1.450  

Rater 5 0.581 0.623 0.952 1.352 1.432  

Rater 6 0.587 0.632 0.928 1.328 1.430  

Rater 7 0.593 0.537 0.821 1.365 1.462  

Rater 9 0.653 0.675 0.905 1.192 1.245  

Table 27 shows the empirical distributions for the outfit statistics using JML in terms of 2.5%, 

5%, 50%, 95%, and 97.5% quantiles. 

Table 27.  

Distribution of Outfit Statistics Calculated by JML from Actual Data 

 

 

Parameters 

Outfit Outfit Outfit Outfit Outfit 

JML JML JML JML JML 

2.50% 5% 50% 95% 97.50% 

Rater 14 0.252 0.390 0.668 1.094 1.293  

Rater 16 0.234 0.276 0.577 1.072 1.278  

Rater 17 0.379 0.404 0.580 0.838 0.943  

Rater 18 0.324 0.371 0.581 0.945 1.029  
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Rater 19 0.334 0.374 0.595 1.004 1.196  

Rater 5 0.327 0.360 0.611 1.100 1.277  

Rater 6 0.337 0.368 0.588 1.055 1.121  

Rater 7 0.302 0.343 0.622 1.109 1.248  

Rater 9 0.391 0.417 0.632 0.916 0.952  

Figure 9 shows the percentile confidence plots for the outfit statistics. The percentile CI contains 

bootstrap estimate values indicating the lower 2.5% and upper 97.5% percentiles of the bootstrap 

distribution. 

Figure 14.  

Percentile Confidence Interval of Outfit 

Statistics Calculated by MML 

 

Figure 15.  

Percentile Confidence Interval of Outfit 

Statistics Calculated by JML 

 

Table 28 shows the bootstrap results for the infit statistics in terms of the MC means, MC biases, 

and MC SEs. The MC biases are the differences between the MC means and the fit statistics 

values calculated from the original/actual data.  
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Table 28.  

Bootstrap Results of Infit Statistics from Actual Data 

 

 

 

Parameters 

MC 

Mean 

Infit 

MML 

MC 

Bias 

Infit 

MML 

MC 

SE  

Infit 

MML 

Empirical 

P-Value 

Infit 

MML 

MC 

Mean  

Infit 

JML 

MC 

Bias  

Infit 

JML 

MC 

SE  

Infit 

JML 

Empirical 

P-Value 

Infit 

JML 

Rater 14 0.952 -0.078 0.186 0.276 0.869 -0.319 0.202 0.082 

Rater 16 0.942 0.332 0.267 0.082 0.832 0.3 0.300 0.164 

Rater 17 0.930 0.142 0.120 0.106 0.830 0.049 0.151 0.406 

Rater 18 0.911 0.244 0.137 0.02 0.842 0.220 0.175 0.096 

Rater 19 0.923 0.015 0.162 0.47 0.846 -0.176 0.208 0.198 

Rater 5 0.957 -0.227 0.161 0.088 0.840 -0.530 0.205 0.012 

Rater 6 0.957 0.220 0.178 0.108 0.814 0.176 0.204 0.222 

Rater 7 0.908 0.127 0.177 0.186 0.894 0.086 0.220 0.356 

Rater 9 0.922 -0.014 0.110 0.43 0.888 0.014 0.141 0.484 

 

Table 29 shows the empirical distributions for the infit statistics using MML in terms of 2.5%, 

5%, 50%, 95%, and 97.5% quantiles. 

Table 29.  

Distribution of Infit Statistics Calculated by MML from Actual Data 

 

 

Parameters 

Infit Infit Infit Infit Infit 

MML MML MML MML MML 

2.50% 5% 50% 95% 97.50% 

Rater 14 0.642 0.690 0.923 1.273 1.338 

Rater 16 0.509 0.551 0.906 1.391 1.502 

Rater 17 0.720 0.745 0.918 1.148 1.182 

Rater 18 0.656 0.702 0.901 1.174 1.223 

Rater 19 0.644 0.679 0.923 1.212 1.272 

Rater 5 0.642 0.700 0.936 1.227 1.300 

Rater 6 0.657 0.702 0.916 1.244 1.316 

Rater 7 0.603 0.632 0.886 1.250 1.303 

Rater 9 0.717 0.742 0.908 1.107 1.146 
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Table 30 shows the empirical distributions for the infit statistics using JML in terms of 2.5%, 

5%, 50%, 95%, and 97.5% quantiles. 

Table 30.  

Distribution of Infit Statistics Calculated by JML from Actual Data 

 

 

Parameters 

Infit Infit Infit Infit Infit 

JML JML JML JML JML 

2.50% 5% 50% 95% 97.50% 

Rater 14 0.494 0.564 0.879 1.239 1.343 

Rater 16 0.348 0.398 0.796 1.341 1.437 

Rater 17 0.553 0.597 0.817 1.091 1.153 

Rater 18 0.517 0.571 0.834 1.178 1.233 

Rater 19 0.516 0.564 0.847 1.253 1.326 

Rater 5 0.485 0.539 0.825 1.155 1.253 

Rater 6 0.482 0.527 0.778 1.102 1.118 

Rater 7 0.517 0.547 0.879 1.291 1.358 

Rater 9 0.6112 0.647 0.875 1.113 1.157 

 

Figure 9 shows the percentile confidence plots (the lower 2.5% quantile and upper 97.5 quantile) 

for the infit statistics. 
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Figure 16.  

Percentile Confidence Interval of Infit 

Statistics Calculated by MML 

 

Figure 17.  

Percentile Confidence Interval of Infit 

Statistics Calculated by JML 

 

For both outfit and infit statistics, it can be seen that the JML estimate show slightly larger biases 

than MML, and the estimation precision (SEs) is comparable between MML and JML. 

Compared with the fit values from the initial analysis, the bootstrap results show that the fit 

values are more homogeneous, which is expected due to the MC approximation to the sample 

mean in the bootstrap procedure. Moreover, the empirical p-values show that the initial estimates 

are plausible values from the empirical distributions of the fit statistics for each rater. There was 

only one p-value less on 0.05 in the infit statistics for MML and JML, respectively. However, the 

bootstrap results for the fit statistics show little consistency between the estimation methods in 

terms of identifying the minimum and maximum fit values. Thus, the fit values may only be 

compared under a particular estimation method.  

For MML, almost all the fit values the range of [0.9,1], which corresponds to the very 

good fit based on any rule-of-thumb critical range. However, as none of the fit values are greater 

than 1, the bootstrap results show some consistency with the initial analysis in showing the 
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tendency for the majority of the raters to exhibit overfit rather than misfit. The smallest outfit 

value is 0,884 (Rater 7), and the largest is 0.982 (Rater 5). The smallest infit value is 0.908 

(Rater 7), and the largest infit value is 0.957 (Rater 5 and 6). For MML, the maximum and 

minimum values are consistent between outfit and infit statistics in terms of both MC means and 

MC medians. The rater who has the maximum fit value (Rater 5) from the bootstrap results is 

consistent with that from the initial estimate. 

For JML, the ranges of fit values are consistently lower than those from MML, especially 

the outfit values, which is understandable given the consistently larger SEs associated with the 

rater severity parameters estimations in JML. For the outfit statistics, the smallest value is 0.595 

(Rater 18), and the largest value is 0.685 (Rater 5). However, for the infit statistics, the smallest 

value is 0.814 (Rater 6), and the largest value is 0.894 (Rater 7). We can see that, for JML, the 

extreme values between the outfit and infit statistics are not even consistent. Moreover, unlike 

MML, the extreme fit values based on the rank ordering of the MC means are not consistent with 

those of MC medians, indicating that JML produced less symmetric empirical distributions for 

the fit statistics. 
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CHAPTER 5.    CONCLUSIONS 

In the simulation studies, as the parameters are known, and the rater effects can be 

simulated, the accuracy of multiple estimation and implementation methods in rater effects 

detection could be evaluated. MML has more stringent assumptions than JML in assuming the 

standard normal distribution for the population model. The person estimates conformed to the 

assumed distribution in Simulation Study 2, where the variability of the generating distribution 

for the rater severity parameters has smaller variance, and a rater slope/discrimination parameter 

is included. As normality is a crucial assumption for MML, checking the estimated distribution 

aimed to make sure MML would work as intended. On the other hand, JML, which does not pose 

such distributional assumption, produces more widely spread parameter estimates.  

When the parameters are simulated from the suggested distributions, and the 

data/samples are generated according to the RSM, the evaluation of the sizes of biases 

(estimation consistency) and variability of the parameter estimates (estimation precision) are 

enabled by the bootstrap procedure. It can be concluded that the parameter estimations are not 

free of biases, but both group-level and individual-level of severity/leniency effects can be 

identified. Specifically, MML is superior to JML in that the mean squared errors (MSE) 

associated with parameter estimation are consistently lower. Though the magnitudes of biases 

varied in degree between MML and JML across parameters, with JML showing more biases in 

rater parameters, JML also consistently produced larger SEs than MML. While it is 

understandable that biases are present in JML, the biases from MML, as found in this study, 

could potentially be related to various factors, such as the presence of rater effects, the arbitrary 

connected rating design, or the MFRM assumptions (e.g., unidimensionality, local 

independence).  
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Moreover, the fit statistics can be effectively used as indicators for detecting either 

centrality or randomness effects. Specifically, multiple manifestations of centrality effects (i.e., 

scale category shrinkage, low discrimination), misfit (i.e., high discrimination), and extreme 

randomness (i.e., complete random ratings) can be unambiguously detected solely based on the 

fit statistics. However, different from Myford & Wolfe (2004), where the fit statistics were 

calculated from Facets, the simulated randomness effect in which only 25% are random ratings 

cannot be detected by the fit statistics produced by the TAM package. In addition, the 

randomness effect in which a naïve multinomial distribution of equal probabilities is used cannot 

be detected by the fit statistics.  

In the initial analysis of the actual data, which is the most common form of study that 

used MFRM to detect rater effects, some findings of the current study are consistent with this 

body of literature (e.g., Myford and Wolfe, 2004; Eckes, 2005; Schaefer, 2008; Kim, 2009; 

Myford & Wolfe, 2009; Yang, 2010; Hseih, 2011; Yan, 2014; Yang, 2016; Won, 2019). In 

particular, the group-level indices show that the raters as a group exercised distinct levels of 

severity/leniency, but may not exhibit overwhelming centrality or randomness effects. Moreover, 

detection of centrality or randomness effects using the fit statistics can be supported by SR-ROR, 

discrimination measures, and visualization techniques such as the residual plots, expected score 

curves, and category probability plots.  

More importantly, the analysis of actual data in this study explored some uncharted 

territories in the body of literature of rater effects detection. Estimation results from the R 

implementations of MML, JML, and the Facets’ implementation of JML are compared in detail. 

Firstly, from the initial analysis, it can be concluded that JML produced wider range of 

parameter estimates for persons, raters, and steps than those of MML. The analytically derived 
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SEs in parameter estimation are the smallest for MML, followed by JML, and are the largest for 

Facets. In terms of using the fit statistics for rater effects detection, the three methods showed 

consensus as to the extreme infit values.  

Secondly, the bootstrap procedure, which was able to reproduce the data with about 68% 

accuracy, is applied to evaluate the size of biases, variability of the parameter estimates, 

empirical coverage rate of the nominal 95% CIs that are constructed based on asymptotic 

properties, and stability of the fit statistics in terms of their functions as indicators of detecting 

centrality or randomness effects. Specifically, it can be concluded, for the parameter estimation, 

that, while the estimation methods were not bias-free, JML produced slighted larger estimated 

biases than MML, and JML was less precise than MML. As a result, the mean squared errors 

were smaller in MML than JML, which was consistent with the simulation studies. The bootstrap 

procedure augmented the findings in the initial analysis in showing that the initial parameter 

estimates were plausible value based on the empirical distributions of the parameters, and the 

coverage rates supported the nominal Type I error level (0.05).  

When the bootstrap procedure is applied to the fit statistics, JML, while exhibiting 

comparable SEs, also produced slightly larger estimated biases than MML. However, the 

accuracy of fit statistics in detecting centrality or randomness effects is questionable when the 

bootstrap procedure is applied. Specifically, there is no census between MML and JML in 

identifying the extreme fit values, and the critical ranges for the fit statistics were not appropriate 

for the MC means, which were more stable estimates of the fit statistics. When focusing on a 

certain estimation method, only MML was consistent in terms of identifying the largest fit values 

between the outfit and infit statistics calculated from both the actual data (initial analysis) and 

bootstrap samples (MC means).  
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CHAPTER 6.    LIMITATIONS 

Firstly, the assumptions of MFRM were difficult to verify empirically. Though one could 

assume the monotonic increasing function of the rating scale steps, the unidimensionality and 

local independence assumptions were hard to check. Wolfe & McVay (2012) suggested 

conducting Principal Component Analysis for the residuals from the MFRM, and a dominant 

first principle component should indicate unidimensionality. However, the actual data in this 

study had an arbitrary rating design, which means that there is large amount of missing values in 

the residual matrix, where students are crossed with rater-task combinations. The 

unidimensionality is an important assumption to investigate because the OPI task aimed to 

measure general speaking proficiency, whereas the TEACH task aimed to measure 

communication effectiveness in particular fields of studies. According to the MFRM estimates, 

they differed in difficulty level (TEACH slightly easier than OPI). The possibility that these two 

tasks may measure different ranges of abilities in the logit scale showed up in the “roughly-bi-

modal” person estimates distributions in the Construct Maps (Figure 8-10), as well as the 

expected score curves (Figure 11), where two “S-shape” curves could be roughly observed for 

each rater.  

Moreover, one should also realize that “the assumption [of stochastically independence 

among the generalized items] is typically violated in many applications because the ratings of 

one single item by two raters will appear to be more similar than the ratings of two different 

items by two raters [or ratings of the same raters may be positively correlated]” (Robitzsch & 

Stenfeld, 2018, p. 103). Thus, a possible extension to the MFRM is to consider a generalized-

MFRM (GMFRM) where the raters are treated as random effects from a certain distribution so 
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that the local dependency among the raters could be effectively accounted for (Robitzsch & 

Stenfeld, 2018; Wang, Su, & Qiu, 2014).  

In addition, the MFRM, who is a member of the Rasch model family, is known to be 

limited in assuming no rater slope/discrimination parameter in the model. As discriminating 

different ability levels among students’ ability is commonly the objective of measurement tools, 

the rater discrimination parameter is an important component to include in the model in terms of 

detecting the degree of randomness effect (Wu, 2017; Robitszch, March, 2020, personal 

communication). 

Finally, the simulation design also had several limitations. For example, the issue of 

connectivity of the rating design was not studied. Previous study (e.g., Wind & Guo, 2019) has 

shown that the rater effects indices, such as the fit statistics, were more sensitive in the complete 

rating condition rather than incomplete conditions. Future studies are needed to investigate the 

accuracy and sensitivity of rater effects detections as a function of different rating designs (e.g., 

complete crossing, partial nesting, or nesting). Moreover, more refined mechanism of simulating 

the rater effects (e.g., Wolfe & McVay, 2012) by accounting for the correlations between the 

students and raters and among the raters could be considered. Simulation experiments using the 

Facets software could also be an option so that more systematic and meaningful comparisons 

could be made.  
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