Kinetic study of copper chemistry in chemical mechanical polishing (CMP) by an in-situ real time measurement technique

Thumbnail Image
Date
2008-01-01
Authors
Choi, Changhoon
Major Professor
Advisor
Andrew C. Hillier
Kurt R. Hebert
Brent H. Shanks
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

This work describes a systematic approach to study chemical reactions of copper in contact with various chemical agents and to construct a coherent etching rate model based on the fundamental chemistry. Reactions of copper with chemical agents were investigated by in-situ real time technique, quartz crystal microgravimetry (QCM). Kinetic processes were followed by QCM measurement and analyzed. A coherent etching rate formula was built based on the kinetic analysis of fundamental reactions. The requirement of repeated experiments for studying copper chemistry motivated us to develop a high throughput measurement system. We utilized surface plasmon resonance (SPR) imaging combined with multi flow channel or multi electrode for high throughput design. Fundamental physics of SPR technique and instrumental design will be provided in detail. We expect this study has an impact on relatively advanced area that utilizes copper, such as chemical mechanical polishing (CMP) in semiconductor process.

Comments
Description
Keywords
Citation
Source
Copyright
Tue Jan 01 00:00:00 UTC 2008