Magnetic phase transitions in Eu(Co1-xNix)(2-y)As-2 single crystals

N. Sangeetha
Ames Laboratory

Santanu Pakhira
Ames Laboratory, spakhira@AMESLAB.GOV

D. H. Ryan
McGill University

V. Smetana
Stockholm University

A.-V. Mudring
Stockholm University

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/AMESLAB_MANUSCRIPTS

Part of the Engineering Physics Commons, and the Materials Science and Engineering Commons

Recommended Citation

https://lib.dr.iastate.edu/AMESLAB_MANUSCRIPTS/700

This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Accepted Manuscripts by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Abstract
The effects of Ni doping in Eu(Co1-xNix)(2-y)As-2 single crystals with x = 0 to 1 grown out of self-flux are investigated via crystallographic, electronic transport, magnetic, and thermal measurements. All compositions adopt the body-centered-tetragonal ThCr2Si2 structure with space group I4/mmm. We also find 3%-4% of randomly distributed vacancies on the Co/Ni site. Anisotropic magnetic susceptibility χ(α) (α = ab, c) data versus temperature T show clear signatures of an antiferromagnetic (AFM) c-axis helix structure associated with the Eu+2 spins 7/2 for x = 0 and 1 as previously reported. The χ(α)(T) data for x = 0.03 and 0.10 suggest an anomalous 2q magnetic structure containing two helix axes along the c axis and in the ab plane, respectively, whereas for x = 0.75 and 0.82 a c-axis helix is inferred as previously found for x = 0 and 1. At intermediate compositions x = 0.2, 0.32, 0.42, 0.54, and 0.65, a magnetic structure with a large ferromagnetic (FM) c-axis component is found from magnetization versus field isotherms, suggested to be an incommensurate FM c-axis cone structure associated with the Eu spins, which consists of both AFM and FM components. In addition, the χ(T) and heat capacity C-p(T) data for x = 0.2-0.65 indicate the occurrence of itinerant FM order associated with the Co/Ni atoms with Curie temperatures from 60 to 25 K, respectively. Electrical resistivity ρ(T) measurements indicate metallic character for all compositions with abrupt increases in slope on cooling below the Eu AFM transition temperatures. In addition to this panoply of magnetic transitions, Eu-151 Mossbauer measurements indicate that ordering of the Eu moments proceeds via an incommensurate sine amplitude-modulated structure with additional transition temperatures associated with this effect.

Disciplines
Engineering Physics | Materials Science and Engineering

Authors
N. Sangeetha, Santanu Pakhira, D. H. Ryan, V. Smetana, A.-V. Mudring, and David C. Johnston
Magnetic phase transitions in Eu(Co_{1-x}Ni_x)_{2-y}As_2 single crystals

N. S. Sangeetha,1 Santanu Pakhira,1 D. H. Ryan,2 V. Smetana,3 A.-V. Mudring,3 and D. C. Johnston1,4
1Ames Laboratory, Ames, Iowa 50011, USA
2Physics Department and Centre for the Physics of Materials, McGill University, 3600 University Street, Montreal, Quebec, Canada, H3A 2T8
3Department of Materials and Environmental Chemistry, Stockholm University, Svanette Arrhenius väg 16 C, 106 91 Stockholm, Sweden
4Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

(Received 15 May 2020; accepted 21 July 2020; published 12 August 2020)

DOI: 10.1103/PhysRevMaterials.4.084407

I. INTRODUCTION

Many RM_2X_3 (abbreviated as 122-type) ternary compounds (R = rare-earth or alkaline-earth metal, M = transition metal, X = pnictogen), crystallize in the body-centered-tetragonal ThCr_2Si_2 structure with space group I4/mm. They have been widely investigated owing to a variety of remarkable physical properties such as unconventional superconductivity, heavy-fermion behavior, valence fluctuations, quantum criticality, and different types of magnetic transitions [1–10]. The 122-type compounds are quite sensitive to the peculiarities of electronic band structure and the Fermi surface. In particular, tuning the system either by external stimuli (pressure, temperature) or chemical substitution leads to a variety of ground states [11–21]. For example, EuFe_2As_2 exhibits localized Eu^{2+} spin 7/2 A-type antiferromagnetism below 19 K and an itinerant antiferromagnetic (AFM) spin-density-wave (SDW) ordering accompanying by a tetragonal-to-orthorhombic structural phase transition below 190 K. Superconductivity can be induced in EuFe_2As_2 by suppressing the SDW ordering either by chemical substitution or by applying external pressure [22–28]. The ThCr_2Si_2-type Co pnictides EuCo_2P_2 and EuCo_2−yAs_2 have also considered considerable attention. EuCo_2P_2 has an uncollapsed-tetragonal (ucT) structure [29]. It shows AFM ordering below T_N = 66 K on the Eu^{2+} sublattice and there is no evident contribution to the ordering from the Co atoms at ambient pressure [30]. Neutron-diffraction studies demonstrated that the AFM structure is a planar helix with the Eu ordered moments aligned in the ab plane of the tetragonal structure, and with the helix axis being the c axis with propagation vector k = (0, 0, 0.85)(2π/c) [31]. This compound undergoes a pressure-induced first-order ucT to collapsed-tetragonal (cT) transition at 3 GPa [32]. Eu high-pressure Mössbauer experiments (0 5 GPa) [33] reveal a valence transition of Eu from Eu^{2+} with spin 3/2 and angular momentum L = 0 to nonmagnetic Eu^{3+} (7F_0) at p = 3 GPa together with emergence of itinerant 3d magnetism on the Co sublattice which orders antiferromagnetically at T_N^C = 260 K. The unique feature of EuCo_2P_2 is that it changes its magnetic character from Eu(4f) ordering to Co(3d) ordering depending on its lattice parameter. For this reason, EuCo_2P_2 is a model system for band-structure calculations studying 3d moment formation in the ThCr_2Si_2-type structure [33]. We showed that EuCo_2P_2 is a textbook example of a noncollinear helical antiferromagnet at ambient pressure for which the thermodynamic properties in the antiferromagnetic (AFM) state are well described [34] by our recent formulation of molecular field theory (MFT) [35,36]. EuCo_2−yAs_2 is isostructural and isoelectronic to EuCo_2P_2 and exhibits AFM ordering of the Eu^{2+} spins 7/2 below
$T_N = 47$ K [22,37–41]. Neutron-diffraction measurements revealed that the AFM structure is the same coplanar c-axis helical structure as in EuCo$_2$P$_2$ with propagation vector $k = (0, 0, 0.79)(2\pi / c)$ and no evident participation of Co in the ordering [40].

It is interesting to note the differences between EuCo$_2$P$_2$ and EuCo$_{2-x}$As$_2$ as a consequence of their different Co-P and Co-As networks. Their c/a ratios are similar, 3.01 for EuCo$_2$P$_2$ and 2.93 for EuCo$_{2-y}$As$_2$. However, EuCo$_{2-y}$As$_2$ exhibits a continuous uc to c transition under applied pressure $p \approx 5$ GPa that leads to an intermediate-valence state Eu$^{2+}$ [25] at 12.6 GPa [38]. As a result, the electronic structure change eliminates the AFM ordering of the Eu spin sublattice and ferromagnetic (FM) ordering then arises in which both Eu ($4f$) and Co (3d) moments participate with a Curie temperature $T_C = 125$ K, as confirmed by x-ray magnetic circular dichroism measurements and electronic structure calculations [40].

Conventionally, the paramagnetic (PM) effective moment of Eu$^{2+}$ with spin $S = \frac{7}{2}$ and spectroscopic splitting factor $g = 2$ is calculated to be $\mu_{eff} \approx 7.94 \mu_B$/Eu. Instead, crystals of the helical antiferromagnet EuCo$_{2-y}$As$_2$ exhibit an enhanced effective moment $\mu_{eff} \approx 8.5 \mu_B$/Eu, where μ_B is the Bohr magneton [41]. This enhancement is consistent with the occurrence of an enhancement of the low-T ordered moment to $7.26(8) \mu_B$/Eu found in the neutron-diffraction study [40]. Ab initio calculations showed that the enhancements arise from FM polarization of the conduction electron spins around each Eu spin [41]. This was the second example of a helical antiferromagnet with thermal and magnetic properties that are fitted rather well by MFT [35,36]. In Ref. [41], we also found a Co vacancy concentration up to $y = 0.1$ in EuCo$_{2-y}$As$_2$.

Studies of 153Eu, 75As, and 59Co NMR were also carried out on a crystal of EuCo$_{2-y}$As$_2$ [42], where NMR signals from all three isotopes were observed. From the applied magnetic field dependence of the 153Eu and 75As NMR spectra at low temperature $T \ll T_N = 45$ K, the signals were consistent with an incommensurate helical AFM structure with propagation vector $[0, 0, 0.73(7)]2\pi / c$, which is the same within the errors as the propagation vector found from the above neutron-diffraction experiment [40]. In addition, from the 59Co NMR it was determined that the Co atoms do not participate in the AFM ordering, again consistent with the conclusion from the neutron-diffraction measurements [40]. The temperature dependence of the 75As hyperfine field below T_N was fitted quite well by a Brillouin function for spin $S = \frac{7}{2}$.

The electron-doped analog EuNi$_{2-y}$As$_2$ of EuCo$_{2-y}$As$_2$ is metallic and from magnetic susceptibility and heat-capacity measurements exhibits an AFM transition at $T_N \approx 14–15$ K [43–46]. The electron doping is inferred from the fact that Ni has one more $3d$ electron than Co does. This compound has recently been found from neutron-diffraction measurements to have a c-axis helical AFM structure with $T_N = 15$ K and AFM propagation vector $k = (0, 0, 0.9200)2\pi / c$, corresponding to a turn angle of $165.6(1)^\circ$ along the c axis between adjacent layers of Eu spins ferromagnetically aligned in the ab plane [45].

We subsequently reported a comprehensive study of the properties of single crystals of EuNi$_{2-y}$As$_2$ [46], where the analysis of the anisotropic magnetic susceptibility χ data below T_N by MFT yielded a c-axis helical turn angle in good agreement with the neutron-diffraction result. In addition, a 2.5% vacancy concentration on the Ni sites was detected. A good fit of the electrical resistivity $\rho(T)$ by the Bloch-Grüneisen electron-phonon scattering theory was obtained. The magnetic contribution to the heat capacity $C_p(T)$ below T_N was compared with the MFT prediction. The ab-plane isothermal magnetization $M_{ab}(H)$ exhibited two metamagnetic transitions in fields up to $H = 14$ T at $T = 2$ K, whereas $M_x(H)$ was linear up to the critical field, both in agreement with MFT. A review of the crystallographic and magnetic properties of ThCr$_2$Si$_2$-type pnictides (PrN) EuM$_2$PrN$_2$ was also presented in Ref. [46] in which only ferromagnetic and c-axis helical AFM structures are found to be present. Here, an A-type antiferromagnet with FM ab-plane ordered-moment alignment was considered to be a c-axis helix with a 180° turn angle between the ordered moments in adjacent ab-plane layers.

In this work we report a comprehensive single-crystal study of the mixed system EuCo$_{1-x}$Ni$_x$$_{2-y}As_2$ including the crystallographic, magnetic, thermal, and electronic-transport properties obtained using single-crystal x-ray diffraction (XRD), $\chi(T)$, $M(H)$, 151Eu Mössbauer, $C_p(T)$, and $\rho(T)$ measurements. Our major results are the discoveries of itinerant FM ordering associated with the Co/Ni spins and of a structure with both FM and AFM components at intermediate compositions from $M(H)$, $\chi(T)$, and $C_p(T)$ measurements that we suggest is an Eu-spin cone phase, and the discovery of unexpected magnetic behaviors on approaching T_N in both undoped and Ni-doped EuCo$_{1-x}$Ni$_x$$_{2-y}As_2$ from 151Eu Mössbauer measurements.

The experimental details are given in Sec. II. The crystallographic data and composition analyses are presented in Sec. III. The low-field $M(H)$ and the $\chi(T)$ data are presented and analyzed in Sec. IV, high-field $M(H)$ isotherms in Sec. V, 151Eu Mössbauer measurements in Sec. VI, the $C_p(T)$ data in Sec. VII, and the $\rho(T)$ measurements in Sec. VIII. Concluding remarks are given in Sec. IX.

II. EXPERIMENTAL DETAILS

Single crystals of EuCo$_{1-x}$Ni$_x$$_{2-y}As_2$ with measured compositions $x = 0, 0.03, 0.10, 0.20, 0.32, 0.42, 0.54, 0.65, 0.75, 0.82, and 0.93 were grown using self-flux. The starting materials were high-purity elemental Eu (Ames Laboratory) and Co (99.998%), Ni (99.999%), and As (99.99999%) (Alfa Aesar). The sample and flux were taken in a Eu:4Ni$_x$$_{1-x}As_2$ single crystal. The experiments were carried out at 600 °C for 5 h, and then heated to 1300 °C at a rate of 50 °C/h and held there for 15 h for homogenization. Then, the furnace was slowly cooled at the rate of 6 °C/h to 1180 °C. The single crystals were separated by decanting the flux with a centrifuge at that temperature. Several 2–4 mm size shiny platelike single crystals were obtained from each growth.

The phase purity and chemical composition of the EuCo$_{1-x}$Ni$_x$$_{2-y}As_2$ single crystals were checked using an energy-dispersive x-ray spectroscopy (EDS) chemical
TABLE I. Crystallographic data for Eu(Co$_{1-x}$Ni)$_2$As$_2$ single crystals ($x = 0.03$–0.93) at room temperature, including the fractional c-axis position z_{AS} of the As site, the tetragonal lattice parameters a and c, the c/a ratio, the unit-cell volume V_{cell} containing $Z = 2$ formula units of Eu(Co$_{1-x}$Ni)$_2$As$_2$, and the molar volume V_M, where a mole is a mole of formula units. The Co and Ni compositions and total Co/Ni site occupation in the first column were obtained from EDS analyses, whereas the unit-cell parameters and fractional z_{AS} coordinates were found from single-crystal structural analyses. The present work is denoted by PW. Corresponding data from the literature for EuCo$_2$-zAs$_2$ and EuNi$_2$-zAs$_2$ are also shown.

<table>
<thead>
<tr>
<th>Compound</th>
<th>z_{AS}</th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>c/a</th>
<th>V_{cell} (Å3)</th>
<th>V_M (cm3/mol)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EuCo$_{0.94(2)}$As$_2$</td>
<td>0.3607(1)</td>
<td>3.9478(7)</td>
<td>11.232(2)</td>
<td>2.845(1)</td>
<td>175.05(7)</td>
<td>52.71(2)</td>
<td>[41]</td>
</tr>
<tr>
<td>Eu(Co${0.97(1)}$Ni${0.03(1)}$)$_1$As$_2$</td>
<td>0.3609(3)</td>
<td>3.964(8)</td>
<td>11.220(2)</td>
<td>2.831(6)</td>
<td>176.3(8)</td>
<td>53.1(2)</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.90(1)}$Ni${0.10(1)}$)$_1$As$_2$</td>
<td>0.3608(2)</td>
<td>3.978(5)</td>
<td>11.07(1)</td>
<td>2.782(7)</td>
<td>175.1(5)</td>
<td>52.7(2)</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.85(1)}$Ni${0.15(1)}$)$_1$As$_2$</td>
<td>0.3613(1)</td>
<td>3.994(3)</td>
<td>10.836(8)</td>
<td>2.713(4)</td>
<td>172.8(3)</td>
<td>52.03(9)</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.65(1)}$Ni${0.35(1)}$)$_1$As$_2$</td>
<td>0.3628(3)</td>
<td>4.027(2)</td>
<td>10.573(5)</td>
<td>2.625(2)</td>
<td>171.5(2)</td>
<td>51.64(6)</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.50(1)}$Ni${0.50(1)}$)$_1$As$_2$</td>
<td>0.36396(4)</td>
<td>4.046(9)</td>
<td>10.462(2)</td>
<td>2.585(1)</td>
<td>171.2(8)</td>
<td>51.5(2)</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.35(1)}$Ni${0.65(2)}$)$_1$As$_2$</td>
<td>0.36424(5)</td>
<td>4.062(2)</td>
<td>10.328(5)</td>
<td>2.543(2)</td>
<td>170.3(2)</td>
<td>51.28(6)</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.25(1)}$Ni${0.75(2)}$)$_1$As$_2$</td>
<td>0.36476(5)</td>
<td>4.079(2)</td>
<td>10.268(5)</td>
<td>2.517(2)</td>
<td>170.9(2)</td>
<td>51.46(6)</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.18(2)}$Ni${0.82(2)}$)$_1$As$_2$</td>
<td>0.36531(5)</td>
<td>4.091(2)</td>
<td>10.217(5)</td>
<td>2.497(2)</td>
<td>171.0(2)</td>
<td>51.49(6)</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.07(1)}$Ni${0.93(1)}$)$_1$As$_2$</td>
<td>0.36571(1)</td>
<td>4.100(1)</td>
<td>10.155(3)</td>
<td>2.477(1)</td>
<td>170.7(1)</td>
<td>51.40(3)</td>
<td>PW</td>
</tr>
<tr>
<td>EuNi$_{0.95(1)}$As$_2$</td>
<td>0.36627(4)</td>
<td>4.099(5)</td>
<td>10.092(9)</td>
<td>2.462(2)</td>
<td>169.5(3)</td>
<td>51.04(9)</td>
<td>PW</td>
</tr>
</tbody>
</table>

analysis attachment to a JEOL scanning-electron microscope (SEM). SEM scans were taken on cleaved surfaces of the crystals which verified the single-phase nature of the crystals. The compositions of each side of a platelike crystal were measured at six or seven positions on each face, and the results were averaged and revealed good homogeneity in each crystal. The results of the composition analyses are given in Table I. The same crystals were utilized to perform the physical-property measurements.

Single-crystal x-ray diffraction (SCXRD) measurements were performed at room temperature on a Bruker D8 Venture diffractometer operating at a tube voltage of 50 kV and a current of 1 mA equipped with a Photon 100 CMOS detector, a flat graphite monochromator and a Mo Kα ($\lambda = 0.71073$ Å). The preliminary quality testing was performed on a set of 32 frames. The raw frame data were collected using the Bruker APEX3 software package [47]. The frames were integrated with the Bruker SAINT program [48] using a narrow-frame algorithm integration and the data were corrected for absorption effects using the multiscan method (SADABs) [49] within the APEX3 package. The atomic positions were refined assuming partial occupancy of the Ni/Co sites and complete occupancy of the Eu and As sites. Since simultaneous refinement of the fraction of Ni/Co and total occupation of the position is not possible by means of SCXRD, only the total occupancies were refined based on the Ni/Co ratio taken from the EDS data. The atomic displacement parameters were refined anisotropically. Initial models of the crystal structures were first obtained with the program SHELXTL-2014 [50] and refined using the program SHELXL-2014 [51] within the APEX3 software package.

A polycrystalline sample of EuCo$_2$As$_2$ was obtained for 151Eu Mössbauer measurements by crushing several EuCo$_{2-y}$As$_2$ crystals grown in Sn flux; the growth and properties of these crystals are well documented in Ref. [41]. Polycrystalline samples of Eu(Co$_{1-x}$Ni)$_2$As$_2$ with $x = 0.2$ and 0.65 for the Mössbauer measurements were synthesized by solid-state reaction using high-purity Eu (Ames Laboratory), and Co (99.998%), Ni (99.999%), and As (99.9999%) from Alfa Aesar. Stoichiometric mixtures of these elements were pelleted and placed in alumina crucibles that were sealed inside evacuated silica tubes. The samples were heated to 900 °C at a rate of 50 °C/h, held there for 24 h, and then cooled to room temperature at a rate of 50 °C/h. The samples were then thoroughly ground, pelletized, and again sealed in evacuated quartz tubes. The samples were finally sintered at 900 °C for 72 h followed by cooling to room temperature with a 100 °C/h temperature ramping rate. Room-temperature powder XRD measurements were carried out using a Rigaku Geigerflex x-ray diffractometer with Cu-Kα radiation. Structural analyses were performed by Rietveld refinement using the FULLPROF software package [52].

Magnetization data were obtained using a Quantum Design, Inc., SQUID-based magnetic-properties measurement system (MPMS) in magnetic fields up to 5.5 T, where 1 T = 104 Oe, and using the vibrating-sample magnetometer (VSM) option in a Quantum Design, Inc., physical-properties measurement system (PPMS) in magnetic fields up to 14 T. The magnetic moment output of these instruments is expressed in Gaussian cgs electromagnetic units (emu), where 1 emu = 1 G cm3 and 1 G = 1 Oe. The heat capacity $C_h(H,T)$ was measured with a relaxation technique using a PPMS. The $\rho(H,T)$ measurements were performed using a standard four-probe ac technique using the ac-transport option of the PPMS with the current in the ab plane. Annealed platinum wire (25 μm diameter) electrical leads were attached to the crystals using silver epoxy.

The 151Eu Mössbauer spectroscopy measurements were carried out using a 4-GBq 151SmF$_3$ source, driven in sine mode and calibrated using a standard 57CoRh/α-Fe foil. Isomer shifts are quoted relative to EuF$_3$ at ambient temperature. The sample was cooled in a vibration-isolated closed-cycle helium refrigerator with the sample in helium exchange gas. Where line broadening was not observed (typically at the lowest temperatures and again well above the magnetic transitions) the spectra were fitted to a sum of Lorentzian lines.
with the positions and intensities derived from a full solution to the nuclear Hamiltonian [53]. The tetragonal 4/mmm point symmetry of the Eu site in these materials puts significant constraints on the form of the electric field gradient (eFG) tensor, requiring it to be axially symmetric, with the principal component (usually denoted V_{zz}) directed along the crystallographic c axis. These features of the eFG mean that we are not sensitive to rotations of the moments around the c axis, only canting of the moments away from the c axis. For example, the incommensurate coplanar c-axis helical magnetic structure reported for EuCo$_2$As$_2$ [40] has all of the moments perpendicular to the c axis with rotations within the ab plane as we move along the c axis. This yields a single effective environment for the europium atoms in the 151Eu Mössbauer spectrum, so a sharp single-component spectrum is observed.

III. CRYSTAL STRUCTURES

A. Single crystals

The chemical compositions and crystallographic data for the Ni-doped EuCo$_{2-x}$As$_2$ single crystals obtained from the single-crystal XRD and EDS measurements at room temperature are presented in Table I. The data confirm that Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ with $x = 0$ to 1 adopt the ThCr$_2$Si$_2$-type body-centered-tetragonal structure with space group I4/mmm. We also confirm partial occupation of the Co site from both EDS and single-crystal XRD measurements, similar to EuCo$_{2-x}$As$_2$ [41], with concentrations listed in Table I.

The lattice parameters a and c, the c-axis As position parameter z_{As}, the ratio c/a, and the unit-cell volume $V_{cell} = a^2c$ are plotted versus x in Fig. 1. The c lattice parameter decreases upon Ni doping, whereas the a lattice parameter strongly increases with x. These behaviors give rise to the strongly nonlinear variation of V_{cell} with x. Furthermore, the c/a ratio smoothly decreases with x, whereas the z_{As} increases with x, suggesting important changes to the electronic properties. This smooth decrease in c/a with x indicates the occurrence of a continuous structural crossover from the ucT structure at $x = 0$ to the cT structure at $x = 1$, similar to Sr(Co$_{1-x}$Ni$_x$)$_2$As$_2$ [54].

The values of c/a for $x = 0.2 (2.713)$ and $x = 0.3 (2.625)$ are in the vicinity of the crossover at ≈ 2.67 between the ucT and cT structures [29]. We therefore infer that a structural crossover occurs in Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ at $x \approx 0.2$. In the following sections, we study how these changes due to electron doping of EuCo$_{2-x}$As$_2$ correlate with the ground-state properties of the system.

B. Polycrystalline samples

Room-temperature powder XRD patterns of the polycrystalline Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ samples with $x = 0.20$ and 0.65 are shown in Figs. 2(a) and 2(b), respectively. The Rietveld refinements confirm that both samples crystallize in the ThCr$_2$Si$_2$-type crystal structure with space group I4/mmm. The lattice parameters are found to be $a = b = 4.0027(2)$ Å and $c = 10.8636(8)$ Å for $x = 0.20$, and $a = b = 4.0806(1)$ Å and $c = 10.3261(4)$ Å for $x = 0.65$, similar to the lattice parameters of the respective single crystals in Table I. The refinements yielded full occupancy of the Co/Ni site to within 1% for both samples.

IV. MAGNETIC SUSCEPTIBILITY MEASUREMENTS

The zero-field-cooled (ZFC) magnetic susceptibilities $\chi(H, T) \equiv M(T)/H$ of Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ single crystals with $x = 0, 0.03, 0.10, 0.20, 0.32, 0.42, 0.54, 0.65, 0.75,$ and 0.82 measured in an applied field $H = 0.1$ T aligned along the c axis (χ_{ab}, $H \parallel c$) and in the ab plane (χ_{ab}, $H \parallel ab$) are shown in Fig. 3. The Eu-spin T_N values of the crystals are estimated from the temperatures of the maxima of $d(\chi_{ab}(T))/dT$ versus T [55] and are listed in Table II. EuCo$_{1.92}$As$_2$ exhibits $T_N = 45.1$ K [Fig. 3(a)] as previously reported [41]. The T_N decreases monotonically with increasing Ni doping and reaches 15 K at $x = 1$, close to the value previously reported for EuNi$_{1.95}$As$_2$ [46]. It is also apparent from Fig. 3 that the magnitude of $\chi_{ab}(T)$ near T_N increases strongly with increasing Ni doping for $T \gtrsim 0.1, 0.2$, and 0.3. In particular, the crystal with $x = 0.20$ exhibits the strongest increase in $\chi_{ab}(T_N)$.
MAGNETIC PHASE TRANSITIONS IN … PHYSICAL REVIEW MATERIALS 4, 084407 (2020)

FIG. 2. Room-temperature powder XRD patterns along with Rietveld refinement of Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ polycrystalline compounds for (a) $x = 0.2$ and (b) $x = 0.65$.

compared with crystals with compositions on either side. In contrast, for the crystals with $x = 0.42$–0.65, the magnitude of $\chi_c(T)$ is greater than $\chi_{ab}(T)$ near T_N. Furthermore, the system Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ exhibits an additional transition at $T_{C,Co/Ni}$ attributed below to FM ordering associated with the Co/Ni atoms for compositions in the range $0.20 \leq x \leq 0.54$ as shown in Figs. 3(d)–3(g) and listed in Table II.

For the end-point compositions EuCo$_{2-y}$As$_2$ and EuNi$_{2-y}$As$_2$, neutron-diffraction [40,45] and magnetic-susceptibility [46,54] studies demonstrated that the Eu AFM structure is a planar helix with the Eu ordered moments aligned in the ab plane with the helix axis being the c axis. The data for $x = 0.65$–0.82 suggest a c-axis helix magnetic structure as in the end-point compounds whereas the data for $x = 0.03$ and 0.10 suggest the superposition of a c-axis helix and an ab-plane helix where the moments are aligned in an ab-c plane perpendicular to the ab-plane helix axis. However, the $\chi(T)$ data for intermediate compositions $x = 0.2$–0.54 are more complicated because in this composition range two transitions are observed: a likely transition to a c-axis Eu cone structure with a c-axis FM component and a higher-temperature ferromagnetic transition associated with the Co/Ni atoms that is likely of itinerant origin (see below). Coupled with these observations, the scale of the ordinates in Fig. 3 increases by more than an order of magnitude between $x = 0$ and 0.2, remains larger than for $x = 0$ from $x = 0.32$ to 0.75, then returns to the scale for $x = 0$ at $x = 1$. In the following two sections we first discuss the helical orderings and then the ferromagnetically ordered component.

A. Helical antiferromagnetic ordering

In this section we analyze the anisotropic $\chi(T)$ data for $x = 0.03$, 0.10, and 0.65–0.82 in Fig. 3 in terms of helical orderings. We also include the data and analyses of single-crystal $\chi(T)$ data for the $x = 0$ and 1 end-point compounds [46,54]. As described in Refs. [35,36], for a Heisenberg spin system that has a helical AFM structure with the moments aligned in the ab plane ($\chi_{ab}, H \parallel ab$) and along the c axis ($\chi_c, H \parallel c$). Note the factor of 50 increases in the ordinate scale between $x = 0$ and 0.2 and the subsequent reduction by the same factor by $x = 0.82$.
When there is anisotropy above T_N, for example due to anisotropic FM fluctuations that appear to be present in the Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ system, we first take the spherical average of the data above T_N giving $\chi(T)$, thus eliminating the effects of anisotropy above T_N. Then, we translate the $\chi_{ab}(T \leq T_N)$ and $\chi_c(T \leq T_N)$ data vertically so that they meet the now isotropic PM $\chi_j(T \geq T_N)$ data at T_N. The results of this procedure for the crystals with $x = 0 \ [54]$, 0.03, 0.10, and 0.65–0.82 are shown in Fig. 4.

Within a one-dimensional J_0-J_1-J_2 MFT model for a c-axis Heisenberg helix, one obtains $[35,36]$

$$\chi_{ab}(T \to 0) = \frac{1}{2[1 + \cos(kd) + \cos^2(2kd)]},$$ \hspace{0.5cm} (1)

where kd for a c-axis helix is the turn angle from magnetic-moment layer to layer along the c axis between ferromagnetically aligned moments aligned in the ab plane. A plot of this ratio versus kd is shown in Fig. 5 $[35,36]$. It is evident that if the ratio is less than $\frac{1}{2}$, there is only one solution to the turn angle kd. However, for ratios between $\frac{1}{2}$ and 1, there are two possible solutions. By comparison with neutron-diffraction results if available, one can choose the appropriate value for the latter value. If no such additional information is available, one can choose the more likely value from continuity of kd with composition on approaching $x = 0$ or 1. From the data for $x = 0$ and 1 and Fig. 4 and a comparison of the two calculated kd values for each composition with the respective neutron-diffraction data, Eq. (1) gives $kd = 0.85\pi$ rad for $x = 0 \ [41]$ and $kd = 0.88\pi$ rad for $x = 1 \ [46]$, where both values are in good agreement with the respective neutron-diffraction results $[40,45]$.

Within MFT, for $T \leq T_N$ the perpendicular susceptibility χ_c of a c-axis helical Heisenberg AFM is predicted to be independent of T (and S), in reasonable agreement with the data for $x = 0$ and 1 in Fig. 4. The normalized T-dependent ratio $\chi_{ab}(T \leq T_N)/\chi(T_N)$ within the J_0-J_1-J_2 Heisenberg model is given by $[35,36]$

$$\chi_{ab}(T \leq T_N) = \frac{(1 + \tau^* + 2 + 4B^* - (1 - f)^2)}{(\tau^* + B^*)(1 + B^*) - f + B^*f^2}.$$ \hspace{0.5cm} (2a)

where $B^* = 2(1 - f)\cos(kd)[1 + \cos(kd)] - f$, \hspace{0.5cm} (2b)

$$t = \frac{T}{T_N}, \quad \tau^*(t) = \frac{(S + 1)t}{(3B_S^*(y_0)))}, \quad y_0 = \frac{3\mu_0}{(S + 1)r},$$ \hspace{0.5cm} (2c)

kd is the turn angle between the magnetic moments in adjacent planes along the helix c axis of ab-plane FM-aligned moment layers, and the ordered moment versus T in $H = 0$ is denoted by μ_0. The reduced ordered moment $\mu_0 = \mu_0/\mu_{sat}$.

Table II. Comparison of transition temperatures $T_{K_{Eu}}$ and $T_{C_{Co/Ne}}$ of Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ ($x = 0 \sim 1$) obtained from magnetic susceptibility $\chi(T)$ data at an applied field $H = 0.1$ T, and from electrical-resistivity $\rho(T)$ and heat-capacity $C_p(T)$ data in $H = 0$.

<table>
<thead>
<tr>
<th>x</th>
<th>$T_{K_{Eu}}$ (K)</th>
<th>$T_{C_{Co/Ne}}$ (K)</th>
<th>$T_{K_{Eu}}$ (K)</th>
<th>$T_{C_{Co/Ne}}$ (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>45.1(8)</td>
<td>45.0(8)</td>
<td>45.1(2)</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>43.1(1)</td>
<td>43.9(3)</td>
<td>43.6(2)</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>33.1(1)</td>
<td>60(2)</td>
<td>58.2(4)</td>
<td>29.8(4)</td>
</tr>
<tr>
<td>0.32</td>
<td>20(1)</td>
<td>66(1)</td>
<td>25.2(3)</td>
<td>24.2(5)</td>
</tr>
<tr>
<td>0.42</td>
<td>14(1)</td>
<td>58(2)</td>
<td>24.4(3)</td>
<td>23.9(1)</td>
</tr>
<tr>
<td>0.54</td>
<td>14(1)</td>
<td>40(2)</td>
<td>23.0(8)</td>
<td>23.0(2)</td>
</tr>
<tr>
<td>0.65</td>
<td>21(1)</td>
<td>25(1)</td>
<td>24.5(8)</td>
<td>20.8(6)</td>
</tr>
<tr>
<td>0.75</td>
<td>19(1)</td>
<td>18.8(2)</td>
<td>17.8(3)</td>
<td></td>
</tr>
<tr>
<td>0.82</td>
<td>16.8(2)</td>
<td>16.5(2)</td>
<td>16.2(4)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14.4(5)</td>
<td>14.2(8)</td>
<td>14.4</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Anisotropic magnetic susceptibility $\chi(T)$ of Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ crystals with $x = 0 \ [54]$, 0.03, 0.10, 0.65, 0.75, 0.82 from Fig. 3, where the spherical average of the ab-plane and c-axis data were obtained for $T > T_N$, and then the $\chi_{ab}(T)$ and $\chi_c(T)$ data below T_N translated vertically to match the former data at T_N. The values $f = \theta_{pave}/T_N$ are measured values, whereas the f^* values are fitted.
with the saturation moment $\mu_{sat} = gS\mu_B$ is determined by numerically solving the self-consistency equation

$$\mu_0 = B_\gamma(y_0),$$

(2d)

where $B_\gamma(y)$ is the Brillouin function, and $B_\gamma(y_0) \equiv [dB_\gamma(y)/dy]|_{y=y_0}$. For $x = 0$ and 1, the data in Fig. 4 agree well with the MFT prediction for $\chi_{sat}(T \leq T_N)/\chi(T_N)$, following MFT behavior for a c-axis helix with $\mu_{sat} = 7\mu_B$. For $x = 0$ with $T_N = 45.1$ K, one has $f = 0.44$ and $kd = 0.82\pi$ rad [41], whereas for $x = 1$, $T_N = 14.4$ K, $f = 1.17$, and $kd = 0.88\pi$ rad [46].

The $\chi_0(T < T_N)$ data for $x = 0.03$ and especially for $x = 0.1$ in Fig. 4 are quite interesting because for these compositions not only does χ_{sat} decrease below T_N, but so does χ_c, an effect that is especially pronounced for $x = 0.1$. This behavior suggests that the AFM structure consists of a superposition of a c-axis helix with the moments aligned in the ab plane and another helix with the helix axis and AFM propagation vector in the ab plane and with the moments aligned in an ab-c plane perpendicular to the in-plane AFM propagation vector, i.e., a so-called $2q$ structure. Therefore, for $x = 0.03$ and 0.1 we fitted both the χ_{ab} and χ_c data separately by the prediction in Eqs. (2) for the in-plane susceptibility for a helix, and good fits to both data sets were obtained as shown in Fig. 4. A summary of the quantities discussed above is given in Table IV.

As discussed in the following section, a FM component to the ordering develops for $0.2 \leq x \leq 0.65$ which contains contributions from both the Eu spins and the Co/Ni sublattice. The occurrence of the FM component for $x = 0.65$ is correlated with the upturn in $\chi_c(T < T_N)$ in Fig. 4 for this

![Image](image-url)
composition, but the $\chi_{ab}(T < T_N)$ data in Fig. 4 follow the same behavior as for $x = 0.75–1$, so we include these data in the analysis of the $\chi_{ab}(T \leq T_N)$ data for crystals with compositions in the range $0.65 \leq x \leq 1$.

Figure 6 shows the helical angle kd/π versus x for our crystals for which a helical magnetic structure can be identified from the magnetic susceptibility data. A turn angle $kd/\pi < 2\pi$ is indicative of a net ferromagnetic nearest-layer interaction, whereas a value $kd/\pi > 2\pi$ indicates a net antiferromagnetic interaction. Therefore, the data indicate that at intermediate compositions a net FM interaction develops between the Eu spins in adjacent layers, whereas near the ends of the composition range the net interaction is AFM.

![Helix turn angle(s) versus composition](image)

FIG. 6. Helix turn angle(s) versus composition obtained from the ab-plane susceptibility χ_{ab} (filled red circles) and the c-axis susceptibility χ_c (filled blue squares) at temperatures $T < T_N$. For $\chi_{ab}(0)/\chi(T_N) > 1/2$, two values of kd/π are possible according to Fig. 5, indicated by two values of kd/π for the same composition x and for the particular field direction α of χ_{ab}. The large gap between data points at $x = 0.1$ and 0.65 is present because the Eu magnetic structure between these two compositions is not a simple helix (see text).

TABLE IV

Parameters obtained from fitting the magnetic susceptibility data below T_N of Eu for Eu(Co$_1$–Ni$_1$)$_2$–As$_2$. Shown are the AFM transition temperature T_N and the Weiss temperature θ_p taken from Table III, the observed ratio $f = \theta_p/T_N$, the value f^* obtained from a fit of $\chi_c(T \leq T_N)$ by Eqs. (2), and the turn angle kd between adjacent FM aligned magnetic layers of the helix model obtained using Eq. (1). For $f(\chi(T = 0)/\chi(T_N) > 1/2$ two values of kd are possible. The notation PW in the last column means the present work.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Field direction</th>
<th>T_N (K)</th>
<th>θ_p (K)</th>
<th>$f = \theta_p/T_N$</th>
<th>f^* (\pi radian)</th>
<th>kd (degree)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EuCo$_{0.90(1)}$As$_2$</td>
<td>$H \parallel ab$</td>
<td>45.1(8)</td>
<td>19.76(9)</td>
<td>0.44</td>
<td>0.82</td>
<td>147</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.97(1)}$Ni${0.03(1)}$)$_{1.92}$As$_2$</td>
<td>$H \parallel ab$</td>
<td>44(1)</td>
<td>38.9(5)</td>
<td>0.88</td>
<td>0.83</td>
<td>88</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.90(1)}$Ni${0.10(1)}$)$_{1.92}$As$_2$</td>
<td>$H \parallel ab$</td>
<td>43(1)</td>
<td>51.2(1)</td>
<td>1.19</td>
<td>0.98</td>
<td>23</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.55(1)}$Ni${0.65(2)}$)$_{1.94}$As$_2$</td>
<td>$H \parallel ab$</td>
<td>21(1)</td>
<td>18.10(9)</td>
<td>0.86</td>
<td>0.93</td>
<td>67</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.25(1)}$Ni${0.75(1)}$)$_{1.94}$As$_2$</td>
<td>$H \parallel ab$</td>
<td>19(1)</td>
<td>6.74(6)</td>
<td>0.37</td>
<td>0.72</td>
<td>91, 166</td>
<td>PW</td>
</tr>
<tr>
<td>Eu(Co${0.16(1)}$Ni${0.82(1)}$)$_{1.94}$As$_2$</td>
<td>$H \parallel ab$</td>
<td>16.6(3)</td>
<td>-2.3(1)</td>
<td>-0.13</td>
<td>0.52</td>
<td>94, 159</td>
<td>PW</td>
</tr>
<tr>
<td>EuNi$_{0.95}$As$_2$</td>
<td>$H \parallel ab$</td>
<td>14.4(5)</td>
<td>-15(1)</td>
<td>-1.17</td>
<td>0.88</td>
<td>159</td>
<td>PW</td>
</tr>
</tbody>
</table>

B. Ferromagnetic-ordering component

To further investigate the magnetic behavior, we carried out zero-field-cooled (ZFC) measurements of $\chi(T)$ on warming and field-cooled (FC) measurements of $\chi(T)$ on cooling (FC) versus T in the range 1.8 to 100 K with a small applied field $H = 100$ Oe for the crystals with $x = 0.20, 0.32, 0.42, 0.54$, and 0.65 for both $H \parallel ab$ and $H \parallel c$ which are plotted in Figs. 7(a)–7(e), respectively. The ZFC data were taken after quenching the superconducting magnet to eliminate remanent fields in the magnet. These data show virtually no hysteresis between the ZFC and FC measurements for $H \parallel ab$ but strong hysteresis below the high-T transition for $H \parallel c$. This indicates that there exists a high-T FM transition for $x = 0.2–0.54$ in addition to the AFM ordering of the Eu spin sublattice. Then, from Fig. 3, we can assign the low-T transition to an AFM transition involving the Eu spins designated as $T_{N_{Eu}}$ and the higher-T transitions to FM ordering associated with the Co/Ni atoms at temperatures denoted by $T_{C{Co/Ni}}$. This interpretation is strongly supported by the $C_p(T)$ measurements in Sec. VII. The transition temperatures estimated from the $\chi(T)$ data are listed in Table II, where $T_{N_{Eu}}$ decreases monotonically upon doping whereas $T_{C{Co/Ni}}$ first increases from 60 K for $x = 0.2$ to 66 K for $x = 0.32$, then decreases for $0.32 \leq x \leq 0.65$ and finally disappears for $x > 0.65$.

This interpretation is also supported by low-field $M(H)$ measurements at $T = 2$ K from -1 to $+1$ T as plotted in Figs. 7(f)–7(j) for the same compositions as in Figs. 7(a)–7(e), respectively. An extrapolation of the linear data above the initial field dependence to $H = 0$ gives the spontaneous moment μ_{spont} versus composition plotted in Fig. 8. The variation of μ_{spont} versus x is similar to that of the Co/Ni Curie temperature $T_{C{Co/Ni}}$. The large values of μ_{spont} show that the magnetic structure has a large FM component that must arise from the Eu spins. We infer that within the region in which ferromagnetism from the Co/Ni atoms occurs at higher temperatures, the Eu magnetic structure is a c-axis conical structure. In addition, the $M(H)$ data show hysteresis with field for $x = 0.54$ but the hysteresis is very small for the other compositions.
applied in the field isothermal magnetization Heisenberg model in terms of the modified Curie-Weiss law

\[\chi(H) = \frac{N_A g^2 \mu_B^2}{3k_B (T - \theta_{\text{eff}})} \]

where \(\chi_0 \) is a \(T \)-independent term, the Curie constant per mole of Eu spins is

\[C_\alpha = \frac{N_A g^2 k_B S(S+1)\mu_B^2}{3k_B} \]

We now turn our attention to \(\chi_\alpha \) applied in the field isothermal magnetization Heisenberg model in terms of the modified Curie-Weiss law. For Eu(Co\(_{1-x}\)Ni\(_x\))\(_2\)\(_y\)As\(_2\) crystals in the PM region 100 K, the data are analyzed within the local-moment model in terms of the modified Curie-Weiss law.

\[\chi_\alpha(T) = \chi_0 + \frac{C_\alpha}{T - \theta_{\text{eff}}} \]

FIG. 7. (a)–(e) Zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility \(\chi \equiv M/H \) of Eu(Co\(_{1-x}\)Ni\(_x\))\(_2\)\(_y\)As\(_2\) crystals in the PM region 100 K, measured in magnetic fields \(H \) from 0.1 to 300 K applied in the \(ab \) plane (\(\chi_{ab} \)) and along the \(c \) axis (\(\chi_c \)). (f)–(j) Low-field isothermal magnetization \(M \) of Eu(Co\(_{1-x}\)Ni\(_x\))\(_2\)\(_y\)As\(_2\) crystals in the PM region 100 K, measured in magnetic fields \(H \) from 1.8 to 100 K.

C. Magnetic susceptibility in the paramagnetic state

We now turn our attention to \(\chi_\alpha \) applied in the field isothermal magnetization Heisenberg model in terms of the modified Curie-Weiss law.

\[\chi_\alpha(T) = \chi_0 + \frac{C_\alpha}{T - \theta_{\text{eff}}} \]

where \(\chi_0 \) is a \(T \)-independent term, the Curie constant per mole of Eu spins is

\[C_\alpha = \frac{N_A g^2 k_B S(S+1)\mu_B^2}{3k_B} \]

\[\chi_\alpha(T) = \chi_0 + \frac{C_\alpha}{T - \theta_{\text{eff}}} \]

where \(\chi_0 \) is a \(T \)-independent term, the Curie constant per mole of Eu spins is

\[C_\alpha = \frac{N_A g^2 k_B S(S+1)\mu_B^2}{3k_B} \]

\[\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \]

where \(g_s \) is the possibly anisotropic \(g \) factor, and \(k_B \) is Boltzmann’s constant. The effective moment \(\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \) of a spin in units of \(\mu_B \) is given by Eq. (7) as

\[\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \]

where \(g_s \) is in cgs units of cm\(^3\) K/(mol Eu).

\[\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \]

FIG. 8. Spontaneous moment \(\mu_{\text{spont}} \) at \(T = 2 \) K versus \(x \) for Eu(Co\(_{1-x}\)Ni\(_x\))\(_2\)\(_y\)As\(_2\) crystals with \(x = 0.20, 0.32, 0.42, 0.54, \) and 0.65 obtained from the right-hand panels of Fig. 7.

\[\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \]

where \(g_s \) is the possibly anisotropic \(g \) factor, and \(k_B \) is Boltzmann’s constant. The effective moment \(\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \) of a spin in units of \(\mu_B \) is given by Eq. (7) as

\[\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \]

where \(g_s \) is in cgs units of cm\(^3\) K/(mol Eu).

\[\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \]

where \(g_s \) is the possibly anisotropic \(g \) factor, and \(k_B \) is Boltzmann’s constant. The effective moment \(\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \) of a spin in units of \(\mu_B \) is given by Eq. (7) as

\[\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \]

where \(g_s \) is in cgs units of cm\(^3\) K/(mol Eu).

\[\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \]

where \(g_s \) is the possibly anisotropic \(g \) factor, and \(k_B \) is Boltzmann’s constant. The effective moment \(\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \) of a spin in units of \(\mu_B \) is given by Eq. (7) as

\[\mu_{\text{eff}} = g_s \sqrt{S(S+1)} \]

where \(g_s \) is in cgs units of cm\(^3\) K/(mol Eu).
FIG. 9. Inverse susceptibility χ^{-1} of Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ ($x = 0, 0.03, 0.10, 0.20, 0.32, 0.42, 0.54, 0.65, 0.75$, and 0.82) single crystals as a function of temperature T from 1.8 to 300 K, measured in magnetic fields $H = 0.1$ T applied in the ab plane (χ^{-1}_{ab}, $H \parallel ab$) and along the c axis (χ^{-1}_c, $H \parallel c$).

to plot the ratio $\theta_{p,ave}/T_{C_{Co/Ni}}$ versus x and the ratio of $\mu_{eff,ave}$ to the value 7.94 μ_B/Eu versus x that the Eu spins would have for $S = \frac{7}{2}$ and $g = 2$. These ratios are plotted in Fig. 10(b). Several important features are evident from Fig. 10(b). First, relative to the expected value of 7.94 μ_B/Eu expected for Eu$^{3+}$ with $S = \frac{7}{2}$ and $g = 2$, μ_{eff} is enhanced for $x = 0$ as previously reported [41]. However, on Ni doping this ratio decreases rapidly and reaches about 89% of the expected value at $x = 0.3$, then reverses course and increases, reaching the expected value of unity at $x = 0.7$ and remaining at that value up to full substitution of Ni for Co at $x = 1$. The deviations of this ratio from unity may reflect the composition-dependent polarization of the Co 3d bands by the Eu moments. Alternatively, the negative deviation of this ratio from unity may reflect the presence of an intermediate-valent state for the Eu atoms, where Eu$^{3+}$ does not carry a local moment. However, the latter possibility is ruled out for $x = 0.2$ and 0.65 by the 151Eu Mössbauer measurements in Sec. VI.

The second important feature of Fig. 10(b) is that the ratio $f = \theta_{p,ave}/T_{C_{Co/Ni}}$ is nearly independent of composition with a value close to unity. In a local-moment picture, $f \approx 1$ is only found for a ferromagnet or a material which is nearly ferromagnetic [36]. This result is therefore consistent with the conclusion in Sec. IV B that between $x = 0.2$ and 0.65 the system has a FM component to the ordering which we show from the heat-capacity measurements in Sec. VII is associated with the Co/Ni sublattice.

V. HIGH-FIELD MAGNETIZATION VERSUS APPLIED MAGNETIC FIELD ISOTHERMS

Isothermal magnetization versus applied magnetic field $M(H)$ isotherms for Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ ($x = 0, 0.03, 0.10, 0.20, 0.32, 0.42, 0.54, 0.65, 0.75$, and 0.82) single crystals as a function of temperature T from 1.8 to 300 K, measured in magnetic fields $H = 0.1$ T applied in the ab plane (χ^{-1}_{ab}, $H \parallel ab$) and along the c axis (χ^{-1}_c, $H \parallel c$).
The estimated value of M_{sat} at $H = 14$ T is larger with Ni doping than the theoretical value assuming $S = \frac{3}{2}$ and $g = 2$. For the crystals with higher Ni doping $x = 0.75$ and 0.82, the $M_c(H)$ data are nearly linear in field in Figs. 11(i) and 11(j) as expected for a helical antiferromagnet. The transition fields H_{min} and H_{max} are marked by green and blue arrows, respectively. The critical fields H_{sat} are marked by black arrows. Finally, $M_c(H)$ first appears at 0.48 T for $x = 0.2$, then decreases upon doping, and eventually disappears for $x > 0.65$. As predicted by MFT for a c-axis helix with the field applied along the helix axis [36]. For the crystal with $x = 0.1$, the $M_c(H)$ data exhibit negative curvature and the crystals show a spontaneous magnetization at low field upon doping for $0.2 \leq x \leq 0.65$ [see Figs. 7(f)–7(j)] signifying a metamagnetic transition at a field H_{cm}. The H_{cm} and the critical field H_{c} which separates the AFM from the PM phases versus T are taken to be the fields at which dM/dH versus H exhibit a peak or discontinuity as appear in Fig. 12. The estimated values of H_{cm} along the c axis are given in Table V. The H_{cm} first appears at 0.48 T for $x = 0.2$, then decreases upon doping, and finally disappears for $x > 0.65$. The crystals with higher Ni doping $x = 0.75$ and 0.82, the $M_c(H)$ data are again nearly linear in field in Figs. 11(i) and 11(j) as expected for a helical antiferromagnet. The saturation moment M_{sat} and the critical field H_{c} are given in Table V. The symbol \perp in H_{c} refers to the critical field with H applied parallel to the c axis, i.e., with H applied perpendicular to the zero-field plane of the ordered moments which is the ab plane in this case. The critical field H_{c} initially shifts to lower field with Ni doping $0 \leq x \leq 0.2$ and then shifts to higher field upon Ni doping with $0.32 \leq x \leq 1$. It is notable that the estimated value of M_{sat} at $H = 14$ T is larger with Ni doping than the theoretical value.
TABLE V. Metamagnetic fields H_{ab}^{min} and H_{mm2}^{ab}, and the critical fields with the field parallel to the ab plane H_{c1} and parallel to the c axis ($H || c$, H_{c1}) of Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ single crystals at $T = 2$ K, determined from the isothermal magnetization $M_{ab}(H)$ data in Figs. 7(f)–7(j), 11, and 12. Also shown are the respective saturation moments μ_{sat} and the spherical average $\mu_{\text{sat,ave}}$, all in units of μ_B/f.u.

<table>
<thead>
<tr>
<th>x</th>
<th>H_{ab}^{min} (T)</th>
<th>H_{mm2}^{ab} (T)</th>
<th>M_{c1} (T)</th>
<th>H_{c1} (T)</th>
<th>μ_{sat} (H(T))</th>
<th>$\mu_{\text{sat,ave}}$ (H(T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>3.9</td>
<td>4.5</td>
<td>8.79</td>
<td>7.59</td>
<td>9.9</td>
<td>7.57</td>
</tr>
<tr>
<td>0.05</td>
<td>2.6</td>
<td>6.8</td>
<td>7.70</td>
<td>8.02</td>
<td>7.76</td>
<td>7.72</td>
</tr>
<tr>
<td>0.10</td>
<td>1.3</td>
<td>5.5</td>
<td>7.32</td>
<td>6.7</td>
<td>7.13</td>
<td>7.25</td>
</tr>
<tr>
<td>0.20</td>
<td>0.5</td>
<td>3.6</td>
<td>7.50</td>
<td>0.48</td>
<td>4.6</td>
<td>7.62</td>
</tr>
<tr>
<td>0.32</td>
<td>0.53</td>
<td>6.25</td>
<td>7.23</td>
<td>0.35</td>
<td>6.4</td>
<td>7.01</td>
</tr>
<tr>
<td>0.42</td>
<td>0.77</td>
<td>7.4</td>
<td>7.3</td>
<td>0.28</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>0.54</td>
<td>1.09</td>
<td>9.2</td>
<td>7.58</td>
<td>0.25</td>
<td>9.3</td>
<td>7.54</td>
</tr>
<tr>
<td>0.65</td>
<td>2.2</td>
<td>10.2</td>
<td>7.44</td>
<td>0.15</td>
<td>10.4</td>
<td>7.44</td>
</tr>
<tr>
<td>0.75</td>
<td>2.1</td>
<td>10.8</td>
<td>7.46</td>
<td>1.21</td>
<td>7.33</td>
<td>7.42</td>
</tr>
<tr>
<td>0.82</td>
<td>3.07</td>
<td>12.9</td>
<td>7.19</td>
<td>13.4</td>
<td>7.04</td>
<td>7.14</td>
</tr>
<tr>
<td>1.00</td>
<td>3.15</td>
<td>9.51</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\mu_{\text{sat}} = gS\mu_B = 7\mu_B$/Eu for $S = 7/2$ and $g = 2$, except for $x = 0.32$ and 0.82 where $\mu_{\text{sat}} = 7\mu_B$/Eu.

For $H || ab$, the $M_{ab}(H)$ data in Fig. 11(a) for $x = 0$ show a metamagnetic transition at $H_{ab}^{\text{min}} \approx 3.9$ T and another at $H_{mm2}^{ab} \approx 4.5$ T which appears to be second order as reported in Ref. [41]. The transition fields H_{ab}^{min} and H_{mm2}^{ab} and the critical field H_{c1} which separates the AFM from the paramagnetic (PM) phases are taken to be the fields at which dM/dH versus H exhibits a peak or a discontinuity (shown in Fig. 12). The results are given in Table V. One sees that H_{mm2}^{ab} decreases continuously upon Ni doping whereas H_{mm2}^{ab} initially decreases continuously upon Ni doping from 4.5 T at $x = 0$ to 0.5 T at $x = 0.2$ and then increases for $x > 0.2$ and reaches 9.51 T at $x = 1$.

VI. MöSSBAUER SPECTROSCOPY OF POLYCRYSTALLINE SAMPLES

Magnetic susceptibility data were obtained for the polycrystalline $x = 0.2$ and 0.65 samples used in the Mössbauer experiments. Figures 13(a) and 13(b) (left-hand ordinates) depict $\chi(T)$ of these Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ samples measured in $H = 0.1$ T under zero-field-cooled (ZFC) conditions, respectively. The magnetic transition temperatures obtained from the temperatures of the peaks in $d(\chi)/dT$ versus T plots (right-hand ordinates) are ~ 54 K and ~ 32 K for $x = 0.2$ and ~ 32 K and ~ 19 K for $x = 0.65$. The higher-temperature troughs in Figs. 13(a) and 13(b) are at the FM ordering temperatures $T_{C_{\text{Co/Ni}}}$ associated with the Co/Ni atoms and the lower-temperature peaks are at the Néel temperatures $T_{N_{\text{Eu}}}$ of the Eu atoms. The $M(H)$ isotherm at $T = 2$ K for $x = 0.65$ is shown in Fig. 13(c), where the data at low fields suggest a FM component to the magnetic ordering and at higher fields the data tend toward saturation of the Eu spins to the expected value $\approx 7\mu_B$/Eu.

FIG. 13. (Left ordinate) Temperature dependence of the magnetic susceptibility ($\chi = M/H$) in a magnetic field $H = 0.1$ T of Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ polycrystalline samples with (a) $x = 0.20$ and (b) $x = 0.65$. The right ordinate of (a) and (b) is the temperature derivative $d(\chi)/dT$ versus T obtained from the respective $\chi(T)$ data. (c) Magnetization M versus applied magnetic field H for $x = 0.65$ at $T = 2$ K.

The 151Eu Mössbauer spectra of EuCo$_{2-y}$As$_2$ shown in Fig. 14 confirm that the europium is fully divalent [isomer shift of $-10.72(2)$ mm/s at 5.4 K] and the sharp lines [HWHM $= 1.11(2)$ mm/s] show that the Eu$^{2+}$ moments are in a single magnetic environment with a hyperfine field (B_{hf}) of 26.21(5) T. There is a small asymmetry apparent in the spectrum (the four strongest lines increase in intensity going...
from negative to positive velocity) due to the presence of an electric quadrupole contribution. If we assume that the moments are aligned in the ab plane [40,41] and are thus perpendicular to V_{zz} ($\theta = 90^\circ$), then we obtain a quadrupole contribution of $-3.2(4)$ mm/s. The contribution is too small for a free fit of both θ and V_{zz} to yield a unique solution.

In all three samples that were studied using 151Eu Mössbauer spectroscopy, we observed significant line broadening at intermediate temperatures. This broadening is too severe to be consistent with a varying canting angle between the c axis and the moments, and its form is inconsistent with the presence of slow paramagnetic relaxation. We conclude that the broadening indicates that time-averaged moments on the europium atoms do not take a single value throughout the sample over the temperature range studied. The form of this broadening is more consistent with the development of a static incommensurate modulated contribution to the magnetic order in which the magnitude of the europium moments varies from site to site within the material. The intermediate-temperature spectra were therefore fitted using a model that derives a distribution of hyperfine fields from an (assumed) incommensurate sinusoidally modulated magnetic structure [58,59].

If we assume that the moment modulation along the direction of the propagation vector k can be written in terms of its Fourier components, and further assume that the observed hyperfine field is a linear function of the magnitude of the Eu moment at any given site, then the variation of B_{hf} with distance x along the propagation vector k can be written [58]

$$B_{hf}(kx) = Bk_0 + \sum_{l=0}^n Bk_{2l+1} \sin[(2l + 1)kx],$$

(5)

where the Bk_n are the odd Fourier coefficients of the field (moment) modulation. Since $+B_{hf}$ and $-B_{hf}$ are indistinguishable, kx only needs to run over half the modulation period, and in this case, a square-wave modulated structure can be modeled either as a sum over a very large number of Fourier coefficients, or by simply using the Bk_0 term with all of the other Bk_n set to zero. We found the fits to be far more stable with the Bk_0 term included rather than using a large set of Bk_n; however, the two approaches are effectively equivalent. Variations of this model have also been used to fit spectra of EuPdSb [58] and Eu$_4$PdMg [60].

FIG. 14. 151Eu Mössbauer spectra of EuCo$_{2-y}$As$_2$ showing the evolution of the spectra with temperature. The solid lines are fits derived from either a full Hamiltonian solution (red lines: $T \leq 30$ K and $T = 50$ K) or from the modulated model (magenta lines: 32.5 K $\leq T \leq 50$ K). See text for details.

FIG. 15. (a) Variation of the hyperfine field B_{hf} versus kx at $T = 40$ K obtained from the Fourier components of the 40 K data in Fig. 16 and Eq. (5). The third harmonic Bk_3, not plotted in Fig. 16, is responsible for the dip at $kx = \pi/2$. (b) Unnormalized probability distribution $P(B_{hf})$ versus B_{hf}.
FIG. 16. Temperature dependence of the fitted hyperfine field contributions in EuCo$_2$As$_2$ derived from the modulated model. The average hyperfine field (B_{avg}) is plotted as solid round symbols with a dotted line showing a fit (see text) yielding a transition temperature of 45.6(1) K, while the amplitude of the uniform term (B_k^0) is plotted as open round symbols with a dashed line fit giving a transition temperature of 42.0(1) K. The behavior of the first Fourier component (B_k^1) is plotted as open square symbols and shows a peak at 40.8(3) K. The third harmonic $B_k^3(\theta)$ is not plotted.

The sequence for fitting the spectra is as follows. Starting with an initial set of B_k^n, the evolution of B_{hf} along the propagation vector x can be evaluated [a typical example for EuCo$_{1-y}$As$_2$ at 40 K is shown in Fig. 15(a)]. From B_{hf} versus kx, a histogram containing the probability $P(B_{\text{hf}})$ versus B_{hf} can be constructed [Fig. 15(b)], and the calculated 151Eu Mössbauer spectrum is then obtained through a sum of magnetic patterns weighted according to the histogram. A conventional nonlinear least-squares minimization routine is then used to adjust the B_k^n values (and a number of other general parameters including a uniform baseline, overall scale factor, and isomer shift) to minimize χ^2.

On increasing the temperature, Fig. 16 shows a conventional reduction in the average hyperfine field $B_{\text{avg}}(T)$ where B_{avg} was calculated from the fitted hyperfine field distribution in Eq. (5) using only the positive half of the period. Fitting $B_{\text{avg}}(T)$ by a $S = \frac{1}{2}$ Brillouin function yields a transition temperature of 45.6(1) K as shown by the black dashed curve in Fig. 16, close to the T_{Neu} for $x = 0$ in Table III. However, closer inspection of the spectra in Fig. 14, particularly the 37.5 K spectrum, reveals a characteristic “settling” toward the center of the pattern consistent with the development of an incommensurate modulation of the magnitude of the moments. The modulated contribution starts to appear by 32.5 K and rapidly comes to dominate the spectrum with increasing temperature. Figure 16 shows that the uniform term (B_k^0) vanishes on heating through 42 K as the first harmonic (B_k^1) peaks. As we will show, this ordering sequence (uniform → modulated → paramagnetic) is observed on warming in all three of the samples studied here using 151Eu Mössbauer spectroscopy.

From the Fourier components in Fig. 16, one can calculate the hyperfine field B_{hf} seen by the Eu spins versus position along the (unspecified) x axis using Eq. (5). Shown in Fig. 15(a) is a plot of B_{hf} versus kx, where k is the propagation vector of the Eu-spin ordering in the x direction which is presumably the c-axis direction for a c-axis helix. Because the $T = 0$ hyperfine field from Fig. 16 is about 26 T, the modulation of the hyperfine field at 40 K in Fig. 15(a) corresponds to a modulation of the Eu moment of $\approx 0.58(7) \mu_B \approx 4.0 \mu_B$, a rather large modulation. The unnormalized probability distribution $P(B_{\text{hf}})$ versus B_{hf} is plotted in Fig. 15(b). These data were obtained as the inverse of the slope of the plot in Fig. 15(a) versus B_{hf} after binning the data to avoid divergences at the peaks.

It is essential to note that since the magnetic-moment modulation is explicitly assumed to be incommensurate with the crystal lattice, positions along kx in Fig. 15(a) do not correspond in any way to specific positions in the chemical cell. Rather, they represent how B_{hf}, which by assumption is proportional to μ_{Eu}, is sampled by the europium atoms. As the periodicity of the modulation and the crystal cell are not...
related by a simple rational fraction, neighboring points along the kx axis, in reciprocal space, will be far apart in real space.

Within MFT, if an amplitude-modulated magnetic structure occurs on cooling below $T_{N\text{Eu}}$ as inferred from Figs. 14–16, the heat-capacity jump on cooling below $T_{N\text{Eu}}$ is expected to be significantly smaller [61, 62] than the MFT value of 21.4 J/mol spins for $S = \frac{7}{2}$ [41]. However, for an EuCo$_{0.8}$Ni$_{0.2}$As$_2$ crystal the measured magnetic contribution $C_{\text{mag}}(T)$ to the heat capacity exhibits a MFT heat-capacity jump close to the theoretical value [41].

The 151Eu Mössbauer spectra of Eu(Co$_{0.8}$Ni$_{0.2}$)$_2$As$_2$ shown in Fig. 17 and of Eu(Co$_{0.35}$Ni$_{0.65}$)$_2$As$_2$ shown in Fig. 18 exhibit the same progression as seen for EuCo$_2$As$_2$ with one clear difference. There is an additional feature at \sim0 mm/s that accounts for about 7% of the total area. We attribute this to a nonmagnetic Eu$^{3+}$ impurity, possibly introduced during handling. As this impurity contribution is well defined and consistent in its behavior, it is easily included in the analysis without distorting the results.

It is clear from Figs. 19 and 20 that the temperature range over which the modulated order is a significant component of the total order is much wider in Eu(Co$_{0.8}$Ni$_{0.2}$)$_2$As$_2$ and Eu(Co$_{0.35}$Ni$_{0.65}$)$_2$As$_2$ than it is in EuCo$_2$As$_2$. For $x = 0.2$ and 0.65, the uniform term (B_{k0}) is lost well before the overall magnetic contribution goes to zero. This leads to the systems exhibiting two distinct transitions. In Eu(Co$_{0.8}$Ni$_{0.2}$)$_2$As$_2$, fitting B_{k0} versus temperature yields $T_c = 36.1(2)$ K while the spectra continue to exhibit magnetic broadening up to \sim60 K. For Eu(Co$_{0.35}$Ni$_{0.65}$)$_2$As$_2$, the corresponding temperatures are 20.0(1) K and \sim35 K. These upper temperatures are the same as the FM ordering temperatures associated with the Co/Ni sublattice determined above. By contrast, for $x = 0$, B_{k0} goes to zero at 42 K while the magnetic broadening is gone by 46 K and the two transitions are not well resolved. According to the magnetic susceptibility and magnetization versus field measurements, there is no FM component to the ordering for $x = 0$, so the magnetic broadening up to 46 K may be due to dynamic short-range magnetic ordering above $T_{N\text{Eu}}$ associated with the Eu spins as revealed in the magnetic contribution $C_{\text{mag}}(T)$ to the heat capacity above $T_{N\text{Eu}}$ discussed in Sec. VII.

Discussion

As Mössbauer spectroscopy is fundamentally a short-ranged probe of magnetic order, it provides very little direct information about the detailed nature of the long-range magnetic order in this system. However, some key statements can be made.
There are no significant changes in the isomer shifts of the Eu3+ component of the spectra in any of the samples, nor is there any sign of a new Eu4+ component (beyond the previously noted impurity) developing with changing temperature. We therefore conclude that the europium in all three samples remains fully divalent from \(\sim 5\) to \(\sim 295\) K.

At the lowest temperatures in all three samples (\(x = 0\), 0.20, 0.65) the europium is in a single magnetic environment (modulo rotations about the \(c\) axis, to which the technique is insensitive due to the 4/mmm point symmetry of the Eu site).

In all three compositions, the initial ordering of the Eu spins that develops on cooling from the high-temperature paramagnetic state appears to include an incommensurate modulated component in which the magnitudes of the europium moments vary, so that the \(^{151}\text{Eu}\) nuclei experience a broad distribution of magnetic environments that can be modeled using a sum of Fourier components. This modulated regime is quite narrow for \(x = 0\) but is much broader for \(x = 0.20\) and 0.65.

The magnetic transitions in EuCo\textsubscript{2−\(x\)}As\textsubscript{2} are only separated by a few degrees (see Table VI) and do not appear to exhibit separate signatures in our other measurements. However, in Eu(Co\textsubscript{0.8}Ni\textsubscript{0.2})\textsubscript{2}As\textsubscript{2} the two transitions defined by extrapolation of \(B_{k0}\) versus \(T\) and by the ultimate loss of magnetic splitting in the spectrum (“end” column) are about 20 K apart (see Table VI) and are clearly resolved in both \(\chi(T)\) and \(C_p(T)\). We also see two transitions separated by about 10 K in Eu(Co\textsubscript{0.35}Ni\textsubscript{0.65})\textsubscript{2}As\textsubscript{2}; however, only the lower one is consistently seen by the bulk techniques.

There are two basic possibilities for the nature of the modulated phase. Given that helical order exists at the lowest temperatures, it is possible that in addition to the rotation about the \(c\) axis the magnitude of the moments also varies from layer to layer as the upper transition is approached. Alternatively, the long-range order could break down into a short-range correlated state before the long-range order collapses entirely. The former would appear consistent with the behavior of the \(x = 0\) and 0.20 samples where the transitions, when resolved, are seen by multiple techniques. The latter form may be more consistent with the behavior of the \(x = 0.65\) sample where the upper loss of order is not consistently seen and the decay of \(B_{\text{avg}}(T)\) is quite soft, perhaps reflecting a gradual breakdown of magnetic correlations. Only direct measurement by either neutron diffraction or resonant magnetic x-ray diffraction can distinguish these two possibilities.

For Eu(Co\textsubscript{0.3}Ni\textsubscript{0.7})\textsubscript{2}As\textsubscript{2} (Fig. 19) and Eu(Co\textsubscript{0.35}Ni\textsubscript{0.65})\textsubscript{2}As\textsubscript{2} (Fig. 20), \(B_{\text{avg}}\) exhibits a clear tail to high temperatures, well beyond where the extrapolation of the lower-temperature behavior would predict that it would go to zero. The observed hyperfine fields are too large to simply be the result of a direct transferred field from the itinerant FM Co/Ni order; however, exchange interactions between the Co/Ni order and the europium moments leading to an effective applied magnetic field supporting the ordering of the europium moments could certainly account for the observed fields. The \(^{151}\text{Eu}\) Mössbauer spectra therefore provide further evidence of the Co/Ni order for intermediate nickel doping.

We fitted the neutron-diffraction intensity \(I(T)\) of the helical (0 0 2.79) magnetic peak for EuCo\textsubscript{2−\(x\)}As\textsubscript{2} versus temperature that was presented in Ref. [40]. Because the spin \(S = \frac{7}{2}\) of Eu3+ is large, the MFT prediction should be quite accurate. We indeed obtained a good fit to the data by MFT for \(S = \frac{7}{2}\) as shown by the solid blue curve representing the square of the ordered moment versus temperature in Fig. 21, consistent with the good fit of \(B_{\text{avg}}(T)\) in Fig. 16, apart from a possible small systematic deviation of the data from the fitted curve in Fig. 21 on approaching \(T_{\text{N\Eu}}\) from below.

![FIG. 20. Temperature dependence of the fitted hyperfine field contributions in Eu(Co\textsubscript{0.35}Ni\textsubscript{0.65})\textsubscript{2}As\textsubscript{2} derived from the modulated model. The average hyperfine field \(B_{\text{avg}}\) is plotted as solid round symbols with a dotted line showing a fit (see text) yielding a transition temperature of 21.5(1) K, while the amplitude of the uniform term \(B_{k0}\) is plotted as open round symbols with a dashed line fit giving a transition temperature of 20.0(1) K. The behavior of the first Fourier component \((B_{k1})\) is plotted as square symbols and shows a cusplike peak centered at 20.3(5) K. Note: Some magnetic broadening is present until about 35 K.](084407-16)
VII. HEAT CAPACITY

Figure 22 shows the heat capacities $C_p(T)$ for Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ single crystals with compositions $x = 0, 0.03, 0.1, 0.2, 0.32, 0.42, 0.54, 0.65, 0.75,$ and 0.82, and for the nonmagnetic reference compound BaCo$_2$As$_2$ [41] measured in the temperature range from 1.8 to 300 K in zero applied magnetic field. For each composition, the $C_p(T = 300 \text{ K})$ of Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ attains a value of $\approx 123.2 \text{ J/mol K}$ which is close to the classical Dulong-Petit high-T limit $C_V = 3nR = 123.2 \text{ J/mol K}$, where $n = 4.94$ is the number of atoms per formula unit and R is the molar gas constant.

The insets in Fig. 22 show plots of $C_p(T)/T$ versus T^2 from 1.8 to 5 K for each crystal. The purpose of these plots is to show that the low-temperature data cannot be fitted by the conventional expression $C_p(T)/T = \gamma + \beta T^2$, where γ is the Sommerfeld coefficient associated with the conduction electrons and β is the coefficient of the T^3 lattice term. The $C_p(T)/T$ versus T^2 data for the Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ crystals in the temperature range from 1.8 to 10 K are plotted in Fig. 23. One sees that each crystal shows approximately linear behavior over a certain T range; for example, for $x = 0$ to 0.32 this range is from 2 to 6 K, whereas for $x \geq 0.54$ the range is below 4 K, which means that C_p has an approximately T^2 contribution over the respective T range. This behavior may arise from the temperature-dependent heat capacity of AFM spin waves.

The $C_p(T)$ data for Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ in the PM regime $100 \text{ K} \leq T \leq 300 \text{ K}$ are analyzed using the sum of an electronic γT term and the lattice term given by the Debye model according to

$$C_p(T) = \gamma T + nC_{V\text{Debye}}(T), \quad (6a)$$

where γ is again the Sommerfeld electronic heat-capacity coefficient, $C_{V\text{Debye}}(T)$ is the Debye lattice heat capacity given by

$$C_{V\text{Debye}}(T) = 9R \left(\frac{T}{\Theta_D} \right)^3 \int_0^{\Theta_D/T} \frac{x^4 dx}{(e^x - 1)^3}, \quad (6b)$$

and $n = 4.94$ is again the number of atoms per formula unit. The black solid curves in Fig. 22 represent the fits of the $C_p(T)$ data for 100 K $\leq T \leq 300$ K by Eqs. (6) obtained using the accurate analytic Padé approximant function for $C_{V\text{Debye}}$ versus T/Θ_D given in Ref. [63]. The fitted values of γ and Θ_D for Eu(Co$_{1-x}$Ni$_x$)$_2$As$_2$ are listed in Table VII.

The density of degenerate conduction carrier states at the Fermi energy E_F for both spin directions $D_x(E_F)$ is obtained from γ according to

$$D_x(E_F) = \frac{3\gamma}{\pi^2k_B}, \quad (7a)$$
TABLE VII. The parameters \(\gamma \), \(\theta_0 \) and density of states at the Fermi energy \(D_F(E_F) \) obtained from fits to the heat capacity by Eqs. (6) in the temperature range 100 K \(\leq T \leq 300 \) K.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\gamma) (mJ/mol K(^2))</th>
<th>(\theta_0) (K)</th>
<th>(D_F(E_F)) (states/eV f.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15(2)</td>
<td>308(3)</td>
<td>6.3(8)</td>
</tr>
<tr>
<td>0.03</td>
<td>18(2)</td>
<td>310(3)</td>
<td>7.6(8)</td>
</tr>
<tr>
<td>0.1</td>
<td>25(1)</td>
<td>286(2)</td>
<td>10.7(4)</td>
</tr>
<tr>
<td>0.2</td>
<td>33(1)</td>
<td>306(1)</td>
<td>13.9(4)</td>
</tr>
<tr>
<td>0.32</td>
<td>25(3)</td>
<td>313(5)</td>
<td>11(1)</td>
</tr>
<tr>
<td>0.42</td>
<td>23(1)</td>
<td>298(1)</td>
<td>9.7(4)</td>
</tr>
<tr>
<td>0.54</td>
<td>23(2)</td>
<td>311(4)</td>
<td>9.7(8)</td>
</tr>
<tr>
<td>0.65</td>
<td>23(2)</td>
<td>294(2)</td>
<td>9.7(8)</td>
</tr>
<tr>
<td>0.75</td>
<td>22(1)</td>
<td>298(2)</td>
<td>9.3(4)</td>
</tr>
<tr>
<td>0.82</td>
<td>21.3(8)</td>
<td>303(2)</td>
<td>9.0(3)</td>
</tr>
</tbody>
</table>

![FIG. 23. Heat capacity \(C_p/T \) vs \(T \) at zero field from 1.8 to 10 K for each Eu(Co\(_{1-x}\)Ni\(_x\))\(_{1.94}\)As\(_2\) crystal (x = 0, 0.03, 0.10, 0.20, 0.32, 0.42, 0.54, 0.65, 0.75, and 0.82).](image)

![FIG. 24. Temperature \(T \)-dependent magnetic contribution \(C_{\text{mag}}(T) \) obtained by subtracting the nonmagnetic contribution \(C_{\text{Nmag}}(T) \) of BaCo\(_2\)As\(_2\) (left-hand ordinates) and the magnetic entropy \(S_{\text{mag}}(T) \) calculated from the experimental \(C_{\text{mag}}(T)/T \) data using Eq. (9) for Eu(Co\(_{1-x}\)Ni\(_x\))\(_{2-\gamma}\)As\(_2\) (right-hand ordinates) for x = 0, 0.03, 0.10, 0.20, 0.32, 0.42, 0.54, 0.65, 0.75, and 0.82 from 1.8 to 100 K. The sharp \(\lambda \)-like transitions are associated with AFM ordering of the Eu spins and the steplike features for x = 0.2–0.54 are associated with itinerant FM ordering associated with the Co/Ni sublattice.](image)

which gives

\[
D_F(E_F) \left[\text{states/eV f.u.} \right] = \frac{1}{2.359} \gamma \left[\text{mJ/mol K}^2 \right].
\]

where “mol” refers to a mole of formula units (f.u.). The \(D_F(E_F) \) values calculated for our Eu(Co\(_{1-x}\)Ni\(_x\))\(_{2-\gamma}\)As\(_2\) crystals from their \(\gamma \) values using Eq. (7b) are listed in Table VII, where the fitted values are close to each other for \(x = 0 \) to 0.82.

The magnetic contribution \(C_{\text{mag}}(T) \) to \(C_p(T) \) of Eu(Co\(_{1-x}\)Ni\(_x\))\(_{2-\gamma}\)As\(_2\) obtained after subtracting the lattice contribution, taken to be \(C_{\text{latt}}(T) \) of BaCo\(_2\)As\(_2\) [41], is shown in Fig. 24. Within MFT the discontinuity in \(C_{\text{mag}} \) at \(T = T_N \) is given by [36]

\[
\Delta C_{\text{mag}} = R \frac{5S(1 + S)}{1 + 2S + 2S^2} = 20.14 \text{ J/mol K},
\]

where \(R \) is the gas constant.
Phase transitions are marked by arrows. For clarity, the data for range AFM ordering of the Eu spins above $T_N \approx 42$, and then increases again. The $C_{\text{mag}}(T)$ is nonzero for $T_N < T \leq 40 \text{ K}$, indicating the presence of dynamic short-range AFM ordering of the Eu spins above T_N^{Eu}, thus accounting at least in part for the decrease in ΔC_{mag} from the theoretical value.

From Fig. 24, we find two magnetic transition peaks for $x = 0.2, 0.32, 0.42, 0.54$ consistent with the above studies. It is clear that the magnetic ordering of the Eu spins for all compositions is associated with the λ-type anomaly that decreases monotonically from a temperature $T_N^{\text{Eu}} = 45.1(2) \text{ K}$ to $16.2(4) \text{ K}$ at $x = 0.84$, as listed above in Table II. We therefore ascribe the upper transition temperature manifested by a step discontinuity in $C_{\text{mag}}(T)$ in Fig. 24 to magnetic ordering of the Co/Ni atoms, which from the above magnetic measurements is FM. Therefore, the latter transition temperatures are denoted by $T_{\text{Co/Ni}}$ in Table II.

The magnetic entropy is calculated from the $C_{\text{mag}}(T)$ data for Eu$_{1-x}$Ni$_x$As$_2$ in Fig. 24 using

$$S_{\text{mag}}(T) = \int_0^T \frac{C_{\text{mag}}(T')}{T'} dT', \quad (9)$$

and the results are shown in Fig. 24 (right-hand ordinate). The theoretical high-T limit is $S_{\text{mag}}(T) = R \ln(2S + 1) = 17.29 \text{ J/mol K for } S = \frac{3}{2}$. The entropy reaches almost 90% of $R \ln(8)$ at T_N^{Eu}. The high-T limit of the data is slightly different from the theoretical value, which may be due to a small error in estimating the lattice contribution to $C_{\text{mag}}(T)$.

The $C_p(H, T)$ data for Eu$_{1-x}$Ni$_x$As$_2$ crystals with compositions $x = 0.2, 0.32, 0.42,$ and 0.54 showing two magnetic transitions measured in magnetic fields $H = 0$ and 3 T applied along the c axis are shown in Fig. 25. It is evident that both transitions are intrinsic and magnetic because T_N^{Eu} shifts to lower temperatures marked by an arrow and the heat-capacity jump at T_N^{Eu} decreases with applied magnetic field, both as predicted from MFT for a field parallel to the helix axis [36]. The second transition at $T_{\text{Co/Ni}}$ as listed in Table II is seen to be suppressed by an applied field of 3 T. We take T_N^{Eu} at each field to be the temperature of the peak in C_p versus T instead of the temperature at half-height of the transition, because the latter is ambiguous to estimate due to the significant contribution of short-range above AFM ordering to C_p above the respective T_N^{Eu}. Table II lists the x-dependent T_N^{Eu} and $T_{\text{Co/Ni}}$, values obtained from the $\chi(T)$
and $C_{p}(T)$ measurements and from the $\rho(T)$ measurements discussed in the following section. The values obtained from the different measurements are quite close to each other. The table shows that the $C_{p}(T)$ measurements do not reveal two transitions for $x = 0.65$ even though the two transitions are evident in both the $\chi(T)$ and $\rho(T)$ (see below) measurements.

VIII. ELECTRICAL RESISTIVITY

The in-plane (ab-plane) electrical resistivity ρ of the Eu(Co$_{1-x}$Ni$_{x}$)$_2$As$_2$ single crystals as a function of T from 1.8 to 300 K measured at zero magnetic field are shown in Fig. 26. The $\rho(T)$ exhibits metallic behavior for all crystals. The AFM transition at $T_{N_{ab}}$ and the second transition $T_{C_{Co/Ni}}$ for $x = 0.32, 0.42,$ and 0.54 observed in the $\rho(T)$ data are marked by arrows. The transitions are more clearly shown in the expanded plots of $\rho(T)$ at low temperatures in the insets to Fig. 26. The values of T_{N} and $T_{C_{Co/Ni}}$ obtained from the data are listed in Table II and are seen to be consistent with the values found from the above $\chi(T)$ data and $C_{p}(T)$ measurements. Interestingly, the $\rho(T)$ data do not exhibit any significant feature at $T_{N_{ab}}$ for $x = 0.20$ and 0.65.

The low-T $\rho_{ab}(T)$ data below $T_{N_{ab}}$ are fitted by

$$\rho(T) = \rho_{0} + AT^n,$$

(10)

as shown by the solid curves in the insets of Fig. 26. The fitted parameters $\rho_{0}, A,$ and the power n are listed in Table VIII. From Table VIII, the $\rho(T)$ data follow the Fermi-liquid T^2 behavior for $x = 0$, but with doping $\rho(T \lesssim T_{N})$ does not, likely because it is affected by the T-dependent loss of spin-disorder scattering on cooling below $T_{N_{ab}}$.

The $\rho(T)$ in the normal state above 70 K is fitted by the Bloch-Grüneisen (BG) model where the resistivity arises from scattering of electrons from acoustic phonons. Our fitting function is

$$\rho_{BG}(T) = \rho_{0} + \rho_{ad}(T) + C f(T),$$

(11a)

where $[63]$

$$f(T) = \left(\frac{T}{\Theta_{R}}\right)^5 \int_{0}^{\Theta_{R}/T} \frac{x^5 dx}{(1 - e^{-x})(e^x - 1)} dx.$$

(11b)

Here, $\rho_{0} + \rho_{ad}(T)$ is the sum of the residual resistivity ρ_{0} due to static defects in the crystal lattice and the spin-disorder resistivity $\rho_{ad}(T)$. The constant C describes the T-independent interaction strength of the conduction electrons with the thermally excited phonons and contains the ionic mass, Fermi velocity, and other parameters, $x = \frac{\hbar}{\Theta_{R}}T$ and Θ_{R} is the Debye temperature determined from electrical resistivity data. The representation of $f(T)$ used here is a fit of data calculated for the integral on the right-hand side of Eq. (11b) by an accurate analytic Padé approximant function of T [63]. The fits to the $\rho(T)$ data between 70 and 300 K by Eqs. (11) are shown as the solid black curves in the main panel of Fig. 26. The fitted parameters ($\rho_{0} + \rho_{ad}$), C, and Θ_{R} are listed in Table VIII.

IX. CONCLUDING REMARKS

Multiple magnetic phase transitions have been identified in the Eu(Co$_{1-x}$Ni$_{x}$)$_2$As$_2$ system. The highest-temperature one is a composition-dependent itinerant FM ordering between 25 and 60 K associated with the Co/Ni sublattice as clearly revealed from both heat capacity $C_{p}(H, T)$ and magnetic susceptibility $\chi_{a}(T)$ measurements. This FM transition is fragile and disappears in a 3 T magnetic field according to the $C_{p}(T)$ measurements. The composition-dependent magnetic ordering of the Eu spins is clearly evident from the λ or step-shape anomaly in the zero-field $C_{p}(T)$ measurements that is easily tracked versus composition. Close to the end-point compositions the magnetic structure is a c-axis helix as illustrated generically in Fig. 27 for a 60° turn angle kd. In the intermediate composition range 0.20 $\lesssim x \lesssim 0.65$, low-field magnetization vs field $M_{a}(H)$ isotherms demonstrates that the Eu magnetic structure has a rather large ferromagnetic (FM) component along the c axis (0.6 to 3.5 μ_{B}/Eu); combined with the $\chi_{a}(T)$ data, we suggest that this structure is an Eu $S = \frac{3}{2}$ cone structure, which is a superposition of a c-axis helix and a c-axis FM component as illustrated in Fig. 27(b). In addition, in the narrow composition range 0.03 $\lesssim x \lesssim 0.1$ there appears to be a $2q$ helix, which consists of a superposition of a helical structure along the c axis with the moments aligned in the ab plane and a related helix structure with a
FIG. 27. (a) Generic magnetic structure of a \(c \)-axis helix, which consists of ferromagnetically (FM) aligned moments in the \(ab \) plane represented by a single arrow which rotates by an angle \(q_c/d \) from layer to layer along the \(c \) axis, where \(q_c \) is the \(c \)-axis magnetic propagation vector and \(d \) is the distance between adjacent \(ab \) planes of FM aligned moments as shown (after Ref. [35]). (b) Generic \(c \)-axis cone structure consisting of a superposition of a \(c \)-axis helix structure and a \(c \)-axis FM component of each moment.

FIG. 28. Tentative magnetic phase diagram in the \(T-x \) plane of the Eu\((Co_{1-x}Ni_x)_{2-y}As_2\) system. The itinerant FM transition temperatures \(T_{C/Co/Ni} \) of the Co/Ni sublattice are given by the filled blue squares, and the magnetic transition temperatures of the Eu spins are denoted by filled red circles.

The most surprising result from this work is the discovery of multiple transition temperatures around the Eu transition temperature that are observed in the \(^{151}\text{Eu} \) Mössbauer measurements of Eu\((Co_{1-x}Ni_x)_{2-y}As_2\) with \(x = 0, 0.2, \) and \(0.65 \), which are not included in Fig. 28. These measurements indicate that ordering of the Eu moments proceeds via an incommensurate sine amplitude-modulated structure with additional transition temperatures associated with this effect. A fit of the ordered moment versus temperature in Eu\(Co_{2-y}As_2\) from the literature suggests that there might be a systematic deviation from the prediction of molecular-field theory on approaching \(T_{Neu} \) from below, which is expected to be accurate for the large spin \(S = \frac{7}{2} \). It would be interesting to carry out higher-resolution measurements of the magnetic order parameter versus temperature for \(x = 0 \), and also see if there is a temperature dependence to the turn angle of the helix at this composition.

ACKNOWLEDGMENTS

This research was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Financial support for this work was provided by Fonds Québécois de la Recherche sur la Nature et les Technologies. Much of the Mössbauer work was carried out while D.H.R. was on sabbatical leave at Iowa State University and Ames Laboratory and their generous support (again under Contract No. DE-AC02-07CH11358) during this visit is gratefully acknowledged.
[17] W. T. Jayasekara, A. Pandey, A. Kreysig, N. S. Sangeetha, A. Sapkota, K. Tho Han Anand, W. Tian, D. Vaknin, D. C. Johnston, R. J. McQueeney, A. I. Goldman, and B. G. Ueland, Suppression of magnetic order in CaCo$_{1.6}$As$_2$ with Fe substitution: Magnetization, neutron diffraction, and x-ray diffraction studies of Ca(0.18Fe$_{0.82}$)$_3$As$_2$, Phys. Rev. B 95, 064425 (2017).
[25] Z. Ren, Q. Tao, S. Jiang, C. Feng, C. Wang, J. Dai, G. Cao, and Z. Xu, Superconductivity Induced by Phosphorus Doping and Its Coexistence with Ferromagnetism in EuFe$_2$(As$_{0.95}$P$_{0.05}$)$_2$, Phys. Rev. Lett. 102, 137002 (2009).
[26] S. Jiang, H. Xing, G. Xuan, Z. Ren, C. Wang, Z. A. Xu, and G. Cao, Superconductivity and local-moment magnetism in Eu(F$_{0.30}$Co$_{0.11}$)$_2$As$_2$, Phys. Rev. B 80, 184514 (2009).
[33] M. Cheflki, M. M. Abd-Elmeguid, H. Micklitz, C. Huhnt, W. Schlabitz, M. Reehuis, and W. Jeitschko, Pressure-Induced...

