2010

EuAgxAl11−x with the BaHg11-Type Structure: Composition, Coloring, and Competition with the BaCd11-Type Structure

Fei Wang
Iowa State University

Karen N. Pearson
Hope College

Warren E. Straszheim
Iowa State University, wesaia@iastate.edu

Gordon J. Miller
Iowa State University, gmiller@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs

Part of the Materials Chemistry Commons, Other Chemistry Commons, and the Physical Chemistry Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/chem_pubs/695. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
EuAg\textsubscript{x}Al\textsubscript{11-x} phases adopting the BaHg\textsubscript{11}-type structure (space group \textit{Pm\textbar m}, \textit{Z} = 3) were synthesized with high yield by arc melting a mixture loaded as “EuAg\textsubscript{3.5}Al\textsubscript{7.5}” and annealing at 500 °C for 40 days. This phase has a very narrow phase width around EuAg\textsubscript{4.0}Al\textsubscript{7.0}; and it is unstable at 600 and 700 °C, at which it transforms into other phases. Magnetometry indicates that Eu is divalent, which gives the valence electron concentration per Ag/Al atom as 2.45 e-/atom, higher than in the BaCd\textsubscript{11}-type phases in the Eu–Ag–Al system (2.10–2.30 e-/atom). First principles electronic structure calculations, using a computational model structure built by simulating the crystallographic results as well as maximizing the number of heteroatomic (Ag–Al) contacts, can explain why the cubic BaHg\textsubscript{11}-type structure is favored at higher valence electron concentration than the tetragonal BaCd\textsubscript{11}-type structure.

Disciplines
Materials Chemistry | Other Chemistry | Physical Chemistry

Comments
EuAg$_x$Al$_{11-x}$ with the BaHg$_{11}$-Type Structure: Composition, Coloring, and Competition with the BaCd$_{11}$-Type Structure

Fei Wang,† Karen N. Pearson,‡ Warren E. Straszheim,§ and Gordon J. Miller*†

†Department of Chemistry, Iowa State University, Ames, Iowa 50011, ‡Department of Chemistry, Hope College, Holland, MI 49422, and §Materials Analysis and Research Lab, Iowa State University, Ames, Iowa 50011

Received October 28, 2009. Revised Manuscript Received December 2, 2009

EuAg$_x$Al$_{11-x}$ phases adopting the BaHg$_{11}$-type structure (space group $Pnma$, $Z = 3$) were synthesized with high yield by arc melting a mixture loaded as “EuAg$_{3.5}$Al$_{7.5}$” and annealing at 500°C for 40 days. This phase has a very narrow phase width around EuAg$_{4.0}$Al$_{16}$, and it is unstable at 600 and 700°C, at which it transforms into other phases. Magnetometry indicates that Eu is divalent, which gives the valence electron concentration per Ag/Al atom as 2.45 e-/atom, higher than in the BaCd$_{11}$-type phases in the Eu−Ag−Al system (2.10−2.30 e-/atom). First principles electronic structure calculations, using a computational model structure built by simulating the crystallographic results as well as maximizing the number of heteroatomic (Ag−Al) contacts, can explain why the cubic BaHg$_{11}$-type structure is favored at higher valence electron concentration than the tetragonal BaCd$_{11}$-type structure.

Introduction

Polar intermetallics1−3 represent a growing class of compounds bridging classical, Hume−Rothery electron phases4 and Zintl phases.5 Similar to Zintl phases, polar intermetallics also consist of elements with considerable differences in electronegativity, but their structures cannot be understood with the octet rule, which applies to Zintl phases; instead, as in Hume−Rothery phases, they are largely determined by valence electron count. However, unlike Hume−Rothery electron phases, polar intermetallics often form kaleidoscopic complex structures, for example, NaZn$_{13}$-, ThMn$_{12}$-, BaCd$_{11}$-, and BaHg$_{11}$- types, in which, just as in Zintl phases, the “cations”, that is, the electropositive metals, have large coordination numbers. Many recent reports also showed that this class of compounds provides a wealth of quasicrystalline phases and their crystalline approximants.6 Because of such structural abundance and complexity, composition-structure relationships of polar intermetallic compounds are complicated and still remain a challenge to be understood. Further systematic investigations into polar intermetallics are necessary; and these investigations will benefit from a synergism between experiment and theory.

During our investigations into the composition-structure relationship in polar intermetallics, significant effort has been devoted to the RE(rare earth)−Ag−Al systems due to their structural abundance.7 Researchers have obtained kaleidoscopic complex structures from these systems, including the BaCd$_{11}$-, BaHg$_{11}$-, Th$_2$Ni$_{17}$-, Th$_2$Zn$_{17}$-, CaCu$_5$-, and BaAl$_4$- types.8 The iso-compositional structure types (i.e., the BaCd$_{11}$ vs BaHg$_{11}$-types and the Th$_2$Ni$_{17}$ vs Th$_2$Zn$_{17}$-types) often compete within a single RE−Ag−Al system as its composition varies. For instance, in Yb−Ag−Al, the BaCd$_{11}$-type structure forms at YbAg$_{5.3}$Al$_{5.7}$ and the BaHg$_{11}$-type structure forms at YbAg$_{4.3}$Al$_{7.8}$. Similar results have also been obtained in our previous work with the Eu−Ag−Al system.9 Further investigations into these competing structure types can deepen our understanding of

these structures themselves, as well as how they are related to composition.

The BaHg_{11}-type structure is one of the most rarely observed among all of the complex structures obtained in RE−Ag−Al ternaries. It has been reported only with RE = Ce\(^{8k}\), Yb\(^{31}\), and Eu\(^9\) without crystallographic details (only lattice parameters available, without atomic coordinates or thermal parameters). Experimental disagreement also occurs in the Ce−Ag−Al system. Although Cordier obtained BaHg_{11}-type CeAg_{5.1}Al_{7.9} by synthesizing at 1000−1400 °C and annealing at 800 °C\(^{8k}\) this phase did not occur in Kużma’s phase diagram study at 597 °C,\(^{9e}\) which was proposed as a temperature effect. The recent reports from Latt Turner et al. demonstrated more complexity of the BaHg_{11}-type structure.\(^{10}\) Their study of RE−Au−Al and RE−Ag−Al systems showed that, in an Al flux, early transition metals (e.g., Ti and Mo) have a template effect and are essential in the formation of a structured BaHg_{11}-type structure, which is a quaternary phase. RE\(_3\)(Au/Ag)\(_{6−x}\)Al\(_x\)T (T is the early transition metal). The authors also analyzed the synthesis method adopted by Cordier\(^{8k,1}\) and speculated that the possible inclusion of Mo (the crucible material) induced the formation of the BaHg_{11}-type structure.

Therefore, although the BaHg_{11}-type structure has been long observed in RE−Ag−Al systems, there are still many unsolved “mysteries” about it, for example, what the phase width is, and how temperature and early transition metals affect its formation. Moreover, site sharing and site preference are commonly observed for Ag and Al atoms in RE−Ag−Al systems. How are Ag and Al distributed in the BaHg_{11}-type structure? Lastly, how does this structure type compete with the BcOd_{11}-type structure during changes in composition, viz., the molar ratio between Ag and Al, of a RE−Ag−Al system? To answer these questions, we continued our previous work with the EuAg\(_{5.5}\)Al\(_{11−x}\) system\(^9\) and investigated BaHg_{11}-type phases using both experiments and quantum mechanical calculations.

Experimental Section

Syntheses. Pure metals were used for syntheses: Eu (rods, Ames Laboratory, 99.99%), Ag (slugs, Alfa Aesar, 99.99%), and Al (foil, Tennesco). In our previous study of EuAg\(_{11−x}\)-Al systems, the BaHg_{11}-type structure was observed in the systems loaded with “EuAg\(_2\)Al,” and “EuAg\(_2\)Al\(_x\)”\(^9\). To find out its homogeneity width, we varied the loading composition from “EuAg\(_x\)Al\(_{11−x}\)” to “EuAg\(_3\)Al\(_3\)” for each loading composition, an approximately 0.5 g mixture of pure metals was arc melted under an argon atmosphere into a silvery button, which was turned over and remelted five times to ensure thorough reaction and homogeneity. There was some ash generated during melting, but the weight loss was always lower than 1 wt %. Every product was stable in air and water but dissolved in 40 wt % nitric acid. The silvery button was then broken into halves. One-half was characterized immediately; and the other half, before characterization, was sealed in a tantalum tube under argon atmosphere, which was then sealed in an evacuated silica jacket and annealed in a tube furnace at 500 °C for 40 days.

X-ray Crystallography. Powder X-ray diffraction (XRD) was carried out on a Huber Imaging Plate Guinier Camera G670 using monochromatized Cu \(K\alpha_1\) radiation (\(\lambda = 1.54059\) Å). This diffractometer has been calibrated with standard silicon powder (NIST, \(a = 5.430940 \pm 0.000035\) Å). The exposure time was 1 h and the step size of 29 was 0.005°. The Le Bail technique\(^{11}\) was used for full pattern decomposition, and the Rietveld method\(^{12}\) was employed to refine the crystal structure, both of which were accomplished with the software LHPM-Rietica.\(^{13}\)

Small crystals selected from the crushed “EuAg\(_{5.5}\)Al\(_{11−x}\)” sample were mounted on the tip of capillary with epoxy for single-crystal XRD experiments, which were carried out at room temperature on a STOE IPDS diffractometer equipped with Mo K\(\alpha\) radiation (\(\lambda = 0.71073\) Å). 80 frames were collected at \(\varphi = 130°\) with \(\omega\) ranging from 42 to 122° with the step size of 1°, and the exposure time of 1 min per frame. All data collection, integrations, cell refinements, and absorption corrections were done using X-Area.\(^{14}\) Using SHELXTL,\(^{15}\) the crystal structure was solved with direct methods and refined by full-matrix least-squares on \(F^2\).

Magnetometry. Temperature-dependent magnetic susceptibility was measured with a 0.3 mg sample taken from the annealed product with the loading composition “EuAg\(_{5.5}\)Al\(_{11−x}\),” which is a “pure phase” adopting the BaHg_{11}-type structure according to powder XRD. Using a Quantum Design MPMS XL Superconducting Quantum Interference Device (SQUID) magnetometer, at 1 Koe fixed magnetic field, the magnetic susceptibility (\(\chi\)) was measured as the temperature (T) varied from 5 to 300 K. We fitted the 1/\(\chi\) vs T curve with Curie–Weiss law to calculate the effective moment (\(\mu_{eff}\)) and the valency of Eu.

Microscopy. The annealed sample loaded as “EuAg\(_{5.5}\)Al\(_{11−x}\)” was also characterized by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) to examine its homogeneity and to check the presence of early transition metals, including W (electrode material of the arc melter), Ti (oxygen getter), and Ta (container for annealing). SEM was accomplished using a Hitachi S-2460N variable-pressure scanning electron microscope, and EDS was performed with an Oxford Instruments Isis X-ray analyzer. Several grains were taken at random from the broken “EuAg\(_{5.5}\)Al\(_{11−x}\)” sample, embedded in epoxy, polished, coated with ca. 20 nm of carbon, and examined in high vacuum mode (ca. 5 \(\times\) 10\(^{-6}\) Torr). The accelerating voltage was 20 kV and the beam current was ca. 0.5 nA, which produced an X-ray count rate of 3000 cps. Multiple points were examined for every sample grain. The standards used for quantitative compositional analysis were elemental Ag and Al, and EuAl\(_2\). The precision of the compositional analysis under these conditions is within a few tenths of weight percent.

Electronic Structure Calculations. To study the electronic structure of the BaHg_{11}-type EuAg\(_{5.5}\)Al\(_{11−x}\), we constructed a few model structures according to the crystallographic results for first principles calculations. Details of these models can be found in the Computational Models section. Both the Stuttgart

(14) X-Area; Stoe & Cie. GmbH: Darmstadt, Germany.
Tight-Binding, Linear-Muffin-Tin Orbital program with the Atomic Sphere Approximation (TB-LMTO-ASA)16 and the Vienna ab initio simulation package (VASP)17–19 were employed to calculate the total energies and electronic structures of these models.

For TB-LMTO-ASA, we used the von Barth–Hedin local density approximation20 to treat electron exchange and correlation energy; and we included these atomic orbitals in the basis set: the 6\textit{s}, 6\textit{p} (downfolded21), and 5\textit{d} states of Eu; the 5\textit{s}, 5\textit{p}, and 4\textit{d} states of Ag; and the 3\textit{s}, 3\textit{p}, and 3\textit{d} (downfolded) states of Al. Eu 4\textit{f} states were excluded because magnetometry indicated that Eu is divalent and, thus, its 4\textit{f} electrons are localized in half-filled 4\textit{f} orbitals. The Wigner–Seitz radii of the atomic spheres were

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Powder XRD patterns of arc melted and annealed samples with various loading compositions. Le Bail refinement was applied to every pattern.}
\end{figure}

\begin{thebibliography}{9}
\end{thebibliography}
2.13 Å for Eu and 1.57 Å for both Ag and Al. This filled the unit cell with a 9.566% overlap without introducing any empty spheres; an 8 x 8 x 8 k-points mesh was used in the first Brillouin zone for integration. The density of states (DOS) and crystal orbital Hamiltonian populations (COHP)\(^{22}\) curves were evaluated and plotted.

VASP calculations were completed to compare the total energies of the model structures. We used the projector augmented-wave (PAW) pseudopotentials\(^{23}\) and the Perdew–Burke–Ernzerhof generalized gradient approximation (GGA-PBE).\(^{24}\) The energy cutoff was 343.6 eV. Reciprocal space integrations were completed over a 7 x 7 x 7 Monkhorst-Pack k-points mesh\(^{25}\) with the linear tetrahedron method.\(^{26}\) With these settings, the calculated total energy converged to less than 1 meV per atom. The DOS curve calculated by VASP was also plotted and compared with that from TB-LMTO-ASA calculations.

Results and Discussions

Synthesis and X-ray Crystallography. Our previous work\(^9\) indicated that both loading composition and annealing are pertinent to the formation of the BaHg\(_{11}\)-type structure in EuAg\(_{x}\)Al\(_{11-x}\). This cubic structure type was not detected by powder XRD when \(x = 5-8\) in the loading composition “EuAg\(_{x}\)Al\(_{11-x}\)”; but was obtained when \(x = 3\) and 4. For both of these two systems, annealing at 500 °C increased the abundance of the BaHg\(_{11}\)-type phase (see its strongest peak at ca. 34.3° in Figure 1(a)–(d)), especially for the “EuAg\(_{3}\)Al\(_{8}\)” system, in which it is the dominant phase.

To improve the abundance of the BaHg\(_{11}\)-type phase, we adjusted the loading composition. At first, we tested two loading compositions richer in Al than above, viz., “EuAg\(_{2}\)Al\(_{9}\)” and “EuAgAl\(_{10}\)” The diffraction patterns of these arc melted and annealed samples are shown in Figure 1(c)–(h). These two loading compositions produce mixed phases, among which the BaHg\(_{11}\)-type structure occurs, and annealing at 500 °C also slightly increased its abundance. However, its abundances in these two samples are both lower than in the “EuAg\(_{3}\)Al\(_{8}\)” sample (Figure 1(d), (f), (g)).

We then made the Al content lower than in “EuAg\(_{3}\)Al\(_{8}\)” and loaded “EuAg\(_{3,5}\)Al\(_{7.5}\)”. The powder XRD patterns for arc melted and subsequent annealed samples are in Figure 2. The pattern of the arc melted sample (Figure 2(a)) is close to the arc melted “EuAg\(_{3}\)Al\(_{8}\)” system (Figure 1(c)). After annealing at 500 °C, all peaks in the powder pattern can be indexed with a single BaHg\(_{11}\)-type phase (Figure 2(b)). It is noticeable that the backgrounds in these diffraction patterns are large (ca. 1000 counts). This is much higher than the background in a diffraction pattern of the NIST Si powder (Supporting Information (SI)), which was collected with the same exposure time and gives a background at ca. 400 counts. Therefore, this enhanced background could be accounted for by the presence of amorphous phase(s) in the “EuAg\(_{3,5}\)Al\(_{7.5}\)” sample, although EDS measurements are consistent with the crystalline phases identified in each pattern shown in Figure 2. A second possible reason for this background originates from the intrinsically disordered distribution.

Figure 2. Powder XRD patterns of arc melted and annealed “EuAg\(_{3,5}\)Al\(_{7.5}\)” samples. Le Bail refinement was applied to (a), (c), and (d); and Rietveld refinement was applied to (b).
of Ag and Al atoms within each component. At this point, we cannot identify unequivocally the cause of the enhanced background.

Rietveld refinement was then applied to the powder pattern and the results are listed in Tables 1 and 2. Although powder XRD characterizes this sample as a “pure phase”, it was very difficult to find a good quality single crystal from this annealed “EuAg₃.5Al₇.5” sample. We extracted only one single crystal which was qualified and carried out single crystal XRD and refinement upon it. The results are also listed in Tables 1 and 2.

Comparison shows that the Rietveld and the single crystal refinements agree well with one another in lattice parameter (with 0.2% difference) and atomic positions. The refined compositions differ slightly from one another: the single crystal technique gives EuAg₃.5Al₇.5, which is very close to the loading composition; but Rietveld refinement gave higher Ag content, EuAg₃.67Al₉.33. Moreover, the isotropic displacement parameters (Uiso) refined by the Rietveld technique are much smaller.

Just like many other RE−Ag−Al phases, Ag and Al share the same sites (8g, 12i, 12j) in the asymmetric unit, but these sites are not shared equally. Compared with the average Ag/Al ratio (3.5/7.5 = 0.32/0.68), the 8i site is the dominant phase, which is BaHg₁₁-type phase. It was very difficult to find a good quality single crystal from this annealed “EuAg₃.5Al₇.5” sample.

Comparison shows that the Rietveld and the single crystal refinement methods Rietveld and single crystal. The Ag/Al−Ag/Al distances are not uniform in this structure: those involving Ag/Al(12i) (ca. 2.63−2.77 Å) are shorter than the others (>2.87 Å). These distances in the BaHg₁₁-type phase are comparable to those observed in BaCd₁₁-type Eu₃AgAl₁₁−.9. Several variants of the BaHg₁₁-type structure have been reported for ternary aluminides and indides. The occupancy Ag/Al(12i) sit and Ag/Al(12j) sit is filled with only Ag. The BaHg₁₁-type structure has been described in some earlier reports. It can be understood by a structure scheme based on a “tetrahedron star”, which is a tetrahedron with every face capped by an atom. In a unit cell of BaHg₁₁-type Eu₃Ag₃Al₇.5 (Figure 3(a)), there are eight tetrahedra formed by Ag/Al(8g) and Ag/Al(12j) sites. The Ag1(1b) site is the dominant phase, which is BaHg₁₁-type phase. It was very difficult to find a good quality single crystal from this annealed “EuAg₃.5Al₇.5” sample, its SEM image (Figure 4) reveals that it is not a completely homogeneous phase, which explains why it was difficult to extract good-quality single crystals for XRD. Figure 4 shows a light-gray background (e.g., spots 3, 4, 5, and 6, the major phase) including some patches (the minor phases) in different colors: darker gray (e.g., spots 1 and 2), white (e.g., spot 7), gray with white outline (e.g., spot 8), and black (e.g., spots 9). The compositions on spots 1−9 were analyzed by EDS and are listed in Table 4. The light-gray background is the dominant phase, which is the BaHg₁₁-type phase according to powder XRD. The sampling spots (3−6) on the gray background give compositions with small variations but also all are very close to Eu₃Ag₄.0Al₉.0, which

<table>
<thead>
<tr>
<th>Z</th>
<th>3</th>
</tr>
</thead>
</table>

Table 1. Summary of Crystal Structure Refinement Parameters of the Annealed “EuAg₃.5Al₇.5” Sample

<table>
<thead>
<tr>
<th>parameter</th>
<th>Rietveld</th>
<th>single crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice parameters</td>
<td>a = 8.70063(6) Å</td>
<td>a = 8.7208(10) Å</td>
</tr>
<tr>
<td>empirical formula</td>
<td>Eu₃Ag₃Al₇.5(3)</td>
<td>Eu₃Ag₃.5Al₇.5(2)</td>
</tr>
<tr>
<td>volume</td>
<td>658.645(9) Å³</td>
<td>663.24(13) Å³</td>
</tr>
<tr>
<td>20 range</td>
<td>10.00−90.00°</td>
<td>4.68−53.26°</td>
</tr>
<tr>
<td>goodness-of-fit</td>
<td>R₁ = 0.0285</td>
<td>R₁ = 0.0599</td>
</tr>
<tr>
<td></td>
<td>Rp = 0.01374</td>
<td>Rp = 0.0963</td>
</tr>
<tr>
<td></td>
<td>Rs = 0.0322</td>
<td>Rs = 0.0937</td>
</tr>
<tr>
<td></td>
<td>Rw = 0.024</td>
<td>Rw = 0.1039</td>
</tr>
</tbody>
</table>

Single crystal data. It shows that the Ag/Al−Ag/Al distances are not uniform in this structure: those involving Ag/Al(12i) (ca. 2.63−2.77 Å) are shorter than the others (>2.87 Å). These distances in the BaHg₁₁-type phase are comparable to those observed in BaCd₁₁-type Eu₃AgAl₁₁−.9. Several variants of the BaHg₁₁-type structure have been reported for ternary aluminides and indides. The occupied Ag on this site.

As mentioned above, early transition metals facilitate the formation of BaHg$_{11}$-type structure in RE$_2$Au$_3$Al$_7$ phases but they are slightly richer in Al (ca. Eu$_{4.0}$Ag$_{3.7}$Al$_{7.3}$) than the dominant BaHg$_{11}$-type phase. Further investigations are necessary.

The annealed “EuAg$_{3.5}$Al$_{7.5}$” and “EuAg$_{4.0}$Al$_{7.0}$” samples were also analyzed with SEM and EDS (SI). The BaHg$_{11}$-type phases in these two samples also give compositions very close to Eu$_{4.0}$Ag$_{4.0}$Al$_{7.0}$, indicating that the BaHg$_{11}$-type Eu$_x$Ag$_{11-x}$Al$_7$ at 500 °C has a very narrow homogeneity range around Eu$_{4.0}$Ag$_{4.0}$Al$_{7.0}$. Moreover, in the “EuAg$_{3.5}$Al$_{7.5}$” sample, the BaCd$_{11}$-type and BaHg$_{11}$-type phases are both abundant. They are clearly different in composition: the former is Eu$_{4.0}$Ag$_{3.7}$Al$_{7.3}$ (BaCd$_{11}$) and the latter is Eu$_{4.0}$Ag$_{4.0}$Al$_{7.0}$, that is, they strictly abide to their homogeneity ranges.

As mentioned above, early transition metals facilitate the formation of BaHg$_{11}$-type structure in RE$_2$Au$_3$Al$_7$ and RE$_2$Ag$_3$Al$_7$ systems. Our syntheses involved W...
(the arc welder electrode), Ti (the oxygen getter for arc melting), and Ta (the container for annealing). However, EDS detected none of these transition metals in the “EuAg3Al8”, “EuAg3.5Al7.5”, and “EuAg4Al7” samples. So, under the synthetic conditions we adopted, the formation of BaHg11-type EuAg₅Al₁₁₋ₓ was not templated by early transition metals.

Thermal Stability. The “EuAg₃.₅Al₇.₅” sample was subsequently annealed at 600 and 700 °C, each for 10 days, in an attempt to improve its crystallinity and homogeneity. However, the subsequent powder patterns revealed that, at these temperatures, the BaHg₁₁-type EuAg₅Al₁₁₋ₓ transforms into other phases. After annealing at 600 °C (Figure 2(c)), the BaHg₁₁-type phase remained dominant; however, the sample was no longer “pure” because the BaCd₁₁-type and Th₂Ni₁₇-type phases emerged. At 700 °C (Figure 2(d)), the BaHg₁₁-type phase almost disappeared; and the BaCd₁₁-type and Th₂Ni₁₇-type phases became major phases. Therefore, besides composition, the stability of BaHg₁₁-type EuAg₅Al₁₁₋ₓ is also largely dictated by temperature: at 700 °C, it is no longer thermodynamically stable. This is one of the reasons why BaHg₁₁-type RE–Ag–Al phases are less commonly observed than the other phases.

Magnetometry and the Valence Electron Concentration of BaHg₁₁-Type EuAg₅Al₁₁₋ₓ. The temperature dependent magnetic susceptibility (χ) and reciprocal susceptibility of the annealed “EuAg₃.₅Al₇.₅” sample.

![Figure 5. Temperature dependency of magnetic susceptibility and reciprocal susceptibility of the annealed “EuAg₃.₅Al₇.₅” sample.](image)

Temperature dependency of magnetic susceptibility and reciprocal susceptibility of the annealed “EuAg₃.₅Al₇.₅” sample.

Figure 5. Temperature dependency of magnetic susceptibility and reciprocal susceptibility of the annealed “EuAg₃.₅Al₇.₅” sample.

The valence electron concentration (vec) of EuAgₓAl₇₋ₓ, with respect to the content of electronnegative metals Ag and Al, can then be calculated as:

$$\text{vec} = \frac{2 + 1x + 3x(11-x)}{11} = 1.5 - \frac{2x}{11} = 3.18 - 0.18x.$$

From this equation, the BaHg₁₁-type phases, EuAg₄.₀Al₇.₀, have a vec at 2.45 e⁻/atom. The vec values of some other BaHg₁₁-type ternaries are listed in Table 5. All of them are higher than the vec of BaCd₁₁-type REAgₓAl₁₁₋ₓ (ca. 2.10–2.30 e⁻/atom). Therefore, the “rule of thumb” governing the competition between these two 1:11 phases is that the BaHg₁₁-type structure is stabilized at higher vec than the BaCd₁₁-type structure. The same conclusion was reached by Häussermann in his study of the binary compounds BaCd₁₁ and BaHg₁₁ with Extended Hückel calculations using second moment scaling. These calculations showed that, although they are isoelectronic (both have vec = 2.18 e⁻/atom), the maximum stability of BaCd₁₁ occurs at vec = ca. 2.10 e⁻/atom, whereas BaHg₁₁ is at vec = ca. 2.55 e⁻/atom, confirming that vec determines the relative stabilities of these two 1:11 phases. However, this also raises the question for the two binary compounds, BaCd₁₁ and BaHg₁₁, themselves, namely, why BaHg₁₁ does not form the expected BaCd₁₁-type structure? Our preliminary study shows that a reason is related to the relativistic effect of the Hg atom, results of which will be discussed in a separate report.

Computational Models. To study how vec affects the stability of the BaHg₁₁-type EuAgₓAl₁₁₋ₓ, it is necessary to analyze its electronic structure through quantum mechanical calculations, for which reasonable model structures need to be built. We constructed the model structures in the following way. The lattice parameters and atomic positions of each model structure were taken from crystallographic data (Table 1 and 2). The 3d and 1p positions can be unambiguously filled with Eu and Ag. The site sharing between Ag and Al on 8g, 12i, and 12j sites was treated by lowering the symmetry from cubic to triclinic (space group P1). The original 8g positions were then broken into eight 1a positions, which were assigned with 4 Ag and 4 Al atoms (Ag/Al = 0.5/0.5). Likewise, the 12i positions were assigned with 3 Ag and 9 Al atoms (Ag/Al = 0.25/0.75) and the 12j positions with 4 Ag and 8 Al atoms (Ag/Al = 0.33/0.67). These Ag/Al ratios are very close to those listed in Table 2 and the resulting composition is EuAg₄Al₇, which is also close to the experimental value. Then, the “coloring problem” needs to be addressed: fixing the Ag/Al ratios as listed above, there are multiple \(C₉₄ \times C₁₂^5 \times C₁₂^4 = 7623000\) where \(Cₙ^m = n!/m!(n-m)!\) possible assignments (or “coloring schemes”) of Ag and Al; and we should select the one which gives the lowest total energy. We calculated the total energies with both LMTO and VASP upon several random coloring

Table 5. Valence Electron Concentration (vec) of Several BaHg₁₁-Type Ternary Compounds

<table>
<thead>
<tr>
<th>compositions</th>
<th>vec</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EuAg₄₀Al₇₀</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>CaAg₂Al₇</td>
<td>2.45</td>
<td>28</td>
</tr>
<tr>
<td>YbAg₂Al₇</td>
<td>2.45</td>
<td>81</td>
</tr>
<tr>
<td>CeAgₓAlₓ₉.₆</td>
<td>2.71</td>
<td>8k</td>
</tr>
<tr>
<td>YbPdₓ₋₃₋ₓGa₈₋₉₋ₓ</td>
<td>2.25–2.61</td>
<td>33</td>
</tr>
</tbody>
</table>

The number of valence electrons of Ce, Yb, and Pd are counted as 3, 2, and 0.

schemes (models 1−4 in Table 6). Although LMTO gives larger energy differences between coloring schemes than VASP, they show the same trend: the more heteroatomic (Ag−Al) contacts in a coloring scheme, the lower its total energy. The same trend was also discovered in the BaHg11-type EuAgxAl11−x in our previous study.9 According to this trend, we constructed model 5 by maximizing Ag−Al contacts (the method of maximizing Ag−Al contacts was described in ref 9). Calculation shows that its total energy is indeed lower than the four random models as expected. Therefore, model 5 is an appropriate model structure for BaHg11-type EuAgxAl11−x. The details of models 1−5 are included in the SI.

DOS and COHP. The DOS and COHP curves of model 5 calculated with TB-LMTO-ASA are shown in Figure 6. The VASP calculation also gives a DOS curve (SI), which is very close to the one shown in Figure 6. In the DOS curve, the 4d bands of Ag manifest as a large peak spanning from ca. −7.5 to ca. −4.5 eV. Leaving this 4d peak out, the overall shape of the DOS curve resembles a parabola (the feature of a noninteracting electron gas) with a state-deficient region (pseudogap) at ca. −0.5 to 0.5 eV, corresponding to vec = 2.32−2.58 e−/atom according to a rigid band approximation. So, when vec = 2.45 e−/atom (EuAg4.0Al7.0), the Fermi level is located in the pseudogap; and the Fermi level falls outside the pseudogap when vec = 2.10−2.30 e−/atom (EuAg4.0Al7.0).

The COHP curves for Eu−Ag/Al, Ag−Ag, and Ag−Al contacts have relatively gradual bonding−antibonding crossovers. At vec = 2.45 e−/atom, the Fermi level is located in their weakly bonding regions. The Al−Al COHP curve, however, has a very steep bonding−antibonding crossover (i.e., Al−Al interactions switch from strongly bonding abruptly to strongly antibonding) and vec = 2.45 e−/atom locates the Fermi level very close to the crossover (at ca. 2.55 e−/atom). A vec value much higher than 2.45 e−/atom will, thus, occupy states that are strongly Al−Al antibonding and destabilize the structure. On the other hand, if the vec is much lower than 2.45 e−/atom, for example, at 2.10−2.30 e−/atom, the structure will also be destabilized because those states that are strongly Ag−Ag, Ag−Al, and Al−Al bonding will be largely depleted. Therefore, the vec of 2.45 e−/atom is

<table>
<thead>
<tr>
<th>Model</th>
<th>Coordination Environment of the 3 Eu Atoms</th>
<th>E<sub>total</sub> per f.u. (eV)</th>
<th>Number of Ag−Al Contacts per Unit Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(red: Ag; green: Al)</td>
<td>LMTO</td>
<td>VASP</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.38</td>
<td>0.89</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.00</td>
<td>0.66</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.58</td>
<td>0.37</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.33</td>
<td>0.21</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

These models all have the same composition (EuAg4.0Al7.0) and same Ag/Al ratio on the original 8g (0.5/0.5), 12i (0.25/0.75), and 12j (0.33/0.67) positions. Models 1−4 are random coloring schemes. Model 5 is obtained by maximizing Ag−Al contacts. The total energy of model 5 is taken as reference (0.00 eV). Details of these five models are included in the SI.
very close to the optimum value for the orbital interactions within the Ag/Al framework of the BaHg_{11}-type EuAg_{x}Al_{11-x}. By comparison, the vec value that optimizes Ag/Al–Ag/Al interactions in BaCd_{11}-type EuAg_{x}Al_{11-x} is 2.30 e\(^{-}/\)atom.\(^9\) This explains the rule governing the competition between the BaHg_{11} and BaCd_{11}-type structures in EuAg_{x}Al_{11-x} ternary systems: the BaHg_{11}-type structure is favored at higher vec (ca. 2.45 e\(^{-}/\)atom) than the BaCd_{11}-type structure (ca. 2.30 e\(^{-}/\)atom).

Conclusions

The BaHg_{11}-type EuAg_{x}Al_{11-x} phases were synthesized and characterized. Temperature has important effects on this phase: annealing at 500 °C gives a “pure phase”, while it transforms into BaCd_{11} and Th\(_2\)Ni\(_{17}\)-type phases at 600 and 700 °C. Composition is also pertinent: the cubic BaHg\(_{11}\)-type structure can only be obtained within a narrow phase around EuAg\(_{4.0}\)Al\(_{7.0}\), which gives a vec of 2.45 e\(^{-}/\)atom. This value is higher than the vec of the BaCd\(_{11}\)-type EuAg\(_{x}\)Al\(_{11-x}\) phases (2.10–2.30 e\(^{-}/\)atom). First principles electronic structure calculations were performed with a model structure built by simulating crystallographic results and maximizing Ag–Al contacts. The calculation results explained why the BaHg\(_{11}\)-type structure forms at higher vec value than the BaCd\(_{11}\)-type structure in the EuAg\(_{x}\)Al\(_{11-x}\) system.

Acknowledgment. This work is supported by NSF DMR 02-441092 and 06-05949. We thank Dr. Sumohan Misra and Prof. Vitalij K. Pecharsky for magnetization measurements. We also thank Prof. Susan E. Lattturner for her valuable discussions and suggestions.

Supporting Information Available: The results of single crystal refinement with 12f site splitting, the SEM and EDS results of the annealed “EuAg\(_{3}\)Al\(_{8}\)” and “EuAg\(_{4}\)Al\(_{7}\)” samples, the details of models 1–5, the DOS curve of model 5 from VASP calculation, and the powder pattern of the NIST Si powder (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.