Sinusitis and Enucleation of Eye of a Cow

J. Terry
Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/iowastate_veterinarian

Part of the Large or Food Animal and Equine Medicine Commons, and the Veterinary Physiology Commons

Recommended Citation
Available at: https://lib.dr.iastate.edu/iowastate_veterinarian/vol13/iss2/16

This Article is brought to you for free and open access by the Journals at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State University Veterinarian by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
field examination of the urine for Leptospira, and cultures of the liver, kidneys, heart, and brain for bacterial growth.

Infectious canine hepatitis is synonymous with fox encephalitis. A filtrable virus is the etiologic agent. After transmission by direct contact with respiratory secretions of infected animals, the virus localizes in the endothelium of liver vessels, vessels of brain, and meninges.

Intranuclear inclusion bodies of the liver.

The surviving pup was given 0.5 cc. of fox encephalitis antiserum per pound of body weight. Within a few hours, the patient appeared more alert and active. Rapid return to normal was noted. This response to treatment with fox encephalitis antiserum is characteristic of acute cases of infectious hepatitis that recover.

Kenneth J. Wales '52

Sinusitis and Enucleation of Eye of a Cow. An aged Guernsey cow entered the Stange Memorial Clinic on June 30, 1950, showing blindness in one eye and enlargement of the frontal sinus. The cow was examined and the cornea of the left eye was found to be ruptured, the entire eye being inflamed. The frontal sinus was enlarged and the left horn stub showed a hemorrhagic discharge. On diagnosis of a suppurative sinusitis of the right frontal sinus with abscessation and involvement of tissues around the left eye, it was decided that enucleation of the eye and trephining of the frontal sinus for drainage be performed.

The abscess was opened and found to be about 4 in. in depth. Irrigation of the wound with KMnO₄ 1:4000 was continued for a week during which time the original depression of the animal became less marked and healing by granulation progressed. The hole at the horn stub still connected with a fistulous opening below and posterior to the eye, and considerable exudate (having a carious odor) was forced out.

On July 12, the patient was restrained on the operating table, the left periorbital area was shaved and washed and 2 percent procaine hydrochloride solution injected for local anesthesia. A classical enucleation was performed, after which the wound was packed with sulfanilamide and two sterile gauze packs. The wound edges were closed with two sections of continuous glovers' sutures of braided silk.

Two days later the medial section of sutures was removed, packs were removed and the cavity irrigated with KMnO₄ 1:3000. Boric acid and air slaked-lime, equal parts, were applied to the wound and fly repellant applied to the area around the cavity.

On July 17, the remainder of the sutures were removed, the area was irrigated and boric acid and air-slaked lime applied. Two days later the two fistulous tracts dorsal and posterior to the infected eye were cleaned and the cavity dusted with sulfanilamide 10 percent, sulfathiazole 5 percent, and urea 85 percent.

The next day warm water was run on the wound and adjoining structures for 15 minutes. This was followed by irrigation and re-application of the sulfanilamide mixture to the lesions.

On July 25 and 26, the cavity was flushed with a 2 percent solution of boric acid. The patient was discharged on July 27; the area was contracting to normal size and the eye socket was filling in with granulation tissue.

J. Terry '52