Soybean Planting Date and Growth and Development Study

Palle Pedersen
Iowa State University

Jason De Bruin
Iowa State University

Jodee Stuart
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports

Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation
Pedersen, Palle; De Bruin, Jason; and Stuart, Jodee, "Soybean Planting Date and Growth and Development Study" (2008). Iowa State Research Farm Progress Reports. 771.
http://lib.dr.iastate.edu/farms_reports/771

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Soybean Planting Date and Growth and Development Study

Abstract
Soybean planted either the last week of April or the first week of May typically produces yields greater than later planted soybean. This project will determine if initiation and duration of particular growth stages, along with main stem node accumulation explain why early planted soybeans (late April/early May) yield greater than late planted soybeans (mid May). Six planting dates with a one week interval were planted at seven Iowa State University (ISU) research farms and growth stages of the plants from the different planting dates were determined twice weekly.

Keywords
Agronomy

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences

This northern research and demonstration farm is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/farms_reports/771
Soybean Planting Date and Growth and Development Study

Palle Pedersen, assistant professor
Jason De Bruin, assistant scientist
Jodee Stuart, agricultural specialist
Department of Agronomy

Introduction
Soybean planted either the last week of April or the first week of May typically produces yields greater than later planted soybean. This project will determine if initiation and duration of particular growth stages, along with main stem node accumulation explain why early planted soybeans (late April/early May) yield greater than late planted soybeans (mid May). Six planting dates with a one week interval were planted at seven Iowa State University (ISU) research farms and growth stages of the plants from the different planting dates were determined twice weekly.

Materials and Methods
The experiment was a randomized complete block design with three replications. Main plots were five planting dates (May 2, May 10, May 16, May 22, and May 29). Plot size was 15 ft x 50 ft, with 25 ft used for biomass sampling and developmental notes and 25 ft was used for harvest. The soybean variety was K201RR/SCN. Seed was treated with an insecticide/fungicide seed treatment, Cruiser Maxx. Each plot was planted in four rows at 30-in. row spacing at a rate of 160,000 seeds/acre and a seeding depth of 1.5 in. Four plants were evaluated to determine growth stage two times a week for 20 weeks until plants reached harvest maturity. The plots were sprayed once during the growing season with Buccaneer to control weeds. They were also sprayed in late July with Pounce to control aphids. Plots were harvested with an Almaco small-plot combine on October 4. Grain yields were adjusted to 13% moisture. Reported grain yields and other harvest measurements are shown in Table 1. Dates at which plants reached a particular growth stage and the maximum number of main stem nodes are shown in Table 2.

Results and Discussion
Greatest yields were attained with May 2 and May 10 planting dates. Yields decreased significantly as planting was delayed after May 10. Soybean planted on May 10 produced one more main stem node compared with all other planting dates. Time between planting and emergence varied and was inconsistent. Overall, it took 5 to 9 dates from planting to emergence. Plant establishment and final stands varied with the highest final population found for the May 22 and May 20 planting dates. Final stand for all planting dates were greater than 100,000 plants/acre. Plants began to flower on June 15 for the May 2 planting date. Flowering was delayed with the delayed plantings. Plants reached harvest maturity 7 days earlier for planting dates that occurred prior to May 10 compared with later dates. This project will continue in 2008 and 2009.

Acknowledgements
We would like to thank Dave Rueber for his assistance with this study. This project was funded by the checkoff and the Iowa Soybean Association.
Table 1. Effect of planting date on soybean plant density, height, lodging, moisture, and yield.

<table>
<thead>
<tr>
<th>Planting date</th>
<th>Plant density × 1000</th>
<th>Height (in.)</th>
<th>Lodging 1-5†</th>
<th>Moisture (%)</th>
<th>Yield (bu/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2</td>
<td>136.0</td>
<td>33.7</td>
<td>1.0</td>
<td>11.5</td>
<td>65.5</td>
</tr>
<tr>
<td>May 10</td>
<td>128.0</td>
<td>34.7</td>
<td>1.0</td>
<td>11.3</td>
<td>65.2</td>
</tr>
<tr>
<td>May 16</td>
<td>133.3</td>
<td>34.3</td>
<td>1.0</td>
<td>11.4</td>
<td>61.7</td>
</tr>
<tr>
<td>May 22</td>
<td>154.5</td>
<td>33.0</td>
<td>1.0</td>
<td>11.5</td>
<td>58.3</td>
</tr>
<tr>
<td>May 29</td>
<td>148.3</td>
<td>35.7</td>
<td>1.0</td>
<td>11.7</td>
<td>54.1</td>
</tr>
<tr>
<td>LSD (0.10)</td>
<td>14.3</td>
<td>NS</td>
<td>NS</td>
<td>0.2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

†Lodging score: the range extend from 1 = erect to 5 = flat.
¶NS, not significant at P ≤ 0.10.

Table 2. Effect of planting date on day of emergence, timing of reproductive state, and maximum main stem node accrual.

<table>
<thead>
<tr>
<th>Planting date</th>
<th>Emergence</th>
<th>Reproductive stage</th>
<th>Maximum main stem nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>May 2</td>
<td>May 11</td>
<td>Jun 15</td>
<td>Jun 19</td>
</tr>
<tr>
<td>May 10</td>
<td>May 15</td>
<td>Jun 19</td>
<td>Jun 22</td>
</tr>
<tr>
<td>May 16</td>
<td>May 22</td>
<td>Jun 26</td>
<td>Jun 29</td>
</tr>
<tr>
<td>May 22</td>
<td>Jun 1</td>
<td>Jun 29</td>
<td>Jul 6</td>
</tr>
<tr>
<td>May 29</td>
<td>Jun 5</td>
<td>Jul 2</td>
<td>Jul 10</td>
</tr>
</tbody>
</table>