The Feeding Value of Heat Damaged Distillers Grains in Cattle Diets

Garland R. Dahlke
Iowa State University, garland@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/ans_air

Part of the Agriculture Commons, and the Animal Sciences Commons

Recommended Citation
DOI: https://doi.org/10.31274/ans_air-180814-805
Available at: https://lib.dr.iastate.edu/ans_air/vol659/iss1/19

This Beef is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
The Feeding Value of Heat Damaged Distillers Grains in Cattle Diets

A.S. Leaflet R2768
Garland Dahlke, Extension Program Specialist, Iowa Beef Center

Summary and Implications
Heat damaged grain including distillers grain does have a salvage value as animal feed. The value of this material can be partially assessed by the visual appearance with darker or more burnt grain being of lesser value than the lighter colored.

Introduction
Heat damaged grain, if not completely destroyed by fire, takes on a roasted appearance ranging from a slight brownish tint to black. These feeds still have some value in cattle rations, but the extent of their value is variable and may be inferred by the darkness of the sample since the heating will darken the sample and theoretically proportionally reduce digestibility. The purpose of this trial was to quantify this heating and reduced digestibility relationship. One note worth maintaining though is that distillers grain will darken not only from heating but also from exposure to air. Darkening from oxidation does not reduce nutrient digestibility to the degree that heating does although the exterior appearance of the grain does look similar. To assess the grain’s value a NIR analysis would be of limited value due to combustion and chemical binding of the normally digestible carbohydrate fraction typical to the grain.

Materials and Methods
Four dried distillers grain samples were obtain of no to somewhat severe heat damage. A 30 Hour In-vitro digestibility trial was performed on these samples at a commercial feed testing lab (Dairyland Laboratory of Arcadia, WI). The resulting digestibility was obtained, subsequent net energy value inferred.

Results
The following pictures display a sample of the grain and the subsequent in-vitro digestibility analysis. Notice that the color of the grain provides a reference of sorts to the subsequent digestibility.

Picture 1. No heating other than mild temperature drying - gold color.

Wet distillers – no drying
NDF = 24.41%
NDF 30 hr Digestibility = 93.4%
IVTDMD = 98.39%
Est. NEg = 0.72 Mcal / lb

Picture 3. Heat damage.

<table>
<thead>
<tr>
<th>NDF</th>
<th>NDF 30 hr Digestibility</th>
<th>IVTDMD</th>
<th>Est. NE g</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.43%</td>
<td>52.73%</td>
<td>87.98%</td>
<td>0.64 Mcal / lb</td>
</tr>
<tr>
<td>36.06%</td>
<td>32.72%</td>
<td>75.74%</td>
<td>0.55 Mcal / lb</td>
</tr>
</tbody>
</table>
Picture 4. Extreme heat damage.

NDF = 46.17%
NDF 30 hr Digestibility = 0.80%
IVTDMD = 54.20%
Est. NEg = 0.40 Mcal / lb