High bandwidth low power operational amplifier design and compensation techniques

Thumbnail Image
Date
2009-01-01
Authors
Kumar, Vaibhav
Major Professor
Advisor
Degang J. Chen
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

The need for high bandwidth operational amplifiers (op amp) exists for numerous applications. This need requires research in the area of Op Amp bandwidth extension. The exploited method in this thesis uses a class of compensation called Indirect Feedback Frequency Compensation in which the compensation current is fed back indirectly from the output to an internal high impedance node, to extend the bandwidth of an Op Amp.

Among various compensation methods for operational amplifiers, indirect compensation offers potentially large benefits in regards to power to speed trade-off. The indirect compensated Op Amps can exhibit significant improvements in speed over traditional Miller compensated Op Amps and result in much smaller layout size and lower power consumption. However the technique has not been widely used in practice due to a lack of clear design procedure. This thesis develops an analytical description of how indirect compensation works and derives key trade off equations among various specifications. These results provide the insight needed for practically designing operational amplifiers with this technique. Based on the results, a step-by-step design procedure is proposed for an operational amplifier using indirect compensation. To demonstrate the proposed design procedure, a two stage Op Amp is designed. The Op Amp achieved a 2 MHz gain-bandwidth

product (GBW) driving a large capacitive load (100 pF). The GBW of the Op Amp was improved by a factor of 10 times compared to the miller compensation scheme. The amplifier documented in this thesis achieved a higher simulated figures-of-merit (FoMs) compared to the state-of-art and can be directly used in integrated systems to achieve higher performance.

Comments
Description
Keywords
Citation
Source
Copyright
Thu Jan 01 00:00:00 UTC 2009