2007

Organic Corn Seed Coat Treatments

Kathleen Delate
Iowa State University, kdelate@iastate.edu

Andrea McKern
Iowa State University

Robert Burcham
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports

Part of the *Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons,* and the *Horticulture Commons*

Recommended Citation
Delate, Kathleen; McKern, Andrea; and Burcham, Robert, "Organic Corn Seed Coat Treatments" (2007). *Iowa State Research Farm Progress Reports.* 833.
http://lib.dr.iastate.edu/farms_reports/833

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Organic Corn Seed Coat Treatments

Abstract
Organic seed treatments have been limited in organic production. Agricoat NaturalII™ is reported to be “an organic liquid biological seed treatment applied as a seed film coating and formulated with beneficial microbes, macro and micro nutrients, amino acids, organic acids, enzymes, proteins, vitamins, and minerals.” It is applied to “promote root growth and protect seedlings against early season soil-borne pathogens, improving germination, stand establishment, and uniformity.”

Keywords
Horticulture, Agronomy

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences | Horticulture
Organic Corn Seed Coat Treatments

Kathleen Delate, associate professor
Andrea McKern, research assistant
Departments of Horticulture and Agronomy
Bob Burcham, ag specialist

Introduction
Organic seed treatments have been limited in organic production. Agricoat Natural II™ is reported to be “an organic liquid biological seed treatment applied as a seed film coating and formulated with beneficial microbes, macro and micro nutrients, amino acids, organic acids, enzymes, proteins, vitamins, and minerals.” It is applied to “promote root growth and protect seedlings against early season soil-borne pathogens, improving germination, stand establishment, and uniformity.”

Materials and Methods
Two treatments, replicated eight times in a randomized complete block design, consisted of organic corn seed (BR 3448) treated with AgriCoat Natural II™ (Agricoat LLC, Soledad, CA) and a control (no seed treatment). Seed was planted May 12, 2006, at 32,000 seeds/acre in a certified organic field that had received an application of hoop compost at 12 tons/acre on April 10, 2006. Plots were harrowed on May 22, rotary hoed May 26 and June 1, and cultivated June 5 and 19, 2006. Plant stands were counted on June 8. Plots were harvested with a combine on November 1, 2006.

Results and Discussion
In 2006, there was no difference in corn stands between treatments (Table 1), despite an average increase of 333 plants/acre with the organic seed treatment. This contrasts with 2005 results, where stands were significantly greater in the treated plots. Yields were also not different, with the coated seed plots yielding 194.5 bu/acre and the uncoated seed plots yielding 196.5 bu/acre (Table 1). These results may have been due to the warmer weather during the May planting of corn compared with cooler weather in 2005. Despite the lack of differences in 2006, yields from this organic variety were excellent, especially under the drought-like conditions of the 2006 season. Protein levels in harvested grain were also greater at 8.5% from the treated seed (Table 2).

Acknowledgments
We would like to thank the Leopold Center for Sustainable Agriculture, the Wallace Foundation, Practical Farmers of Iowa, David Rosmann, Magda Marin, Daniel Rosmann, Greg Lilly, Todd Zehr of Agricoat LLC for providing the seed treatment, and Maury Johnson Blue River Hybrids for providing seed.

Table 1. Corn stands and yields at Neely-Kinyon Farm, 2006.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Corn stands plants/acre</th>
<th>Corn yield bu/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coated seed</td>
<td>26,667</td>
<td>194.5</td>
</tr>
<tr>
<td>Uncoated seed</td>
<td>24,667</td>
<td>196.5</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Table 2. Corn grain quality at Neely-Kinyon Farm, 2006.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Moisture %</th>
<th>Protein %</th>
<th>Oil %</th>
<th>Starch %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coated seed</td>
<td>15.69</td>
<td>8.49a</td>
<td>3.61</td>
<td>59.97</td>
</tr>
<tr>
<td>Uncoated seed</td>
<td>15.86</td>
<td>8.31b</td>
<td>3.63</td>
<td>60.03</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>NS</td>
<td>0.17</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>