1-1-1991

Galloping and broken conductor analysis of transmission lines

Reza Anjam

Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Engineering Commons

Recommended Citation

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Galloping and broken conductor analysis
of transmission lines

by
Reza Anjam

A Thesis Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
Department: Civil and Construction Engineering
Major: Structural Engineering

Iowa State University
Ames, Iowa
1991
<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>17</td>
</tr>
<tr>
<td>3. DEVELOPMENT AND APPLICATION OF COMPUTER SIMULATION</td>
<td>30</td>
</tr>
<tr>
<td>4. DISCUSSION OF THE RESULTS</td>
<td>62</td>
</tr>
<tr>
<td>5. CONCLUSIONS</td>
<td>68</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>71</td>
</tr>
<tr>
<td>APPENDIX A. SUMMARY OF PERTINENT EQUATIONS</td>
<td>75</td>
</tr>
<tr>
<td>APPENDIX B. MODIFIED CABLE 7 USER MANUAL</td>
<td>84</td>
</tr>
<tr>
<td>APPENDIX C. NUMERICAL DATA FOR ANALYSES</td>
<td>89</td>
</tr>
<tr>
<td>APPENDIX D. FATIGUE ANALYSIS</td>
<td>109</td>
</tr>
<tr>
<td>APPENDIX E. COMPUTER PROGRAMS LISTING</td>
<td>113</td>
</tr>
</tbody>
</table>
iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my major professors Dr. Mardith Baenziger and Dr. Terry J. Wipf. Their guidance and understanding has been most appreciated.

I would also like to thank Dr. Fouad Fanous and Dr. Frederick Graham for their participation as members of my graduate committee.

A special thank is extended to my good friend Mr. Sanjeev Gupta whose dedication and hard work was instrumental in the success of the project.

Finally my deepest thanks are extended to my parents Dr. Ali Anjam and Mrs. Ashraf Aletaha for their kindness and support.
1
1. INTRODUCTION

1.1 General Statement of the Problem

Failure of transmission lines is often due to the conductor forces exerted on the supporting structures, the insulators and the towers. These failures can sometimes be contributed to defective design or faulty components. In many other instances, however, a lack of knowledge of the severe loads, which the structure could be subjected to at some point during its lifetime, results in designing the structure for loads much lower than it would experience. In this study, a conductor line analysis was undertaken in association with the failure of the 345 KV Lehigh / Sycamore line, Fig. 1-1, owned by the Iowa Power Company of Des Moines, Iowa (IP) and several other midwest utilities. The project, funded by the owners of the line, was divided into three tasks; a study of the supporting towers, also performed at I.S.U. [1], an analytical study of the conductors and an experimental study of the insulator components. The last two tasks are presented in this thesis.

1.2 Analysis of Conductor Lines

1.2a Types of conductor loads and conductor motions

The conductor loads investigated in this study were due to galloping and loss of line tension due to failure of support structures. These conductor loads, and the conductor
Fig. 1-1: Lay out of the transmission line
motions associated with them, often play a prominent role in the failure of transmission lines. Some of the terms used in describing these conductor loads and motions are defined below.

Galloping motion of a conductor is believed to occur due to flow of air over conductors, especially conductors covered with asymmetrical ice. Although quite complicated, the galloping motion can be simplified to a primarily vertical harmonic motion [2]. Galloping motion magnifies the loads in a conductor, especially the vertical end forces on the supports. Conductor galloping is cyclic in nature and under sustained winds can cause fatigue problems in support components.

Conductor sag can be defined as the distance between the lowest point in the conductor and the cord connecting the end points of the conductor, Fig. 1-2. Conductor sag and shape are closely related to the forces in the conductor. For a given span, conductor sag is inversely related to the horizontal force in the conductor. The shape of a conductor can be defined by catenary formulas [3].

Loss of line tension due to failure of a support structure or a break in a conductor has become known as a broken conductor failure. This is a dynamic problem resulting from a sudden force imbalance due to breaking of a conductor, tower failure or a broken insulator. The two dimensional transmission line towers are designed primarily to support the
weight of the conductors, with the conductors strung such that the horizontal forces in the conductors of all the spans are equal. Following a break in a conductor line, the adjacent structures experience a force imbalance by virtue of supporting conductors on one side only. This force imbalance is magnified significantly by the dynamic motion associated with the break.

1.2b Types and extent of damage in transmission line systems

The forces from conductors are directly applied to the supporting insulators which are in turn supported by the transmission line towers. In the event of occurrence of galloping or broken conductor, all of the components of a

Fig. 1-2: Conductor sag and end forces
transmission line could be exposed to loads beyond the anticipated design loads. The damage due to these excessive forces can be classified broadly as follows:

- The conductors
 - Excessive stretching
 - Excessive sag
 - Rupture
 - Separation from the insulator

- The insulators
 - Rupture of the insulator rods
 - Shearing of the insulator rods [4]
 - Separation from the tower

- The towers
 - Buckling under longitudinal forces
 - Buckling and turning under torsional forces
 - Shearing of the crossarm
 - Buckling of the bracing
 - Failure of the connections

1.3 The Iowa Power Project

1.3a The description of the Lehigh/ Sycamore 345 kv line

On March 7, 1990, a portion of the Lehigh/ Sycamore 345 kv line, shown in Fig. 1-1, was completely destroyed. The damaged portion, between structures 51 and 119, consisted of spans between 875 feet to 1550 feet. The towers, H frame steel
structures (Fig. 1-3), ranged in height from 75 to 130 feet. The conductors were of the type 795 MCM 26/7 ACSR (DRAKE) and were running in three phases with two conductors per phase. The stringing tension for the conductors was 6000 lbs. Fig. 1–4 shows a segment of the line and some of the design parameters.

Following the event, Tower No. 99 was the only structure that remained standing. Towers No. 100 to 119 were deformed away from Tower No. 99, in a northerly direction; and Towers No. 98 to 51 were deformed away from Tower No. 99 in a southerly direction.

The weather conditions that led to this event were described in a report that was received from the state of Iowa climatologist [5]. In short, heavy rainfall and freezing conditions contributed to heavy ice formations on the conductors which along with moderate winds created unfavorable conditions for the line. The amount of ice recorded on the following morning, 14 hours later and at 40 F, was between 1.25 to 1.5 inches. The average wind speed during the event was 12.1 MPH with a peak wind gust of 31 MPH.

From eyewitness accounts, there was a noticeable sag in the line under the ice; and one eyewitness reported to have seen some galloping of the conductors, prior to the collapse of the line. In addition to eyewitness accounts, several trips were made to the sight to document the damage. The data
Fig. 1-3: A typical transmission line tower
DESIGN CONDITIONS

CONDUCTOR TENSION = 12,480 lbs TYPE: 795 MCM 26/7 ACSR (DRAKE)
SHEILD WIRE TENSION = 6000 lbs RADIUS = 1.108 in
RADIAL ICE = 0.5 in, WIND LOAD = 4 psf WEIGHT = 1.094 psf

Fig. 1-4: A segment of the transmission line and the design parameters
collected (measurements, pictures, video tapes etc.) were summarized in a report to IP [5]. All the typical damage types, described earlier, were observed throughout the line. Here are some of the noticeable distresses observed:

- Tension failure and bunching of the strands of the conductors and shield wires, Fig. 1-5.
- Separation of conductors from insulators and separation of shield wires from static masts, Fig. 1-6.
- Separation of insulators from towers at inboard and outboard arms, Fig. 1-7.
- Breaking of the insulators into pieces and shattering of the insulator glass bells, Fig. 1-8.
- Buckling and tearing of the bracing, Fig. 1-9.
- Dragging of the crossarm from "A" to "B" (see Fig. 1-10); and dragging of other components, such as the insulators, after contacting the ground.

1.3b The scope of the project

The objective of the project, as outlined in I.S.U.'s proposal accepted by IP, was to document the structural distresses especially in the vicinity of Towers No. 98, 99 and 100 and to determine from analysis the most likely cause of failure. Four tasks were outlined:

1- Documentation of the failures near the structures 98, 99 and 100 to clearly describe the event.
2- Identification of failures, including the structural frame, conductor connections, insulators, etc. Analysis of the documented failures to determine the magnitude of the loads to cause the failure. This analysis includes numerical calculations and experimental tests on components.

3- Determination of the possible failure scenarios based on the analysis in part 2 and a structural analysis of the intact system comprised of towers and conductors [1]. An evaluation of the most likely scenario by working backward to determine the type and the magnitude of the forces.

4- A final report that includes the results of all the tasks outlined.

The structural analysis of the intact system, referred to in Task 3, was undertaken by Mr. Sanjeev Gupta [1]. The research presented in this thesis was closely tied to Mr. Gupta's work especially in the areas of providing input loads and verifying the conductor loads obtained by Mr. Gupta's analysis, which was performed on a transmission line finite element analysis package referred to as ETADS [1].
Fig. 1-5 (a): Conductor tension failure

Fig. 1-5 (b): Bunching of the strands of the conductor
Fig. 1-6 (a): Conductor after separation from insulator

Fig. 1-6 (b): Shield wire after separation from static mast
Fig. 1-7: Separation of insulators from the crossarm
Fig. 1-8 (a): Broken insulator

Fig. 1-8 (b): Shattered insulator glasses
Fig. 1-9: Buckling and tearing of the bracing
2. Literature Review and Background

7.1 General

The behavior of a transmission line as a continuous structural system is a very complicated problem. S. Bhattacharya has discussed the complexity of the problem and some of the variables involved [9]. The conductor motions and loads, referred to in Chapter 6, are only a few of the transmission line phenomena involved in this behavior. These and some of the aspects of transmission line studies not directly dealt with in this thesis, are mentioned here.

An overview of the line is given in the Transmission Line chapter in addition to galloping, each support type, and the development of the conductors are studied by researchers. Krishnasamy [8] divided line categories into line failure for ice and wind loads, including galloping. He showed the importance of assessing the probability of assessing the probability of the past.
2. Literature Review and Background

2.1 General

The behavior of a transmission line as a continuous structural systems is a very complicated problem. S. Bhattacharya has discussed the complexity of the problem and some of the variables involved [8]. The conductor motions and loads, referred to in Chapter One, are only a few of the transmission line phenomena involved in this behavior. These and some of the other aspects of transmission line studies, not directly dealt with in this thesis, are mentioned here.

An overview of the problem of conductor motion is given in the Transmission Line Reference Book [6]. In addition to galloping, aeolian vibration and wake-induced movement of the conductors are discussed.

The loading on the conductors, ice and wind, have been studied by researchers such as F.A. Hoffmann and S. Krishnasamy [9,10]. Hoffmann has discussed different categories of ice loading and has compared the guide lines for ice-plus-wind combinations in the National Electrical Safety Code (NESC) [7] with his statistical approach, also suggested by the American Society of Civil Engineers (ASCE). Krishnasamy analyzed the data from the response of actual lines to ice and wind loads, including galloping. He showed the importance of assessing the ice and wind loads more realistically than in the past.
For the study of unbalanced tensions in transmission lines, Campbell has looked at incremental displacement methods [11]. Peyrot and Goulois have developed a similar, but much more general, method [12].

Two theories have been proposed to explain galloping of conductors, Den Hartog theory, which considers a vertical motion mode, and the torsional theory [13]. Neither approach had produced simple formulas for the load transferred to the conductor supports. However, Li Li developed a simplified formula to estimate these loads [2].

The major parameters affecting the peak loads on the transmission line towers, following a break in the conductor, were determined by full scale tests by Haro, Govers and Peyrot [14,15,16] and small scale model tests by Govers, Ferry-Borges and Mozer [15,17,18]. These parameters are: span length, initial tension, insulator length, tower stiffness, number of spans and conductor material. Peyrot developed a semi-analytical formula for the impact factor, ratio of peak tensions to residual tension in the line. Baenziger (formerly Thomas) developed a dynamic model to produce the time history of the broken conductor loads [19].

2.2 The Cable Element

A transmission line system may be analyzed as a system of supports interconnected by conductors. The transmission line
conductors, in turn, can satisfactorily be modeled by lumped masses connected by cable elements, which is a massless four degree of freedom element stretched in a vertical plane in the shape of a catenary, Fig. 2-1. The governing relationships, for the elastic cable element can be found in Appendix A. The relationships in Appendix A are based on a linear cable element. However, the nonlinear properties of conductors, even though complex in nature because the conductors are usually made of interwoven strands of different metals, can be incorporated into the linear cable element by a correction factor applied to the unstretched length of the conductor.
This factor can be obtained from manufacturer's data based on the anticipated load levels [12].

2.3 Related Works by Dr. Alain Peyrot

The major difficulty in the analysis of the cable element is that the unstretched length of the cable can not easily be measured physically and does not easily lend itself to mathematical expressions. Therefore, the analytical relationships for some of the variables of the catenary cable element, given in Appendix A, can not be solved explicitly. Dr. Peyrot used arguments and variables of computer subroutines to describe the relationships between these variables. He, then, used an iterative technique to solve for these variables. The subroutines involved in this technique have been referred to as PCAXLO and PCAFX [12].

2.3a The subroutine PCAXLO

This subroutine uses Eq. A-1 of the catenary relationships, to obtain the actual length of the conductor from installation conditions. Assuming a constant force throughout the conductor, the original length of the conductor can be closely approximated, equation A-7 Appendix A. Where more accuracy is needed, e.g. to obtain valid results in a dynamic analysis, the original length can be exactly obtained
by iterative interaction with PCAFX which does not use approximate equations [12].

2.3b The subroutine PCAFX

Knowing the physical properties of the conductor and its original length, from PCAXLO, the cable element end forces can be obtained, for given conductor horizontal and vertical projections, Appendix A.

PCAFX uses catenary relationships and the equations of static to obtain the cable vertical and horizontal projections in terms of the forces at the first point. The misclosure, from comparing the projections obtained here with the known values, is used to obtain linear corrections to be applied to the forces at the first end. This process is repeated until the misclosure is less than a preset tolerance. This iterative approach requires starting values for the forces at the first end. After convergence, the values for the remaining end forces, tensions and the stretched length are obtained. The equations for this solution are presented in Appendix A.

The coordinates of the points along the cable can be obtained by dividing the cable into segments, and using Eqs. A-4 and A-5 with the unstretched length equal to the length of the segment. The lowest point of the conductor, the sag point, occurs where the conductor has a slope of zero, or where the vertical force is zero. This corresponds to a length of
segment, equal to the vertical force at the first end divided by the weight of the conductor per unit length.

Another application of PCAFX, discussed by Dr. Peyrot, is an algorithm to find the forces in, and the configuration of a conductor resting on the ground. This algorithm is explained in detail in Chapter 3, where a computer subroutine based on this algorithm is developed.

2.4 Related Works by Dr. Mardith Baenziger

The conductor analysis portion of this project used two computer programs developed by Dr. Baenziger. These programs, used for static and dynamic analysis of conductors, have been referred to as CABLE and CABLE 7, respectively.

2.4a The program CABLE

This program is a user friendly utility which uses the subroutines PCAXLO and PCAFX to analyze one span of a conductor line. The program provides the user with conductor end forces and configuration at stringing and after loading with ice or temperature change. The attachment points of the conductor to the vertical insulators define the location of the end points; and the cartesian coordinate system has its origin at the first point.

The program requires the following information as input:

- Elevation of the attachment points
• The horizontal span
• Cable properties
 Diameter
 Weight
 Cross sectional area
• Material properties (of each material used)
 Modulus of elasticity
 Coefficient of expansion
• Stringing tension
• Temperature at stringing
• Temperature after loading
• Amount of ice (radial thickness or weight)

The input to CABLE is interactive and it has an editing feature for easy modifications.

2.4b The program CABLE 7

This program, originally written in FORTRAN, simulates the broken conductor problem [19]. Following a rupture in a conductor line, a sudden horizontal force imbalance initiates movements in the insulator of the adjacent span. This force imbalance is often the result of a break in the conductors, the insulators or the collapse of one of the supporting structures. The insulator motion contributes to development of dynamic loads of larger magnitudes in the first span. The dynamic forces on the supporting structures, recorded
following a break in actual lines, have consistently shown the existence of two major peaks in the load diagram [19].

Two prominent mechanisms have been associated with these peaks. The first peak is the result of the recoil of the insulator, in the adjacent span, away from the break and occurs when the insulator has swung to a horizontal orientation, where no more recoil is possible. Following the recoil of the insulator, the adjacent span has decreased by the length of the insulator. The conductor in this span bottoms down, drops under the force of gravity to a point where there is no slack in it, giving rise to the second major peak. These major peaks generally occur within 2 to 5 seconds of the break. Since the peaks occur with the insulator in a horizontal position, the impact on the towers is particularly severe since they have been primarily designed to support vertical not longitudinal loads.

In CABLE 7, the line is modeled as a plane system of lumped masses interconnected by cable elements and attached to springs or fixed supports, Fig. 2-2. The spring constants are equivalent to the horizontal stiffness of the supports including contributions from the remaining attached components such as the conductors and the shield wires. The plane system assumption is valid for the majority of the cases since the force on the tower adjacent to the break is not greatly affected by the line configuration a few spans away from the
CABLE 7 uses an iterative linear acceleration method to compute the movement of the lumped masses. The corresponding forces in the cable elements are obtained by calling PCAFX. Dynamic equilibrium at each lumped mass is checked at the beginning and end of the time interval [19].

Fig. 2-3 shows the forces acting on a typical lumped mass, tensions from cable elements, damping forces and inertial forces. The acceleration corresponding to the force imbalance in the direction of each degree of freedom is used to obtain the displacement of the lumped masses at the end of
the time interval. The acceleration corresponding to this force imbalance is compared to the acceleration from the linear acceleration assumption. If the difference is not within acceptable tolerance, the constant of linear acceleration is proportionally modified and the procedure is repeated. The equations for this solution are presented in Appendix A.

The input to CABLE 7 consists of the following [20]:

- Number of spans considered
- Number of cable elements per conductor span
- Initial horizontal line tension
- The length of time and the time interval used
- The line configuration
Elevation of the supports

The horizontal span between the supports

The length of the insulators

• Conductor properties
 Cross sectional area
 Modulus of elasticity
 Weight per unit length

• Insulator properties
 Weight
 Axial Stiffness

• Tower properties
 Weight
 Horizontal stiffness

CABLE 7 is capable of providing the following output for the span adjacent to the break [20]:

• The force in the first insulator versus time
• The force in the second insulator versus time
• The horizontal and vertical components of the above forces
• The displacement of the first tower and insulator
• The displacement of the second tower and insulator
• The displacement of the conductor at midspan
• The maximum and minimum values for all the above
• Force versus time plots
• Displacement versus time plots
The broken conductor forces from CABLE 7 are consistent with the mechanisms recognized for this phenomena. It has been shown that the maximum displacement of the lower end of the first insulator coincides with the first peak; and that the maximum displacement of the conductor midspan coincides with the second peak. In addition, CABLE 7 output is in close agreement with many full and reduced scale model studies [20].

2.5 Related Works by Mr. Li Li

2.5a The galloping problem

Aerodynamic forces from air passing over a conductor (especially one covered with ice) produce a motion in the conductor referred to as galloping. Galloping is a large amplitude, low frequency motion, that occurs primarily in the vertical plane [2]. Using cable dynamics theory and the theory of partial differential equations, Mr. Li Li was able to develop a simplified approach to determine the dynamic loads on the supporting structures due to vertical plane galloping of conductors.

Assuming a constant galloping amplitude and an initial sinusoidal displaced shape, Mr. Li Li developed relationships to express the galloping frequency, the galloping amplitude and the maximum galloping force in terms of known line parameters. Some of the relationships developed by Mr. Li Li are given in Appendix A [2]. The relationships given in the
appendix are for a conductor with both ends at the same level and a symmetrical shape.

In order to verify his simplified approach, Mr. Li Li made a comparison with a set of field test data. He was able to show good agreement, within 6% of the magnification factor for vertical end forces, between the results from his approach and the result of the field tests [2].
3. DEVELOPMENT AND APPLICATION OF COMPUTER SIMULATION

3.1 Software Developed for the Project

As discussed in the previous chapter, conductor analysis is often performed through computer simulation. Computer simulation of the conductor lines for this project was performed with three primary objectives in mind:

1- To obtain the loads due to conductors for the various types of conductor motion believed to have occurred in the transmission line.

2- To verify the conductor loads given by ETADS.

3- To provide input to ETADS, for conductor analysis cases not available on ETADS.

The in-house software available at I.S.U., CABLE and CABLE 7, seemed adequate for the most part in meeting the above objectives. Nevertheless, some modifications and additions were deemed necessary.

3.1a Additions and modifications to CABLE

A second option was added to determine conductor configuration and tension when the conductor original length is known. This option is useful in determining if a conductor has lowered to the point that it touches the ground, following a change in the conductor tension or end positions.

In visiting the area near Towers No. 98, 99 and 100, the eastern conductor, originally spanning between Towers No. 98
31

and 99 and between Towers No. 99 and 100, was lying on the ground, realigned between towers No. 98 and 100, Fig. 3-1. This suggested that the conductor had separated from the eastern insulator of Tower No. 99, which was still hanging from the tower. The conductor span was at that point defined as the distance between Towers No. 98 and 100. This appeared to have occurred prior to the collapse of the line. In investigating this scenario, it was essential to obtain the residual conductor loads, in the separated conductor, to determine the resulting horizontal force imbalance exerted on Towers No. 98 and 100. The change in the load in the separated conductor would depend on whether or not the conductor was touching the ground.

The original conductor length for the span between Towers No. 98 and 99 and Towers No. 99 and 100 was determined using Option 1 of CABLE. The combined length was then used with Option 2 to determine the configuration of the conductor between Towers No. 98 and 100.

If a conductor is touching the ground, the forces in that conductor, depending on the length of the conductor resting on the ground, will significantly be reduced; thereby creating a sizable horizontal force imbalance in the supporting towers. An option was required to determine the configuration of the grounded conductor and the corresponding loads in that conductor. Therefore, Option 3 of CABLE was developed.
Fig. 3-1: Plan view of area near Towers No. 98, 99 and 100 after transmission line failure
The algorithm used was obtained from reference [12]. The assumption was made that the grounded conductor could slide on the ground until the tensions at the left and the right of the conductor are the same. The first step, in Option 3, is to call PCAFX to locate the lowest point in the conductor had the ground not existed. This point is then brought up to the level of the ground. This point will be referred to as the original ground point. By calling PCAFX, the low point of the conductor portion to the left of the original ground point is located and this segment is horizontally stretched along the ground. This procedure is continued until no conductor segments sag lower than the ground level. The position of the last point touching the ground is adjusted to ensure the difference in tension between the grounded portion and the hanging portion is within a specified tolerance. If the tension in the grounded portion is less than the tension in the hanging portion, the grounded portion is stretched more by moving the last point closer to the support. This procedure is repeated for the portion of the conductor to the right of the original ground point.

The sliding of the conductor on the ground is accounted for by adjusting the location of the original ground point. By moving this point toward the portion with higher tension, the horizontal tension imbalance at the original ground point is reduced. This movement is proportional to the tension
imbalance and the rate of change of that imbalance with movement. The algorithm finally converges when the difference in the horizontal component of tension, between the left and the right portions of the conductor, at the original ground point, is within a specified tolerance. The galloping option is incorporated in options 1 and 2 to obtain the maximum end loads under a harmonic galloping motion. Such motion is expected to take place with an ice covered conductor line and in the presence of sustained winds, conditions encountered typically during an ice storm. There was evidence of such motion prior to the collapse of the Lehigh-Sycamore line according to one of the eyewitnesses.

The approach used in this modification to CABLE was Mr. Li Li's simplified approach, discussed in the previous chapter. After the conductor end loads, in Options 1 and 2, are obtained, the galloping magnification factors, for the vertical and horizontal end loads are applied to obtain the maximum values of these cyclic loads. The frequency of the motion and the galloping amplitudes are also determined from the approximate formulas. Based on the galloping frequencies and the maximum loads, time histories of these simplified galloping loads can be obtained. See Appendix C.

A few modifications were needed in order to apply the galloping factors to the end forces from CABLE. The simplified approach is based on a symmetrical conductor shape with the
ends of the conductor at the same level. This assumption is not true for the majority of existing lines. However, the value of the sag based on this assumption is a good approximation of the actual sag since the vertical projection of the ends of conductor is small compared to the span length. For this reason, the galloping magnification factors were obtained based on the approximate sag formula used in Mr. Li Li's approach, to simulate the symmetrical shape of the conductor, and applied to the forces at each end. This would be equivalent to galloping in a slightly tilted plane; however, the angle of the tilt is so small that it does not change the direction of the end forces significantly.

3.1b Additions and modifications to CABLE 7

The loads for a broken conductor phenomena, discussed in the previous chapter, could be obtained by using CABLE 7. Sudden force imbalance was suspected to have taken place at several locations in the IP line studied. The force imbalance could have been introduced due to the collapse of an adjacent tower or due to the grounding or rupture of the conductor on one side of a tower.

CABLE 7 was originally written in ASCII FORTRAN without any interactive capabilities and a slower, less powerful computer. Modifications were necessary to adapt CABLE 7 to a micro-computer. The objectives were to make CABLE 7 more user
friendly and to create more flexibility with respect to input and output, especially the graphics. A graphic screen was added to display the movement of the conductor in the span adjacent to the break. This conductor-movement option had not been available before; and it was hoped that it would enhance the understanding of the broken conductor problem.

MICRO SOFT QUICK BASIC was chosen because of its graphic and animation capabilities. The following features were added to CABLE 7:

1- A graphic screen demonstrating the motion with time of the conductor and insulators, in the span adjacent to the break. In the lower portion of this screen, a plot of the load versus time for the first insulator is shown. See figures 3-2 and 3-3.

2- A post processor to create plots of selected load and displacement variables versus time.

These plots and the conductor motion screen are very useful in monitoring and documenting the broken conductor phenomena. They make possible correlating conductor loads to conductor and insulator motions at any given time. Using these features, the following observations were made.

Following a break, two major peaks in the insulator load time history are expected. The mechanisms involved with each peak can clearly be seen on the conductor motion screen. The insulator adjacent to the break, is seen to recoil from its
Fig. 3-2: Displaced conductor at first peak

Fig. 3-3: Displaced conductor at second peak
original position and swing into a horizontal position. The corresponding load in the insulator, from the tension plot in the lower portion of the screen, is indeed the first major peak before the load begins to drop (point A in Fig. 3-2). The insulator remains in a predominantly horizontal position. The second peak is seen to occur when the conductor has dropped to a point where there is no additional slack in it. This corresponds to the bottoming down of the conductor (point B in Fig. 3-3).

In addition to the two major peaks, a series of minor peaks appear in the load diagram of the insulator, Fig. 3-4. A description of the source of these minor peaks could not be given before. However, with modified CABLE 7, these minor peaks can be tied to the insulator motion. After swinging horizontally, the insulator oscillates up and down in that horizontal position. The minor peaks, as well as the two major peaks, seem to correspond to these oscillations. In fact, the average period of this oscillation seems to roughly match the time between these peaks. See Fig. 3-4.

The oscillating motion in the first insulator, and in the conductor of the first span, is initiated by the force imbalance due to a break in the system. The amplitude of this motion, and the corresponding force on the tower, begin to damp out after the second major peak, Fig. 3-5. In this figure, point A in Fig. 3-5 (b) is the point of maximum
Fig. 3-4: An example of the loads and displacements in the insulator adjacent to the break.
displacement of the conductor at midspan which corresponds to bottoming down or the second peak. Therefore, it can be said that if the tower of the first insulator withstands the two major peaks, the dynamic forces will dampen out and cascading of the towers should not take place. However, if the first tower fails, an entirely new force imbalance is introduced at the second tower and the cascading of the towers could take place.

In addition to the up and down motion of the conductor described above, a wave motion, which propagates away from the break, has been detected in conductors following a break. This wave motion can also be observed in the conductor motion displayed in CABLE 7. This, and the other features of CABLE 7 discussed above, strongly suggest that CABLE 7 does closely simulate the broken conductor phenomena.

The format of the input file for the modified CABLE 7 has generally been kept unchanged. One exception is the addition of the variable GINT which represents the number of time intervals for which the displaced conductor shape is displayed. Appendix B contains a brief user manual for the modified version of CABLE 7.

Another important modification to CABLE 7 was the inclusion of provisions to allow for the analysis of dead end towers which do not have any hanging insulators. By specifying 0.0 for the variables related to the insulator of the dead end
Fig. 3-5: Insulator and conductor movement, seen in a broken conductor phenomena
tower, the program renumbers the degrees of freedom omitting insulator. The output file was also modified, substituting the first conductor cable element for the first insulator.

The dead end feature was used for Tower No. 100. The load and displacement plots of this tower did not demonstrate the same characteristics as the plots of towers with hanging insulators. The plots for this, and the other towers studied, are given in the next section. A discussion of the results and the differences observed in the results are presented in the following chapter.

3.2 Application of Software to the Project

The second task of the project was to identify the failures documented in task one, and to determine the magnitude of the loads required to cause these failures. Determination of some of these loads was pursued by the application of the modified versions of CABLE and CABLE 7.

3.2a The eastern insulator of Tower No. 99

One of the pieces recovered from the area near Tower No. 99 was identified as the socket y clevis, Fig. 3-6, a component of the eastern heavy angle insulator suspension assembly, Fig 3-7. The ultimate capacity of this piece was rated at 36 kips [5]. The possibility of the failure of this
component as the initiator of the event was investigated by application of Option 1 of CABLE.

The resultant force, in the suspension insulator under consideration, was due to conductors spanning between Towers No. 98 and 99 and between Towers No. 99 and 100, which formed an angle of 148.92 degrees at Tower No. 99. The forces in each conductor of these spans, for various radial ice thicknesses formed on the conductors, are given in Table C-2 of Appendix C. The resultant forces at the eastern insulator of Tower No. 99, for the various radial ice thicknesses, have been plotted in Fig. 3-8. In this plot, the solid line represents the resultant force without the galloping effects; and the dotted line represents the resultant force when galloping effects are included. The galloping forces in this figure are based on the assumption that the lines gallop with the same frequency and completely in-phase. This is not an unreasonable assumption since the frequency of galloping in individual conductors did not vary by very much (less than 10%), and the span lengths were also similar. See Appendix C. However, the main reason for this assumption was that when the conductors gallop in phase, the vertical forces created are additive resulting in the maximum force through the insulator.

It can be seen, from Fig. 3-8, that the ultimate capacity of the insulator, 36 kips, is reached with 1.5 inches of radial ice when galloping is considered, and with 1.7 inches
Fig. 3-6: The socket Y clevis of Tower No. 99, recovered after the failure.

Fig. 3-7: Heavy angle insulator suspension assembly.
Fig. 3-8: The resultant of conductor forces in the eastern insulator of Tower No. 99

of radial ice when galloping is not included.

Galloping of conductors covered with ice in presence of winds is not uncommon; and one of the eyewitnesses reported the galloping of the lines a few hours before the line failure. The ice thickness measured in the field was 1.25 to 1.5 inches at 40 °F and fourteen hours after collapse of the line. Since the temperature remained near freezing for the
most part of that fourteen hours [4], it would be reasonable to assume 1.5 inches of ice formed on the conductors. This lower value of ice thickness suggests that galloping could have occurred and thus contributed to the breaking of the eastern insulator socket y clevis.

When considering the effects of galloping, fatigue analysis should be considered due to cyclic loading at high stresses. A thorough fatigue analysis for the insulator could not be performed, due to the hindrances encountered in running the required experimental tests. However, a simplified study of the fatigue in the insulator revealed that only 1.3 inches of radial ice was required to exceed the capacity of the insulator. See Appendix D. The ice thickness considered for the events following the insulator break will be maintained at 1.5 inches based on the field evidence and the uncertainty of fatigue study to predict the loss of strength in the insulator. It can be concluded that the forces in the conductors, due to accumulation of ice, were sufficient to cause the separation of the conductors from the eastern insulator of Tower No. 99. This indicates that the scenario which considers the breaking of this insulator to be the initiator of the collapse of the line could be a valid one.
3.2b Forces in the separated conductor

After the separation of the conductors from the eastern insulator of Tower No. 99, presumed to have taken place with 1.5 inches of radial ice, the conductors would have been spanning between Towers No. 98 and 100. This would mean a shorter horizontal span for the same unstretched length of the conductor. The configuration of the conductors for this new shorter span was obtained by application of Option 2 of CABLE. The results of this analysis, for the assumed conditions, are given in Table C-3 of Appendix C.

Comparing the horizontal tension in the conductor from Tables C-2 and C-3, we can see that the tension in each conductor would have dropped by about 10 kips, from about 24 kips to about 14 kips. However, the distance between the first attachment point and the lowest point in the separated conductor exceeds the height of the tower, 307 feet versus 80 feet. Therefore, a large segment of the separated eastern conductors must have been resting on the ground; and the forces in those conductors would have significantly less than 10 kips.

3.2c Forces in the grounded conductors

After verifying that the separated eastern conductors were lying on the ground, it was necessary to determine the length of each conductor on the ground and the forces in each
conductor. This was accomplished by the application of Option 3 of CABLE. The results of this analysis, for the conditions stated for span 98 to 100, are given in Table C-4 of Appendix C.

From this table, about 92% of the original length of conductors had been resting on the ground after the failure of the eastern insulator; and as a result of that, the residual forces in the grounded conductor was negligible for all practical purposes. Consequently, a large imbalance of force was created on the eastern outboard arm of the towers supporting the grounded conductor, Tower No. 98 and Tower No. 100. On the North side of Tower No. 100 and on the South side of Tower No. 98, the horizontal force in each conductor was about 24 kips, for 1.5 inches of radial ice. On the side of these towers with the grounded conductors, the horizontal force had been reduced to less than one kip. Therefore, the eastern insulators at Towers No. 98 and the eastern outboard arm of Tower No. 100 suddenly experienced a force imbalance of approximately 48 kips, 24 kips in each conductor. This sudden force imbalance is sufficient to cause a broken conductor phenomena.

3.2d The broken conductor phenomena

The buckling of Towers No. 98 and 100 could have been due to the large force imbalance of 48 kips and/or the broken
conductor forces resulting from this imbalance. The broken conductor forces in the eastern insulator of Towers No. 98 and the eastern outboard arm of Tower No. 100, following the separation of the eastern conductor at Tower No. 99, were determined by CABLE 7.

Plots of force and displacement versus time for the eastern insulator of Tower No. 98 can be found in Fig. 3-11 and Appendix C. The maximum and minimum values for variables of interest are shown in Fig. 3-9. The input data, used in performing this analysis, can be found in Appendix C. Fig. 3-11 contains the plots of insulator tension, insulator angle displacement and conductor midspan displacement. From this figure, it can be seen that the initial imbalance of 48 kips has increased to more than 63 kips, an increase of almost 30 percent.

Similarly, for Tower No. 100 plots of force and displacement versus time were developed. These plots are presented in Fig. 3-12 and Appendix C. Fig. 3-10 shows the maximum and minimum values for variables plotted. Tower No. 100 was a unique tower in that there were no vertical suspension insulators. Instead, dead end insulators were used to implement electric phase transfer at this tower. The length and other characteristics of this insulator are replaced by 0.0 in the input file and the insulator is considered to be part of the conductor. Refer to Appendix C. Fig. 3-12 contains
Maximum and Minimum Values of Tensions and Displacement

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Time 1</th>
<th>Time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ST TOWER INSULATOR TENSION</td>
<td>0.6323E+05</td>
<td>0.2230E+03</td>
<td>0.166 SEC</td>
</tr>
<tr>
<td>1ST SPAN CONDUCTOR TENSION</td>
<td>0.6183E+05</td>
<td>0.4006E+04</td>
<td>0.361 SEC</td>
</tr>
<tr>
<td>2ND TOWER INSULATOR TENSION</td>
<td>0.3744E+05</td>
<td>0.7499E+04</td>
<td>0.476 SEC</td>
</tr>
<tr>
<td>1ST TOWER VERTICAL TENSION</td>
<td>0.6133E+05</td>
<td>0.3315E+03</td>
<td>0.4006E+04</td>
</tr>
<tr>
<td>1ST TOWER HORIZONTAL FORCE</td>
<td>0.5921E+05</td>
<td>0.1668E+03</td>
<td>0.1077E+01</td>
</tr>
<tr>
<td>1ST TOWER INSULATOR HOR. DIS. (LOWER END)</td>
<td>0.1949E+02</td>
<td>0.8479E-03</td>
<td>0.001 SEC</td>
</tr>
<tr>
<td>VERT. DISPLACEMENT AT MIDSPAN OF CONDUCTOR</td>
<td>0.0000E+00</td>
<td>0.3792E+02</td>
<td>2.761 SEC</td>
</tr>
<tr>
<td>2ND TOWER INSULATOR VERT. DIS. (LOWER END)</td>
<td>0.1133E+02</td>
<td>0.3099E+06</td>
<td>0.046 SEC</td>
</tr>
<tr>
<td>2ND TOWER INSULATOR HOR. DIS. (LOWER END)</td>
<td>0.5905E+01</td>
<td>0.7105E+00</td>
<td>2.481 SEC</td>
</tr>
<tr>
<td>1ST TOWER HORIZONTAL DISPLACEMENT</td>
<td>0.3462E+01</td>
<td>1.7760E+03</td>
<td>0.921 SEC</td>
</tr>
<tr>
<td>2ND TOWER VERTICAL DISPLACEMENT</td>
<td>0.2575E+01</td>
<td>0.1019E-05</td>
<td>0.001 SEC</td>
</tr>
<tr>
<td>1ST TOWER VERTICAL DISPLACEMENT</td>
<td>0.5763E+03</td>
<td>0.2386E+05</td>
<td>0.921 SEC</td>
</tr>
</tbody>
</table>

Fig. 3-9: Maximum and minimum values for broken conductor analysis of Tower No. 98

Maximum and Minimum Values of Tensions and Displacement

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Time 1</th>
<th>Time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ST SPAN CONDUCTOR TENSION</td>
<td>0.5633E+05</td>
<td>0.5265E+05</td>
<td>0.146 SEC</td>
</tr>
<tr>
<td>2ND TOWER INSULATOR TENSION</td>
<td>0.1964E+05</td>
<td>0.5966E+04</td>
<td>0.466 SEC</td>
</tr>
<tr>
<td>1ST TOWER VERTICAL TENSION</td>
<td>0.5547E+05</td>
<td>0.5265E+05</td>
<td>0.146 SEC</td>
</tr>
<tr>
<td>1ST TOWER HORIZONTAL FORCE</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>2.701 SEC</td>
</tr>
<tr>
<td>VERT. DISPLACEMENT AT MIDSPAN OF CONDUCTOR</td>
<td>0.3662E+02</td>
<td>0.0111E+05</td>
<td>2.121 SEC</td>
</tr>
<tr>
<td>2ND TOWER INSULATOR VERT. DIS. (LOWER END)</td>
<td>0.2575E+01</td>
<td>0.5611E+04</td>
<td>0.056 SEC</td>
</tr>
<tr>
<td>2ND TOWER INSULATOR HOR. DIS. (LOWER END)</td>
<td>0.2760E+00</td>
<td>0.4811E+04</td>
<td>0.006 SEC</td>
</tr>
<tr>
<td>1ST TOWER HORIZONTAL DISPLACEMENT</td>
<td>0.2831E+01</td>
<td>2.7366E+04</td>
<td>0.001 SEC</td>
</tr>
<tr>
<td>2ND TOWER VERTICAL DISPLACEMENT</td>
<td>0.2070E+00</td>
<td>0.8988E+00</td>
<td>1.981 SEC</td>
</tr>
</tbody>
</table>

Fig. 3-10: Maximum and minimum values for broken conductor analysis of Tower No. 100
the plots of conductor tension, tower displacement and conductor midspan displacement. For this tower the initial imbalance has increased to more than 56 kips. This is an increase of only 17 percent.

In figures 3-11 and 3-12, the tension plot is placed above each of the other two plots, so that the relationships between the peaks in tension and the displacements in the first span are more obvious. In both figures, the second peak corresponds to the maximum displacement of the midspan of the conductor. In Fig. 3-11, the tension peaks correspond to the changes in the angle of the insulator. Refer to Section 3.1. In Fig. 3-12, the peaks in tension correspond to the displacement of the tower. Refer to Chapter 4.

Most of the input variables required by CABLE 7 were obtained from drawings and specifications provided by IP [5]. However, the values used for the variables AM, the tower mass, AEI, area times modulus of elasticity for the insulator, and AKT, the tower stiffness, required separate calculations. The values used for mass of the towers, AM, at the nodes representing the towers, was simply the total mass of the tower divided by two. This is assumed to be the mass displaced by the force from the insulator when one conductor phase is moving. This simple approach was used in view of the fact that CABLE 7 results are not significantly affected by AM [20].
Fig. 3-11: Broken conductor time plots, seconds, Tower No. 98
Conductor tension in kips

(a)

Conductor tension in kips

(b)

Horizontal displacement of first tower in feet

(c)

Vertical displacement of conductor midspan in feet

(d)

Fig. 3-12: Broken conductor time plots, seconds, Tower No. 100
AEI, area times modulus of elasticity of the insulator, is a measure of the axial rigidity of this member. In CABLE 7, the insulator is modeled by a cable element to provide for the insulator's bending flexibility. In reality, the insulator is a more complex element which has not successfully been modeled in detail. Therefore, a good approximate value for AEI was not known. Fortunately, CABLE 7 is not very sensitive to AEI [20]; and in this case a value of 10^5 was used to obtain a smoother plot of force versus time.

AKT represents the stiffness of the tower and attached conductors and shield wires. For the lines under consideration, the stiffness of the towers and the connecting wires at the connection point of the insulator ranged between 2000 to 4000 lbs per ft, based on the finite element model of the towers on ETADS [1]. However, for large displacements at the top of the towers, the contributions to tower stiffness from the conductors increase significantly, due to direct stretching of the conductors. Fig. 3-13 shows the forces required to increase the span of one of the central conductors between Towers No. 98 and 99, similar conditions exist in the other spans. This figure was created by increasing the span length, for a fixed original conductor length, using Option 2 of CABLE. Similarly, Fig. 3-14 shows the decrease in the horizontal force in that conductor when the span length is decreasing. Nevertheless, the contributions from the
conductors to the stiffness of the towers are limited by their load carrying capacity. The conductors under consideration have a load carrying capacity of 31.5 kips, about 6 kips in addition to 25 kips resultant load carried under 1.5 inches of ice. Therefore, from the four attached conductors, up to 24 kips per foot can resist the movement of the tip of the eastern outboard arm. Based on these values, a conservative approximate value for AKT of 20 kips per foot was used. See Table C-5 Appendix C.

With the buckling of Towers No. 98 and 100, the cascading failure of the other towers would most likely have been initiated. The major difference in the broken conductor phenomena of these other towers was that the three conductor phases experienced the force imbalance simultaneously. With the buckling of an adjacent tower, the forces in the three conductor phases on that side suddenly drop, eliminating the contribution to AKT from the conductors, and creating three separate broken conductor phenomena if the interaction through the tower crossarm is ignored. Due to lack of contribution from the conductors, the stiffness of towers, AKT, will only be about 2000 lbs per foot. The mass of the towers, AM, was modified. Since the broken conductor phenomena of these towers was considered in all three phases, the tower mass was further divided by three. The broken conductor loads for some selected
Fig. 3-13: Change in conductor horizontal tension with increase in span length

Fig. 3-14: Change in conductor horizontal tension with decrease in span length
towers having various span characteristics are given in Appendix C.

3.2e Galloping forces experienced by Tower No. 100

Tower-100 is of particular interest when considering forces from galloping. Under normal circumstances, the conductor forces balance each other at the towers. During galloping, the conductors in adjacent spans can gallop with different frequencies, due to the differences in span lengths, elevation of end points, ice formation and the direction of the wind. This could result in galloping forces of different magnitudes in the spans supported by one tower. If the frequency of galloping in the spans on either side of the tower are similar, the peaks in galloping forces could compound or cancel each other depending on the timing of the peaks. With a hanging insulator, the resultant of the horizontal forces will cause the insulator to swing in the direction of the force imbalance, thereby dissipating some of the energy which otherwise would have been transferred to the tower. In the case of dead end conductors, the galloping forces are directly transferred to the supporting towers. Therefore it was speculated that Tower-100 would have experienced larger lateral forces due to galloping than the other towers in the line.
To estimate the galloping forces on Tower-100, three extreme cases of conductor galloping were considered:

Loadcase-1 Galloping in the span to the north only.

Loadcase-2 Both spans galloping, but out of phase.

Loadcase-3 Both spans galloping in phase.

The galloping forces in the spans on either side of Tower-100 are given in Appendix C. The frequency of galloping forces shown in these figures are 1.05 and 1.09 radians per seconds, respectively. To simulate Loadcase-2 and 3 an average frequency of 1.07 radians per seconds was assumed for both spans. The resultant of the components of the galloping forces on Tower-100 for the three loadcases are given in figures 3-15 through 3-17. From these figures it can be seen that Loadcase-2 results in the maximum resultant horizontal force, and Loadcase-3 results in the maximum resultant vertical force, on the tower. Loadcase-1 is believed to be the least likely to occur because of the similar conditions of the two spans involved (i.e. span lengths, ice formation, angle with respect to the direction of the wind).
Fig. 3-15: Tower No. 100, resultant galloping forces, Load Case 1
Fig. 3-16: Tower No. 100, resultant galloping forces, Load Case 2
Fig. 3-17: Tower No. 100, resultant galloping forces, Load Case 3
4. DISCUSSION OF THE RESULTS

In the previous chapter, the results of the various analyses were presented. These analyses concentrated on the investigation of failure scenarios deemed likely based on the evidence gathered from the field. The fact that Tower No. 99 was the only tower to remain standing strongly suggested that the initiation of the event took place in the area near this tower. In this chapter, a more detailed discussion of the results and the failure scenarios will be given.

4.1 Failure Scenario One

This failure scenario assumes that the failure began with the break of the eastern insulator at Tower No. 99 thus causing the separation of the eastern conductors from Tower No. 99. Following this separation, the resulting force imbalance and the broken conductor loads could have resulted in the collapse of the towers to the north and to the south of this tower.

In Chapter 3, it was concluded that a radial ice thickness of about 1.5 inches on the conductors could have been expected, prior to the collapse of the conductor line. For that thickness of ice, the load in the eastern insulator of Tower No. 99 would reach the ultimate capacity of that insulator and the separation of the eastern conductors would follow. Consequently, Towers No. 98 and 100 would have
experienced a horizontal imbalance of more than 48 kips from the eastern conductors.

A finite element analysis of the conductor line model on ETADS [1] was consistent with the results presented in chapter 3, in the evaluation of the forces in the insulator and the conductors. Furthermore, the finite element analysis indicated that this force imbalance was sufficient to result in the buckling of the towers. In fact, a buckling analysis of Towers No. 98 and 100 on ETADS [1] showed that the towers could only withstand 6 to 7 kips of horizontal force imbalance, applied at the eastern outboard arms of the towers, before instabilities in the computer solution develop.

The estimated time for the crossarm of one of the towers to hit the ground, based on a simple upside down pendulum approximation, was about 2.2 seconds. Refer to Appendix C. This is enough time for the first peak of the broken conductor tension to develop. However, it is evident from the results of the finite element model analysis [1] that the towers were not stable enough to allow for the development of the broken conductor loads, and would have buckled as soon as the initial imbalance was applied.

Even though the broken conductor loads given in this thesis were never reached, there are a few interesting points to be discussed with respect to these plots.
4.1a Discussion of the broken conductor loads

In comparing the load versus time plots for different towers, it can be seen that the plots for each tower are markedly different from the others, with the exception of Tower No. 72 and Tower No. 102 which have almost identical plots. The input and output data, referred to in this section, are presented in Chapter 3 and Appendix C.

The plot of insulator tension versus time for Tower No. 98 is the only plot which distinctly exhibits the two major peaks of the broken conductor phenomena. The stiffness used for this tower was significantly greater than the stiffness used in the other towers, with the exception of Tower No. 100, since the attached conductors were included for these models. When the tower stiffness is large enough to only permit small tower displacements, compared to the length of the insulator, the initial displacement in the span adjacent to the break is primarily due to the swing of the insulator; and the two major peaks associated with that swing can be expected. However, if the tower is so flexible that its displacement under the initial imbalance is significant compared to the length of the insulator, the insulator swing becomes less of a factor and the two peaks associated with it become less significant. This situation can be observed in the plots of Towers No. 72, 102 and 106 which have extremely small tower stiffness compared to the imbalance applied, 48000 lbs versus 2000 lbs per foot.
The plots of Towers No. 72 and 102 are almost identical but the plot of Tower No. 106 looks quite different. The reason for this difference is the span lengths. The first span for Tower No. 106 is 879 feet versus span lengths of 1455 feet and 1462 feet for Towers No. 72 and 102, respectively. This indicates that length of the first span has a major affect on the load in the insulator. This conclusion is consistent with the parameter study undertaken in reference [20].

The dead end tower, Tower No. 100, represents a unique situation in that it has no hanging insulators. Naturally, the mechanisms associated with the swing of the insulator do not apply here. In this case, the displacement in the first span is a direct result of the displacement of the tower. In fact, in comparing the plot of load versus time with the plot of displacement versus time for this tower, it can be seen that the two plots follow a similar pattern. In addition, since Tower No. 100 was one of the more rigid towers in the line, the displacement of this tower, compared to the length of the insulator for Tower No. 98, was small. And the variation in the load imbalance was not as pronounced as for Tower No. 98.

4.2 Failure Scenario Two

A second failure was considered because of the unique situation of Tower No. 100. The lack of hanging insulators at this tower meant that any horizontal imbalance had to be
directly resisted by the tower. As discussed in Chapter 3, the galloping forces in the adjacent spans of this tower could have created a resultant horizontal force imbalance. Since the tower is primarily designed to withstand vertical loads, the presence of any horizontal loading is cause for concern. The galloping forces for the three loadcases discussed in Chapter 3 were considered for application to the finite element model of Tower No. 100 on ETADS. Loadcases No. 2 and 3 would have resulted in the maximum horizontal and vertical resultant forces on Tower No. 100, respectively; and for that reason, these loadcases were identified as the critical loadcases.

The analysis results from ETADS [1] for the dynamic analysis under the galloping forces of Loadcase No. 2 showed that 70% of the peak loads would be sufficient to cause instability and hence buckling of the tower. On the other hand, for Loadcase No. 3, the analysis showed that the buckling failure of the tower would not occur.

Although Loadcase No. 2 would have been severe enough to result in the buckling of Tower No. 100, the occurrence of this loadcase is highly debateable, since the spans involved were similar in many aspects and would not be expected to gallop completely out of phase. Moreover, the post-failure layout of the line near Towers No. 98, 99 and 100 contradicts this scenario. As shown in Fig. 3-1 of the previous chapter, at Tower No. 100 the end of the eastern conductor was lying
very near the tower foundation suggesting that it must have separated before the tower collapsed.

Based on the above discussion, the first scenario is believed to be the more likely scenario since it is consistent with the physical evidence gathered from the field. From the analyses presented in this thesis, the conditions prevailing on the day of the event were severe enough to support the hypotheses of scenario one.
The investigation of the collapse of the Lehigh-Sycamore 345 KV line due to an ice storm event has been presented in this thesis and in reference one. The investigation consisted of the analysis of the loads developed in the conductors, presented in this thesis, and the analysis of the entire system, including the supporting structures, presented in reference one. The software developed for the conductor analysis and the analytical approaches and formulas used in the conductor analysis have been discussed in previous chapters.

The investigation showed that the magnitude of the forces induced in the transmission line system on the day of the ice storm was much larger than the system was designed to handle. Several cases of conductor loading, which were believed to have contributed to the collapse of the system, and various aspects of the interaction of the conductor loads and the system components were studied. Based on the studies, the sequence of events, referred to as failure scenarios, which could have lead up to the collapse of the system were identified.

Two different failure scenario were considered. However, based on analysis and field data a most likely failure scenario was identified. This failure scenario is believed to have been initiated by the break of the eastern insulator of
Tower No. 99, and the separation of the eastern conductors from Tower No. 99. The subsequent horizontal force imbalance is believed to have been the cause of the buckling of the towers in the system in a cascading pattern.

It is evident from this study that the insulators and the connections between the conductors and the transmission towers can play a major role in the failure of a transmission line. The failure of a small component, such as the socket y clevis, could result in large force imbalances capable of producing critical stresses which undermine the integrity of the system. In this study, it was also shown that the towers in the system were inadequate to withstand the force imbalances induced in the system. A more conservative design philosophy would take into consideration methods of increasing the stability of the system with respect to the potential force imbalances.

Further study is recommended in the following areas. In the galloping study of the forces in the conductors, the interactions between the adjacent spans were ignored. A study using a multi-span model is recommended. In the simplified analysis of the fatigue problem, it was shown that fatigue could contribute significantly to the failure of the insulator assemblies. A more complete study of the insulators under cyclic loading is recommended. The broken conductor program used, CABLE 7, ignored the interaction between the conductor phases through the crossarm. This shortcoming could be
eliminated by including the crossarm and the other conductor phases in the model. A multi-lane broken conductor analysis is recommended.
REFERENCES

17. J. Ferry-Borges. "Experimental study of the stresses created by the breakage of conductors in high voltage lines." *Department of Public Works, National Civil Engineering Laboratory, Lisbon, Portugal* (November 1968).

APPENDIX A. SUMMARY OF PERTINENT EQUATIONS

The equations referred to in Chapter 2 are given in this appendix. Most of these equations have been used, directly or indirectly, in the computer programs discussed in this thesis.

A.1 Equations Used in Cable Subroutines

The equations presented here define the relationships between the variables of the cable element. See Fig. 2-1.

The actual length of the cable element, \(L \), from the catenary relationship

\[
L^2 = V^2 + H^2 \frac{\sinh^2[\lambda]}{\lambda^2}
\]

(A-1)

where

\[
\lambda = \frac{wH}{2F_H}
\]

(A-2)

The vertical force, \(F_2 \), at the initial end is

\[
F_2 = \frac{w}{2} \left(-V \frac{\cosh[\lambda]}{\sinh[\lambda]} + L \right)
\]

(A-3)

The horizontal projection, \(H \), of the conductor is
The vertical projection, \(V \), of the conductor is given by

\[
V = \frac{1}{2EAw} (T_J^2 - T_I^2) + \frac{T_J - T_I}{w}
\]

(A-5)

The length of the conductor including elastic stretching is

\[
L = L_u + \frac{1}{2EAw} \left(F_4 T_J + F_2 T_I + F_1^2 \log \frac{F_4 + T_J}{T_I - F_2} \right)
\]

(A-6)

In addition, we know from equations of statics that

\[
F_4 = -F_2 + w L_u; \quad F_3 = -F_1; \quad T_J = (F_1^2 + F_2^2)^{1/2}; \quad T_I = (F_3^2 + F_4^2)^{1/2}
\]

A very good approximation of the unstretched length of the conductor, assuming a constant tension throughout the conductor, can be obtained by

\[
L_{uo} = L \left(1 - \frac{F_4 L}{AEL} \right) (1 + T \times ET)^{-1}
\]

(A-7)

In the iterative process to determine the cable element forces, a starting value for the horizontal force at end one can be obtained from
\[F_1^0 = -\frac{wH}{2\lambda^0} \quad (A-8) \]

which is Eq. A-1 rewritten with the stretched length, \(L \), replaced by the unstretched length, \(L_u \). \(L_u \) was obtained from PCAXLO and \((\text{Sinh}^2\lambda)/(\lambda^2) \) was replaced by the first two terms of its series expansion. Similarly, Eq. A-3 is rewritten to obtain a starting value for the vertical force at the initial end of the element.

\[F_2^0 = \frac{w}{2} \left(-\nu \frac{\cosh[\lambda^0]}{\sinh[\lambda^0]} + L_u \right) \quad (A-9) \]

The terms in these expressions are those of the author of reference 12, and are defined as follows:

- \(w \) = weight of cable per unit length
- \(E \) = modulus of elasticity
- \(A \) = cross sectional area
- \(T, ET \) = temperature and coefficient of thermal expansion
- \(H \) = horizontal projection of the ends of the cable
- \(V \) = vertical projection of the ends of the cable
- \(T_i \) = tension at the initial end
- \(T_f \) = tension at the final end
- \(L \) = actual cable length
- \(L_u \) = unstressed length at temperature \(T \)
\(L_{uo} \) = unstressed length at reference temperature

\(F_H \) = horizontal tension

\(F_1, F_2 \) = Horizontal and vertical components of \(T_i \)

\(F_3, F_4 \) = Horizontal and vertical components of \(T_j \)

A.2 The Equations for CABLE 7

The equations of equilibrium for the lumped mass shown in figure 2-3 are:

\[
M \ddot{X} = F_H^i - F_H^j - C \dot{X}_H
\] \hspace{1cm} (A-10)

\[
M \ddot{X} = F_V^i - F_V^j - C \dot{X}_V
\] \hspace{1cm} (A-11)

Assuming a linear acceleration over a small time interval, the equations for the velocity and displacement at the end of the time interval are:

\[
\ddot{X}(t_1) = \ddot{X}(t_0) + a \Delta t
\] \hspace{1cm} (A-12)

\[
\ddot{X}(t_1) = \ddot{X}(t_0) + \ddot{X}(t_0) \Delta t + a \frac{(\Delta t)^2}{2}
\] \hspace{1cm} (A-13)

\[
X(t_1) = X(t_0) + \dot{X}(t_0) \Delta t + \ddot{X}(t_0) \frac{(\Delta t)^2}{2} + a \frac{(\Delta t)^3}{6}
\] \hspace{1cm} (A-14)
The terms in these expressions are those of the author of reference 19, and are defined as follows:

- M = mass at degree of freedom
- C = constant of critical damping, 20%
- F_H = horizontal force at degree of freedom
- F_V = vertical force at degree of freedom
- \dot{X}_H = horizontal velocity at degree of freedom
- \dot{X}_V = vertical velocity at degree of freedom
- \ddot{X}_H = horizontal acceleration at degree of freedom
- \ddot{X}_V = vertical acceleration at degree of freedom
- X_H = horizontal displacement at degree of freedom
- X_V = vertical displacement at degree of freedom
- Δt = the time interval
- t_0, t_1 = time at the beginning and end of the interval

A.3 The Galloping Equations

The following relationships, for a conductor with the ends at the same level, have been developed by Mr. Li Li:

The vertical component of the static tension plus the vertical component of the additional tension is given by

$$v_v = \frac{S_0 + n\pi a_0 \cos(\omega_n t)}{L} \left(\frac{2S_0 + n\pi a_0 \cos(\omega_n t)}{4S_0 + n\pi a_0 \cos(\omega_n t)} + \frac{1}{n\pi H} \cos(\omega_n t) + H \right)$$ (A-15)

The maximum vertical tension is
The galloping amplitude from the initial static sag position is

\[a_0 = \frac{0.26V_w(2\pi)}{2\omega_n} \]

(A-17)

The equivalent stiffness of the system is defined by

\[k_e = \frac{1}{\frac{1}{k_c} + \frac{1}{k_i}} \]

(A-18)

where the stiffness of the conductor is

\[k_c = \frac{EA}{L_c} \]

(A-19)

and the stiffness of the insulator is

\[k_i = \frac{\bar{w} + 0.5\bar{w}_i}{L_i} \]

(A-20)

The line static sag is approximated by
The horizontal component of the additional tension is

\[h = \frac{2a_0 k_e w L}{n\pi H} \cos(\omega_n t) \quad (A-22) \]

and the maximum of the horizontal component of the additional tension is

\[h_{\text{max}} = \frac{2a_0 k_e w L}{n\pi H} \quad (A-23) \]

The natural frequency of the conductor is

\[\omega_n = \left\{ \frac{H}{m} [bL + (\frac{n\pi}{L})^2] \right\}^{1/2} \quad (A-24) \]

where

\[b = \frac{8S_0 k_e w}{H^2 L^2} \quad (A-25) \]

The ratio of total vertical force to static vertical force is
and the ratio of total horizontal force to static horizontal force is

\[
R_H = \frac{(H+h)_{\text{max}}}{H} \quad \text{(A-27)}
\]

The terms in these expressions are those of the author of reference 2, and are defined as follows:

- \(V \) = vertical component of static tension in the conductor
- \(v \) = vertical component of additional tension in the conductor
- \(H \) = horizontal component of static tension in the conductor
- \(h \) = horizontal component of additional tension in conductor
- \(L \) = line span length
- \(S_0 \) = line static sag
- \(n \) = number of galloping loops per span
 - 1 for single loop galloping
- \(a_0 \) = galloping amplitude
- \(\omega_n \) = symmetric mode natural circular frequency
\(t \) = time

\(K_s \) = equivalent stiffness of the system

\(k_c \) = stiffness of the conductor

\(k_i \) = stiffness of insulator in the longitudinal direction of the conductor

\(E A \) = area times modulus of elasticity for conductor

\(L_c \) = length of the conductor

\(L_i \) = length of the insulator

\(W_i \) = insulator weight

\(W \) = total conductor weight per span

\(w \) = total conductor weight per unit length

\(m \) = total conductor mass per unit length

\(V_w \) = wind velocity

\(R_v \) = galloping amplification for the vertical force

\(R_h \) = galloping amplification for the horizontal force
APPENDIX B. MODIFIED CABLE 7 USER MANUAL

The program CABLE 7 can be used to obtain the broken conductor loads on the towers of the span adjacent to the break in a conductor line. The assumptions regarding the modeling of the conductor line are explained in this thesis and in reference [20]. In this appendix, the inputs and outputs of CABLE 7 are briefly discussed.

The input for CABLE 7 is read from an input file. The name of the input file should consist of a base name and an extension of ".IN" (e.g. INPUT.IN). The general format of the input file is shown in Fig. B-1. The variables represented in each row are:

First row,

\[\begin{array}{l}
\text{NSPAN} = \text{number of spans} \\
\text{NSEG} = \text{maximum number of conductor spans used} \\
\text{NUNIT} = 0, \text{ metric units} \\
\text{ = 1, U.S. units} \\
\text{ICODE} = \text{code to specify the output desired} \\
\quad 0, \text{ displacements, forces and summary of data} \\
\quad 1, \text{ forces, and summary of data} \\
\quad 2, \text{ summary of data, no conductor movement displayed} \\
\quad 3, \text{ summary of data} \\
\quad 4, \text{ generate dynamic data at time } T = 0.0 \\
\text{KINT} = \text{ data is stored every KINT intervals}
\end{array}\]
GINT = displaced conductor displayed every GINT intervals

Second row,

PH = initial horizontal line tension at \(T = 0.0 \)
PCL1 = default 1.0. See reference [20]
EPSF = default 10.0. See reference [20]
DT = time interval used
TF = length of time for the simulation

The remaining rows (one row for each span),

VI = length of the insulator,
 0 if no hanging insulator

HC = horizontal projection of the conductor

VC = vertical projection of the conductor ends

WOI = total weight of the insulator,
 0 if no hanging insulator

WOC = weight of conductor, including ice, per unit length

\(AEI \) = area times modulus of elasticity for the insulator, 0 if no insulator

\(AEC \) = area times modulus of elasticity for the conductor

\(NSEG \) = number of cable elements to represent the conductor

\(NPT \) = 0, fixed support
 = 1, support free to displace horizontally
AKT = equivalent tower stiffness
AM = mass of the tower

A more complete description of the above variables can be found in reference [20].

The program is started by typing cable7 at the DOS prompt. The user is prompted to enter the base name to be associated with that run. To work with a directory other than the default directory, the base name should include the directory specification. The user is given the choice of a new run or the plots from existing files. By typing "N" a new run is started. For each new run, the user can specify a title. The program can be paused at any time by typing "O". CABLE 7 creates an output file with a ".OUT" extension; and two other files with ".PL1" and ".PL2" extensions, which are for use by CABLE 7's post processor. Also created are the files TEMP1.DAT, TEMP2.DAT and TEMP3.DAT for the internal use of the program. The user is encouraged to delete these files in the interest of saving disk space.

When the run is complete, a post processing screen is displayed, Fig. B-2. The user has the option of seven different time plots. The seven time plots available consist of insulator tension and its X-Y components, X-Y components of the displacement of the lower end of the insulator, insulator angle from horizontal and conductor midspan vertical
Fig. B-1: The input file for CABLE 7 (four spans)

MENU

1 PLOT INSULATOR TENSION VS TIME
2 PLOT HORIZONTAL COMPONENT OF INSULATOR TENSION VS TIME
3 PLOT VERTICAL COMPONENT OF INSULATOR TENSION VS TIME
4 PLOT HORIZONTAL DISPLACEMENT OF LOWER END OF INSULATOR ONE
5 PLOT VERTICAL DISPLACEMENT OF LOWER END OF INSULATOR ONE
6 PLOT INSULATOR ANGLE FROM HORIZONTAL VS TIME
7 PLOT CONDUCTOR MIDSPAN VERTICAL DISPLACEMENT VS TIME

E END PLOT

ENTER: selection > 6

Fig. B-2: The options available on the post processor of CABLE 7
displacement. Examples of these plots can be found in Chapter 3 and Appendix C.
APPENDIX C. NUMERICAL DATA FOR ANALYSES

The analyses presented in Chapter 3 were based on the numerical data given in this appendix. As mentioned in that chapter, the analyses were performed using the modified versions of CABLE and CABLE 7.

Table No C-2: Forces in conductors supported by the eastern insulator of Tower No. 99

<table>
<thead>
<tr>
<th>Radial Ice, in</th>
<th>Span</th>
<th>Without Galloping</th>
<th>With Galloping</th>
<th>Galloping Frequency, rad/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vert Force Kips</td>
<td>Hor Force Kips</td>
<td>Vert Force Kips</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End j</td>
<td>End i</td>
<td>End j</td>
</tr>
<tr>
<td>1.25</td>
<td>98-99</td>
<td>3.28</td>
<td>2.85</td>
<td>20.80</td>
</tr>
<tr>
<td></td>
<td>99-100</td>
<td>3.65</td>
<td>3.13</td>
<td>20.51</td>
</tr>
<tr>
<td>1.3</td>
<td>98-99</td>
<td>5.44</td>
<td>2.99</td>
<td>21.55</td>
</tr>
<tr>
<td></td>
<td>99-100</td>
<td>3.78</td>
<td>3.28</td>
<td>21.23</td>
</tr>
<tr>
<td>1.4</td>
<td>98-99</td>
<td>3.76</td>
<td>3.28</td>
<td>23.07</td>
</tr>
<tr>
<td></td>
<td>99-100</td>
<td>3.05</td>
<td>3.58</td>
<td>22.70</td>
</tr>
<tr>
<td>1.5</td>
<td>98-99</td>
<td>4.09</td>
<td>3.58</td>
<td>24.63</td>
</tr>
<tr>
<td></td>
<td>99-100</td>
<td>3.34</td>
<td>3.90</td>
<td>24.22</td>
</tr>
<tr>
<td>1.6</td>
<td>98-99</td>
<td>4.45</td>
<td>3.90</td>
<td>26.22</td>
</tr>
<tr>
<td></td>
<td>99-100</td>
<td>3.64</td>
<td>4.24</td>
<td>25.76</td>
</tr>
<tr>
<td>1.7</td>
<td>98-99</td>
<td>4.82</td>
<td>4.23</td>
<td>27.85</td>
</tr>
<tr>
<td></td>
<td>99-100</td>
<td>3.95</td>
<td>4.59</td>
<td>27.33</td>
</tr>
<tr>
<td>1.75</td>
<td>98-99</td>
<td>5.01</td>
<td>4.41</td>
<td>28.68</td>
</tr>
<tr>
<td></td>
<td>99-100</td>
<td>4.11</td>
<td>4.77</td>
<td>28.12</td>
</tr>
</tbody>
</table>

C.1 Tension in the Insulator of Tower No. 99

In order to obtain the forces in the insulator of Tower No. 99 prior to the collapse of the line, the forces in the two eastern conductors supported by this insulator were obtained. Table C-1 contains the prevailing conditions for the
spans involved. These conditions were used in Option 1 of CABLE to obtain the results which are given in Table C-2.

The forces applied to the eastern insulator of Tower No. 99 were obtained from the second end (end j) of span 98 - 99 and the first end (end i) of span 99 - 100.

Table No. C-1: The condition of the spans from Tower No. 98 to Tower No. 100

<table>
<thead>
<tr>
<th></th>
<th>Span No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>98 - 99</td>
</tr>
<tr>
<td>H. projection, ft</td>
<td>1304.6</td>
</tr>
<tr>
<td>V. Projection, ft</td>
<td>-13.5</td>
</tr>
<tr>
<td>Original Conductor</td>
<td></td>
</tr>
<tr>
<td>Length, ft</td>
<td>1306.83</td>
</tr>
<tr>
<td>Insulator Weight, lbs</td>
<td>290</td>
</tr>
<tr>
<td>Insulators per span</td>
<td>2</td>
</tr>
<tr>
<td>Insulator length, ft</td>
<td>10.5</td>
</tr>
<tr>
<td>Stringing Tension, lbs</td>
<td></td>
</tr>
<tr>
<td>Temperature Change, °F</td>
<td></td>
</tr>
<tr>
<td>Wind Velocity, ft/sec</td>
<td></td>
</tr>
</tbody>
</table>

C.2 The Forces in the Separated Conductor

The conditions for the span between Towers No. 98 and No. 100 is given in Table No. C-1. This is the alignment which the eastern conductors will assume after they separate from Tower No. 99. The horizontal projection is therefore, the
length of the straight line connecting Tower No. 98 to Tower No. 100. The original conductor length in this span is simply the summation of the original conductor lengths in the other two spans. Table No. C-3 contains the forces and the sag for these conductors which are obtained by Option 2 of CABLE.

Table No. C-4: The conditions of the eastern conductor when resting on the ground

<table>
<thead>
<tr>
<th>Radial Ice, in</th>
<th>Span</th>
<th>Resultant Force, kips</th>
<th>Angle of force from Vert., deg</th>
<th>H. force kips</th>
<th>First Ground Point, ft</th>
<th>Second Ground Point, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>98-100</td>
<td>0.577</td>
<td>0.120</td>
<td>78.0</td>
<td>4.1</td>
<td>53.7</td>
</tr>
</tbody>
</table>

C.3 The Forces in the Grounded Conductor

The excessive sag, 307 feet measured from the first attachment point, in the separated conductors indicates that the conductors would be lying on the ground after the separation. Option 3 of CABLE was used to obtain the forces in these grounded conductors which are given in Table No. C-4. The span referred to, between Tower No. 98 and Tower No. 100 is described in Table C-1.
Table No. C-3: The conditions of the eastern conductors after separation from Tower No. 99

<table>
<thead>
<tr>
<th>Radial Ice, in</th>
<th>Span</th>
<th>V. force, kips</th>
<th>H. force, kips</th>
<th>Sag, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5</td>
<td>98-100</td>
<td>7.46</td>
<td>7.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.49</td>
<td>307.72</td>
</tr>
</tbody>
</table>

Note: Sag is measured from the first attachment point.

C.4 The Broken Conductor Phenomena

The input data for the various towers analyzed are given in Table No. C-5. In this table, the spans included for each analysis are described. The insulator and conductor characteristics were the same in all the spans except for Tower No. 100 which did not have any hanging insulators. Each insulator supported two lines of conductor. Therefore, conductor characteristics were doubled to account for that fact.

Some of the broken conductor plots for Towers No. 98 and 100 were included in Chapter 3. The complete set of plots for Towers No. 98 and 100 and the additional towers are given in figures C-1 through C-10.
Table No. C-5: Spans considered for broken conductor analyses

<table>
<thead>
<tr>
<th>Tower No.</th>
<th>Spans Included</th>
<th>Horizontal Projection, ft</th>
<th>Vertical Projection, ft</th>
<th>Tower Stiffness, lbs/ft</th>
<th>Tower Mass, slugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower 72</td>
<td>72-71</td>
<td>1455</td>
<td>-6</td>
<td>2000</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>71-70</td>
<td>1345</td>
<td>1</td>
<td>2000</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>70-69</td>
<td>1455</td>
<td>27</td>
<td>2000</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>69-68</td>
<td>1345</td>
<td>0</td>
<td>2000</td>
<td>83.3</td>
</tr>
<tr>
<td>Tower 98</td>
<td>98-97</td>
<td>1348</td>
<td>8</td>
<td>20000</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>97-96</td>
<td>1540</td>
<td>3</td>
<td>20000</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>96-95</td>
<td>1360</td>
<td>-13</td>
<td>20000</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>95-94</td>
<td>1410</td>
<td>-18</td>
<td>20000</td>
<td>266</td>
</tr>
<tr>
<td>Tower 100</td>
<td>100-101</td>
<td>1175</td>
<td>-26</td>
<td>20000</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>101-102</td>
<td>1203</td>
<td>19</td>
<td>20000</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>102-103</td>
<td>1462</td>
<td>8</td>
<td>20000</td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>103-104</td>
<td>1470</td>
<td>-1</td>
<td>20000</td>
<td>276</td>
</tr>
<tr>
<td>Tower 102</td>
<td>102-103</td>
<td>1463</td>
<td>8</td>
<td>20000</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>103-104</td>
<td>1470</td>
<td>-2</td>
<td>20000</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>104-105</td>
<td>1486</td>
<td>-4</td>
<td>20000</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>105-106</td>
<td>1449</td>
<td>-35</td>
<td>20000</td>
<td>83.3</td>
</tr>
<tr>
<td>Tower 106</td>
<td>106-107</td>
<td>879</td>
<td>-4</td>
<td>20000</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>107-108</td>
<td>919</td>
<td>11</td>
<td>20000</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>108-109</td>
<td>1730</td>
<td>18</td>
<td>20000</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>109-110</td>
<td>1330</td>
<td>-22</td>
<td>20000</td>
<td>83.3</td>
</tr>
</tbody>
</table>

Conductor Area * 18578000
Conductor Elasticity Modulus, psi 15578000
Conductor mass, lbs/ft 11.746
Insulator Area * 100000
Insulator Elasticity Modulus, psi 100000
Insulator Length, ft 10.5
Insulator Weight, lbs 214

Note: Tower No. 100 did not have any hanging insulators.
Fig. C-1: Broken conductor time plots, seconds, Tower No. 98

(a) Insulator tension in kips
(b) Horizontal tension in the insulator in kips
(c) Vertical tension in the insulator in kips
(d) Horizontal displacement of the insulator end in feet
Fig. C-2: Broken conductor time plots, seconds, Tower No. 98
Conductor tension in kips

Horizontal tension in the conductor in kips

Vertical tension in the conductor in kips

Horizontal displacement of the first tower in feet

Fig. C-3: Broken conductor time plots, seconds, Tower No. 100
Conductor angle from horizontal in degrees (f)

Vertical displacement of conductor midspan in feet (f)

Fig. C-4: Broken conductor time plots, seconds, Tower No. 10
Fig. C-5 : Broken conductor time plots Tower No. 72

- Insulator tension in kips (a)
- Horizontal tension in the insulator in kips (b)
- Vertical tension in the insulator in kips (c)
- Horizontal displacement of the insulator end in feet (d)
Vertical displacement of insulator end in feet (e)

Insulator angle from horizontal in degrees (f)

Vertical displacement of conductor midspan in feet (g)

Fig. C-6: Broken conductor time plots Tower No. 72
Fig. C-7: Broken conductor time plots, seconds, Tower No. 102

- Insulator tension in kips (a)
- Horizontal tension in the insulator in kips (b)
- Vertical tension in the insulator in kips (c)
- Horizontal displacement of the insulator end in feet (d)
Fig. C-8: Broken conductor time plots, seconds, Tower No. 10.

Vertical displacement of insulator end in feet
(e)

Insulator angle from horizontal in degrees
(f)

Vertical displacement of conductor midspan in feet
(g)
Insulator tension in kips

(b) Horizontal tension in the insulator in kips

Vertical tension in the insulator in kips

(d) Horizontal displacement of the insulator end in feet

Fig. C-9: Broken conductor time plots, seconds, Tower No. 106
Vertical displacement of insulator end in feet (e)

Insulator angle from horizontal in degrees (f)

Vertical displacement of conductor midspan in feet (g)

Fig. C-10: Broken conductor time plots seconds, Tower No. 10e
C.5 Galloping Forces at Tower No. 100

The components of the galloping forces in the conductors applied to Tower No. 100 are given in this section. These forces were obtained by the application of Option 1 of CABLE. The spans involved are from Tower No. 99 to 100 and from Tower No. 100 to 101. The characteristics of these spans are given in Tables C-1 and C-5, respectively. These galloping forces are plotted in figures C-11 and C-12.
Galloping forces at Tower No. 100, Span 99-100

Fig. C-11: Galloping forces at Tower No. 100, Span 99 to 100
Fig. C-12: Galloping forces at Tower No. 100, Span 100 to 101
C.6 Estimated Time for One Tower to Collapse

The time that it takes for one of the towers to hit the ground after it buckles was approximated based on an inverted simple pendulum. From reference [21], the governing equations for a simple pendulum with small amplitude are:

\[\theta = \theta_0 \cos \omega t \]
\[\omega = \sqrt{\frac{g}{L}} \]
\[T = 2\pi t \]
\[\theta = \text{time, sec.} \]
\[\theta_0 = \text{angle of swing, radian} \]
\[g = \text{acceleration of gravity, ft per sec}^2 \]
\[L = \text{length of the pendulum} \]
\[\theta_0 = \theta \text{ at } t = 0 \]
\[\omega = \text{circular frequency, radian per sec.} \]
\[T = \text{the period, sec.} \]

For large amplitudes, a correction needs to be applied to the period, \(T \), which is defined by

\[T = T' \left(1 + \frac{1}{2^2} \sin^2 \frac{1}{2} \theta_0 + \frac{1}{2^2} \frac{3}{4^2} \sin^4 \frac{1}{2} \theta_0 \right) \tag{C-1} \]

For a typical tower, the following values were used:

\[L = 85 \text{ ft} \]
\[\theta_0 = \pi \text{ radian} \]
\[\theta = \pi/2 \text{ radian} \]
From the above equations, the following results:

\[\omega = 0.615 \text{ radian per sec.} \]

\[T = 10.2 \text{ sec.} \]

\[T' = 13.2 \text{ sec.} \]

\[t = 2.2 \text{ sec.} \]
Due to the cyclic nature of the galloping forces, fatigue must be taken into consideration. The study of fatigue for this problem was focused on the fatigue behavior of the hanging insulators which may have been subjected directly to galloping loads. Two types of fatigue tests were considered. The first test would subject the entire insulator assembly to the galloping loads. The second test would produce a plot of stress versus number of cycles, fatigue S-N curve, for specimens made from components of the insulators which were suspected to be the weak links. Dr. B. S. Biner, metallurgist at Iowa State University, suggested the testing of the components over the assembly because of more variable control and ease of testing.

A second type of test was considered. In this test, the remaining capacity of the insulators would be determined by loading them until they failed. By measuring the axial stretching of the insulators at various load levels, an indication of the axial stiffness of these members would also be obtained. Unfortunately, complete insulator assemblies were not made available and these tests were not performed.

D.1 The Testing of the Insulator Components

In collecting the components of the insulators from the field, it was observed that the socket y clevis and the anchor
shackle had broken more often than any other components. These components were too small to be made into acceptable fatigue specimens. Therefore, it was decided to make the specimens from the larger insulator rods which were believed to be made of the same material. Later, it was discovered that the rods were made of forged steel and not malleable iron as with the other two components. Nevertheless, the forged steel specimens were tested [22]. In this test, it was verified that the insulator rods could not have been susceptible to fatigue failure under the loads due to galloping.

Since malleable iron components could not be made, it was decided to determine the fatigue strength using fatigue curves from cast iron references. For the particular type of malleable iron used in the insulators, grade 32510, a fatigue curve was located in reference [23]. This curve is reproduced in Fig. D-1. From this figure, it can be seen that the plot of stress versus number of cycles has a small slope and that a small increase in the stress level sharply reduces the fatigue life of the material. Therefore, it can be concluded that this grade of malleable iron is highly susceptible to fatigue failure and is probably not a good choice for insulator components.

The number of galloping cycles during the event was estimated to be 7000 based on twelve hours of galloping and an average frequency of one cycle per second, close to the
Fig. D-1: Malleable iron fatigue curves

galloping frequency calculated for the conductors. Refer to Appendix C. Twelve hours was an intentionally high estimate of the duration of the ice storm event, 7:00 am to 5:00 pm, to be conservative and to account for some weathering effects otherwise not considered. It can be seen from Fig. D-1 that at 7000 cycles, the capacity of the material drops to about 37 ksi. This is about 74% of the ultimate capacity of this grade of malleable iron, which is about 50 ksi [24].

Based on a simple proportionality approach, the capacity of the insulator at Tower No. 99 would have also dropped to
74% of 36 kips, or 26.6 kips. From Fig. 3-8, this force in the insulator is reached with about 1.3 inches of radial ice on the conductors.

Although this approach may be a simplification, it can be said that fatigue could have played a major role in reducing the capacity of the insulator. A more detailed fatigue analysis may be required for more reliable quantitative results.
CABLE FORCES AND CONFIGURATION

```
1. Given: line tension
   Find: sag at stringing
   Find: tension & sag
   Find: galling loads

2. Given: conductor length
   Find: tension & sag
   Find: galling loads

3. Conductor on the ground

E. EXIT CABLE
```

ER IS PROMPTED FOR THE INPUT VALUES
" TOWER PROPERTIES"

 ENTERP
 ENTERT1
 ENTERT2
 WP = ET2 - ET1

 T USING "% ##.## &": "vertical projection of conductor =", WP, " feet"
 T : PRINT
 T " " CONDUCTOR PROPERTIES"
 T "Note: for steel with aluminum - modify program for other materials"
 B ENTERI/AMC
 B ENTERAREA
 B ENTERAREA
 AREAS = AREA - AREA
 T USING "% ##.##.## &": " area of steel strands =", AREAS, " in2"
 SUB ENTERS
 SUB ENTEREA
 = 30000000
 = 10000000
 E = ES * AREAS / AREA + EA * AREA / AREA
 T USING "% #######.## &": " modified E =", E, " psi"
 SUB ENTERETS
 SUB ENTERETA
 = .0000065
 = .0000128
 = (ETS * ES * AREAS / AREA + ETA * EA * AREA / AREA) / E
 = (ETS*AREAS/AREA+ETA*AREA/AREA)
 = .0000133 STILL TOO LOW
 T USING "% #######.## &": " modified coeff. of exp. =", ET, " per deg F"
 SUB ENTERETC

 R OPTION 1 THE STRINGING CONDITIONS ARE NEEDED AREAS FOR OPTION 2 AND 3 THE ORIGINAL UнстRETCHED LENGTH IS REQUIRED

 MAINOPT$ = "1" THEN
 PRINT : PRINT
 PRINT " STRINGING CONDITIONS"
 PRINT
 GOSUB ENTERTEMPS
 GOSUB ENTERP
 E
 GOSUB ENTERXLO
 GXLO = XLO
 IF
 NT : PRINT
 IF " " LOADING CONDITIONS"
 NT
 IF MAINOPT$ = "1" THEN
 GOSUB ENTERTEMPICE
 DELTEMP = TEMPICE - TEMPS
 PRINT USING "% ##.## &": "temperature change =", DELTEMP, " degrees F"
"LOAD"

NT #2, CHR$(12)

"LINE CONFIGURATION AFTER ICE OR TEMPERATURE CHANGE"

NT #2, ""LINE CONFIGURATION AFTER ICE OR TEMPERATURE CHANGE"

NT #2, ""LINE CONFIGURATION AFTER ICE OR TEMPERATURE CHANGE"

NT #2, PRINT #2,

NT, CHR$(12)

NT, ""LINE CONFIGURATION AFTER ICE OR TEMPERATURE CHANGE"

NT, ""LINE CONFIGURATION AFTER ICE OR TEMPERATURE CHANGE"

NT, PRINT,

25. 30: INPUT "Press <ENTER> to continue", A$

NT = 1

"MAINOPT$ = "2" OR MAINOPT$ = "3" THEN

JTO PROBLEM2

SUB PCAF

IF

MAINOPT$ = "3" THEN

EDIT = 0

GOTO EDITMENU

IF

ification factors for galloping and its frequency

EM4:

ENTERNJ

ENTERPL

ENTERWI

ENTERLI

ENTERWIND

used is based on horizontal scan assumption

W = WD * HP ^ 2 / (8 * ABS(FDC(1)))

WD * HP

(MT + .5 * WI) / LI

AE / HP

1 / (1 / KE * NJ / WI)

S * ABS(GSAG) * KE * WD / (HP * HP * FDC(1) * FDC(1))

= WD / 32.16

W = 500(ABS(FDC(1)) / MASS * (B * HP + (NL * 3.14159 / HP) ^ 2))

= .26 * WIND * 2 * 3.14159 / OMEGAN

YMAX / 2

1 + (40.74 * KE * GSAG ^ 2 / (NL * WD * HP ^ 3) + .755 * NL / ABS(GSAG)) * A0 + 32 * KE * ABS(GSAG) * A0 ^ 2 / (4 * GSAG)
AXI = R * FCC(2)
AXJ = R * FCC(4)
X = 2 * AO * KE * WT / (NL * 3.14159 * ABS(FDC(1)))
AX = ABS(FDC(1)) + HMAX
= ABS(HMAX / FDC(1))
SIDI = SQRT(HMAX^2 + WMAX^2)
SIDW = SQRT(HMAX^2 - WMAX^2)

INT "**"
INT "GALLOPING CONDITIONS AND ANALYSIS"
INT "**"
INT "Number of hanging insulators per span" = "; NJ
INT "Number of galloping loops assumed" = "; NL
INT "Weight of each insulator (pounds)" = "; WI
INT "Length of each insulator (feet)" = "; LI
INT "Wind velocity (ft/sec)" = "; WIND
INT USING "& ####.#": "Sag used (feet)" = "; GSAG
INT USING "& ####.#": "Natural frequency (rad/sec)" = "; OMEGAN
INT USING "& ####.#": "Galloping amplitude (feet)" = "; AO
INT USING "& ####.#": "Ratio of total vertical to static vertical force" = "; R
INT USING "& ####.#": "Ratio of total horizontal to static horizontal force" = "; RH
INT USING "& ####.#": "Total end i vertical force (pounds)" = "; VMAXI
INT USING "& ####.#": "Total end j vertical force (pounds)" = "; VMAXJ
INT USING "& ####.#": "Total horizontal force (pounds)" = "; HMAX
INT USING "& ####.#": "Total end i tension after galloping (pounds)" = "; TENSIONI
INT USING "& ####.#": "Total end j tension after galloping (pounds)" = "; TENSIONJ
INT #2: PRINT #2.
INT #2: "**"
INT #2: "GALLOPING CONDITIONS AND ANALYSIS"
INT #2: "**"
INT #2, "Number of hanging insulators per span" = "; NJ
INT #2, "Number of galloping loops assumed" = "; NL
INT #2, "Weight of each insulator (pounds)" = "; WI
INT #2, "Length of each insulator (feet)" = "; LI
INT #2, USING "& ####.#": "Sag used (feet)" = "; GSAG
INT #2, "Wind velocity (ft/sec)" = "; WIND
INT #2, USING "& ####.#": "Natural frequency (rad/sec)" = "; OMEGAN
INT #2, USING "& ####.#": "Galloping amplitude (feet)" = "; AO
INT #2, USING "& ####.#": "Ratio of total vertical to static vertical force" = "; R
INT #2, USING "& ####.#": "Ratio of total horizontal to static horizontal force" = "; RH
INT #2, USING "& ####.#": "Total end i vertical force (pounds)" = "; VMAXI
INT #2, USING "& ####.#": "Total end j vertical force (pounds)" = "; VMAXJ
INT #2, USING "& ####.#": "Total horizontal force (pounds)" = "; HMAX
INT #2, USING "& ####.#": "Total end i tension after galloping (pounds)" = "; TENSIONI
INT #2, USING "& ####.#": "Total end j tension after galloping (pounds)" = "; TENSIONJ

DATE 23. 20: INPUT "Press CENTER; to continue", A#
DTO EDITMENU
PROBLEM2:
D = WC + WIDE
E = AREA * E
R = MP; VER = VP
TPRT = 1
PRT = 0
RINT = 1
MAINOPT$ = "2" THEN IPRINT = 0
IV = 1
SUB PCAF
' MAINOPT$ = "2" THEN GOTO EDITMENU

PROBLEM3:
PUT "ENTER: Ground elevation (feet) > ", GEL

The mid-point of the conductor is raised to the ground level

.LG = LSAQF
.ENT = XLG
.ENT2 = XLO - XLG
.EL = (ET1 + YSAG) - GEL
.COOR(2, 100) = YSAG - DEL
.COOR(1, 100) = XSAG
.I = 1
.STAGE1:
.I = 100
.I = M - 1
.LG = LENT

The left portion of the conductor is stretched on the ground

.STAGE1:
.LD = XLG
.ER = XCOOR(1, M)
.VR = XCOOR(2, M)
.SSUB PCAF
.I = M + 1
.I = N + 1
.LG = LSAGF
.RAI = XLO - XLG
.COOR(1, M) = XCOOR(1, N) - RAI
.EL = (ET1 + YSAG) - GEL
.COOR(2, M) = YSAG - DEL
IF ABS(DEL) > .1 THEN GOTO STAGE1
.LIF = XLG

Force imbalance is checked for the last point touching the ground

.STAGE2:
.HR = XCOOR(1, M)
.VR = XCOOR(2, M)
.XLO = XLF
.SSUB PCAF
.FHIR = ABS(FDC(3))
.LRA1 = XCOOR(1, 100) - XCOOR(1, M)
\[M = LBA_1 - (LENT - XL2) \]
\[W_1 = \text{ABS}(DRA_1 \times AE / LBA_1) \]
\[M = \text{ABS}(FHIR - FHRA_1) \]

\[
\begin{align*}
 \text{IF} \; \text{FH} \geq 100 & \quad \text{THEN} \\
 XSTEP &= 0.9 \times \text{ABS}(DRA_1) \\
 \text{ELSE IF} \; \text{FH} \geq 5 & \quad \text{THEN} \\
 XSTEP &= 0.3 \times \text{ABS}(DRA_1) \\
 \text{ELSE} & \\
 XSTEP &= 0.05 \times \text{ABS}(DRA_1) \\
 \text{ENDIF} \\
 \text{IF} \; \text{FH} > \text{FHRA}_1 & \quad \text{THEN} \\
 XCOORD(1, M) &= XCOORD(1, M) - XSTEP. \\
 \text{ELSE} & \\
 XCOORD(1, M) &= XCOORD(1, M) + XSTEP \\
 \text{ENDIF} \\
 \text{PRINT} \; \text{FH} \\
 \text{IF} \; \text{FH} > 5 & \quad \text{THEN} \quad \text{GOTO} \; \text{STAGE2} \\
 \text{PRINT} &= \text{XCOORD}(1, M) \\
 \text{ANGLEI} &= \text{ANGLEI} \\
 \text{ANGLEJ} &= \text{ANGLEJ} \\
 TI &= TENI \\
 TJ &= TENJ \\
 &= 100 \\
 &= M - 1
\]

The right portion is stretched on the ground:

\[
\begin{align*}
 LD &= LENT + LENT2 \\
 LG &= LENT \\
 TAGE3: \\
 LD &= XLD - XLG \\
 OR &= HP - XCOORD(1, M) \\
 ER &= ET2 - GEL \\
 \text{GOSUB PCAFX} \\
 &= M + 1 \\
 &= N + 1 \\
 LG &= LSGF \\
 IR &= XLG \\
 CORD(1, M) &= XCOORD(1, M) + AIR \\
 EL &= YSG \\
 \text{IF} \; \text{ABS}(DEL) > .1 & \quad \text{THEN} \quad \text{GOTO} \; \text{STAGE3} \\
 LF &= XLD
\]

Horizontal force imbalance is checked for the last point touching the ground:

\[
\begin{align*}
 DR &= HP - XCOORD(1, M) \\
 ER &= ET2 - GEL \\
 LD &= XLF \\
 \text{GOSUB PCAFX} \\
 \text{FHJ} &= \text{ABS}(FHC(1)) \\
 AIR &= XCOORD(1, M) - XCOORD(1, 100)
\]
\[JR = LAIR - (LNT2 - XLF)\]
\[UR = \text{ABS}(DAIR \times AE / LAIR)\]
\[L2 = \text{ABS}((FHAIR - FHRJ)\]
\[DFH2 >= 200 \text{ THEN} \]
\[XSTEP = .9 \times \text{ABS}(DAIR)\]
\[\text{SE IF} \ DFH2 >= 100 \text{ THEN} \]
\[XSTEP = .5 \times \text{ABS}(DAIR)\]
\[\text{SE IF} \ DFH2 >= 50 \text{ THEN} \]
\[XSTEP = .1 \times \text{ABS}(DAIR)\]
\[\text{SE IF} \ DFH2 >= 10 \text{ THEN} \]
\[XSTEP = .05 \times \text{ABS}(DAIR)\]
\[\text{SE} \]
\[XSTEP = .005 \times \text{ABS}(DAIR)\]
\[\$ \text{ IF} \]
\[FHRJ > FHAIR \text{ THEN} \]
\[XCOORD(1, M) = XCOORD(1, M) + XSTEP\]
\[\text{SE} \]
\[XCOORD(1, M) = XCOORD(1, M) - XSTEP\]
\[\$ \text{ IF} \]
\[PRINT \ DFH2\]
\[\text{IF} \ DFH2 > 5 \text{ THEN} \text{ GOTO STAGE4}\]
\[\text{POINT} = XCOORD(1, \ M)\]
\[\text{ANGLEI} = \text{ANGLEI}\]
\[\text{ANGLEJ} = \text{ANGLEJ}\]
\[\text{I} = \text{IENI}\]
\[\text{J} = \text{IENJ}\]

Location of the middle point is adjusted for the horizontal force imbalance:

\[\text{IMBAL}(K) = \text{ABS}(FHA1 - FHAIR)\]
\[\text{IMBAL} = \text{IMBAL}(2) - \text{IMBAL}(1)\]
\[\text{IF} \ K = 1 \text{ THEN} \]
\[K = K + 1\]
\[XCOORD(1, 100) = XCOORD(1, 100) + 1\]
\[\text{GOTO STAGE}\]
\[\text{END IF}\]
\[= 1\]
\[PRINT "IMBAL = ", \text{IMBAL}(1)\]
\[\text{IF} \ \text{ABS}(| \text{IMBAL}(1)|) >= 20 \text{ THEN} \]
\[XCOORD(1, 100) = XCOORD(1, 100) - 1 / \text{RIMBAL} * 1 * \text{IMBAL}(1)\]
\[\text{GOTO STAGE}\]
\[\text{ELSE IF} \ \text{ABS}(| \text{IMBAL}(1)|) > 10 \text{ THEN} \]
\[XCOORD(1, 100) = XCOORD(1, 100) - 1 / \text{RIMBAL} * 0.3 * \text{IMBAL}(1)\]
\[\text{GOTO STAGE}\]
\[\text{ELSE IF} \ \text{ABS}(| \text{IMBAL}(1)|) > 1 \text{ THEN} \]
\[XCOORD(1, 100) = XCOORD(1, 100) - 1 / \text{RIMBAL} * 0.001 * \text{IMBAL}(1)\]
\[\text{GOTO STAGE}\]
\[\text{END IF}\]
\[\text{HA1} = .5 * (FHAIR + FHA1)\]
\[\text{PRINT} \ \text{PRINT}\]
\[\text{PRINT \ "---"} \]
FORCES AND MISCELLANEOUS FOR CABLE ON THE GROUND

INT USING FMT2#: "Dist. tower 1 to first point on ground (ft) = "; LPOINT
INT USING FMT2#: "Dist. tower 1 to last point on ground (ft) = "; RPOINT
INT USING FMT2#: "ANGLEI for left hanging portion (deg) = "; LANGLEI
INT USING FMT2#: "ANGLEJ for left hanging portion (deg) = "; LANGLEJ
INT USING FMT2#: "TI for left hanging portion (lbs) = "; LTI
INT USING FMT2#: "TJ for left hanging portion (lbs) = "; LTJ
INT USING FMT2#: "ANGLEI for right hanging portion (deg) = "; RANGLEI
INT USING FMT2#: "ANGLEJ for right hanging portion (deg) = "; RANGLEJ
INT USING FMT2#: "TI for right hanging portion (lbs) = "; RTI
INT USING FMT2#: "TJ for right hanging portion (lbs) = "; RTJ
INT USING FMT2#: "Horiz. tension in cable on ground (lbs) = "; FHA1
INT #2. : PRINT #2.
INT #2. " FORCES AND MISCELLANEOUS FOR CABLE ON THE GROUND"
INT #2. "---"
INT #2. USING FMT2#: "Dist. tower 1 to first point on ground, ft = "; LPOINT
INT #2. USING FMT2#: "Dist. tower 1 to last point on ground, ft = "; RPOINT

INT #2.
INT #2. USING FMT2#: "ANGLEI for left hanging portion (deg) = "; LANGLEI
INT #2. USING FMT2#: "ANGLEJ for left hanging portion (deg) = "; LANGLEJ
INT #2.
INT #2. USING FMT2#: "TI for left hanging portion (lbs) = "; LTI
INT #2. USING FMT2#: "TJ for left hanging portion (lbs) = "; LTJ
INT #2.
INT #2. USING FMT2#: "ANGLEI for right hanging portion (deg) = "; RANGLEI
INT #2. USING FMT2#: "ANGLEJ for right hanging portion (deg) = "; RANGLEJ
INT #2.
INT #2. USING FMT2#: "TI for right hanging portion (lbs) = "; RTI
INT #2. USING FMT2#: "TJ for right hanging portion (lbs) = "; RTJ
INT #2.
INT #2. USING FMT2#: "Horiz. tension in cable on ground (lbs) = "; FHA1
INT #2. PRINT

CATE 23, 20: INPUT "Press <ENTER> to continue", A$
TO MENU

"ITMENU:

3
INT "**"
INT " EDIT MENU"
INT "**"
INT " A ANALYZE (no more changes)"
INT "*"
INT " 1 tower properties"
INT " 2 conductor properties"
MAINOPT$ = "2" OR MAINOPT$ = "3" THEN
INT " 3 original conductor length"
ELSE
INT " 3 stringing conditions"
ENDIF
NT "4 loading conditions"
NT "E find calloing forces"
NT "after analysis and/or EXIT"
NT "***************

IF "ENTER: selection> ", OPT$ = "A" OR OPT$ = "a" THEN
VP = ET2 - ET1
WIDE = 3.14159 * 56 / 144 * ((DIAMC / 2 + RICE) ^ 2 - (DIAMC ^ 2 / 4))
AREAS = AREA - AREA
E = (E * AREAS / AREA + EA * AREAA / AREA)
DELTEN = TEMPE + TEMPS
PRINT #2, CHR$(12)
GOSUB PRINTCOND
IF MAINOPT$ = "2" THEN
IF IEDIT = 2 THEN
IPRINT = 0
IDIV = 0
GOTO ICELOAD
ELSE
GOTO PROBLEM2
END IF
ELSE
END IF
IF IEDIT = 1 THEN
IPRINT = 0
IDIV = 0
GOTO NEWCABLE
ELSEIF IEDIT = 2 THEN
IPRINT = 0
IDIV = 0
GOTO ICELOAD
END IF
SEIF OPT$ = "1" THEN
GOTO TOWERMENU
SEIF OPT$ = "2" THEN
GOTO CONDMENU
SEIF OPT$ = "3" THEN
IF MAINOPT$ = "2" OR MAINOPT$ = "3" THEN
GOSUB ENTERXLO
XLO = XLO
ELSE
GOTO STRINGMENU
END IF
SEIF OPT$ = "4" THEN
GOTO LOADMENU
SEIF OPT$ = "E" OR OPT$ = "e" THEN
PUT "Do you want galing loads? (Y/N) ", GALOPS
IF GALOPS = "Y" OR GALOPS = "y" THEN GOTO PROBLEM4
LOSE #2: END
LOSE
BEFORE: GOTO EDITMENU
0 IF
TO EDITMENU
WEMENU:
5
INT "***"
INT " TOWER MENU"
INT "***"
INT " 1 scan between towers"
INT " 2 elev. tower i"
INT " 3 elev. tower j"
INT "
INT " E EDIT MENU"
INT "***"
INT
INPUT "ENTER: selection> ", OPT$
F OPT$ > "1" AND OPT$ < "3" THEN EDIT = 1
F OPT$ = "1" THEN
GOSUB ENTERHP
ELSEIF OPT$ = "2" THEN
GOSUB ENTERET1
ELSEIF OPT$ = "3" THEN
GOSUB ENTERET2
ELSEIF OPT$ = "e" OR OPT$ = "E" THEN
GOTO EDITMENU
ELSE
BEEP
ENDIF
GOTO TOWERNEMU
ENDMENU:
LS
INT "***"
INT " CONDUCTOR MENU"
INT "***"
INT " 1 conductor diameter"
INT " 2 total conductor area"
INT " 3 area of aluminum"
INT " 4 E steel"
INT " 5 E aluminum"
INT " 6 weight conductor"
INT " 7 coef. of exp. steel"
INT " 8 coef. of exp. aluminum"
INT "
INT " E EDIT MENU"
INT "***"
INT
INPUT "ENTER: selection> ", OPT$
F OPT$ > "1" AND OPT$ < "6" THEN EDIT = 1
F OPT$ = "1" THEN
GOSUB ENTERDIAM
ELSEIF OPT$ = "2" THEN
GOSUB ENTERAREA
F OPT$ = "3" THEN
SUB ENTERAREA
F OPT$ = "4" THEN
SUB ENTERES
F OPT$ = "5" THEN
SUB ENTEREA
F OPT$ = "6" THEN
SUB ENTERWC
F OPT$ = "7" THEN
SUB ENTERETS
F OPT$ = "8" THEN
SUB ENTERETA
F OPT$ = "E" OR OPT$ = "e" THEN
GOTO EDITMENU

EEP
IF
) CONDMENU
) CONGMENU:

"***************" STRINGING MENU")
"***************" 1 line tension")
"***************" 2 temperature & stringing")
"*************** E EDIT MENU")
"***************")
"ENTER: selection> ", OPT$
OPT$ >= "1" AND OPT$ <= "2" THEN IEDIT = 1
OPT$ = "1" THEN
GOSUB ENTERP
ELSE IF OPT$ = "2" THEN
GOSUB ENTERTEMPS
ELSE IF OPT$ = "E" OR OPT$ = "e" THEN
GOTO EDITMENU
EEP
IF
) STRINGMENU
) MENU:

"***************" LOAD MENU")
"***************"
"MAINOPT$ = "2" OR MAINOPT$ = "3" THEN
"1 temperature change")

"1 temperature for analysis")
) IF
"2 radial ice thickness"
" 3 weight ice"
"
" E EDIT MENU"
"********************"

"ENTER: selection> ", OPT$
OPT$ = "1" AND OPT$ <= "2") AND IEDIT = 0) THEN IEDIT = 2
IF $ = "1" THEN
SUB ENTERENPICE
F OPT$ = "2" THEN
SUB ENTERICE
F OPT$ = "3" THEN
SUB ENTERWISE
F OPT$ = "E" OR OPT$ = "e" THEN
!TO EDITMENU

IF
IF
LOADMENU
**
_0: ' determine original cable length
**
VEN:

= input value of horizontal tension
= horizontal projection
= vertical projection
= weight along cable
0 = original cable length
= area*modulus of elasticity
LD= load tolerance for convergence
SOR(HP * HP + VP * VP)
= .0002 * S
ACT < .005 THEN FACT = .005
= 0 'MIN COUNTS THE NUMBER OF ITERATIONS
= 0
= 0
= 0

**
: determine first guess for XLO based on inelastic cable
**
= ABS(HP)
S = ABS(P)
A = (W0 * HDR) / (2 * HTENS)
BD = (EXP(AMSMA) - EXP(-AMSMA)) / 2
: (HP * HP * SHAMBD * SHAMBD) / (AMSMA * AMSMA) + VP * VP
: SOR(XL)
= (HTENS * XL * XL) / (AE * HP)
: XL - DXL
= XL

PCAFX

ABS(FCC(1))

ABS(F - P) < PCLD THEN

RETURN

E

NNN = NNN + 1

IF NNN > 20 THEN

PRINT "NO CONVERGENCE"

END

ELSE

IF (ABS(F) - ABS(P)) > 0 THEN

XLOS = XLO

FMAX = F

IF (XLOM > 0 AND XLO < 0) THEN

XLO = XLOM + (XLOS - XLOM) * ((P - FMIN) / (FMAX - FMIN))

ELSE

XLO = XLO + FACT

END IF

ELSE

XLOM = XLO

FMIN = F

IF (XLOM > 0 AND XLO < 0) THEN

XLO = XLOM + (XLOS - XLOM) * ((P - FMIN) / (FMAX - FMIN))

ELSE

XLO = XLO - FACT

END IF

END IF

GOTO STEP 1

FX:

--

IDIV = 0 no coordinates calculated

NEP = 0 converges

IPRINT = 0 no print

set constants

\(1 = \text{XLO} \times 0.0000001\)

\(2 = \text{XLO} \times 0.0000001\)

\(P = 0\)

\(ERA = 0\)

\(\text{CTEMP} = "LOAD" \text{ THEN } \text{XL} = \text{XL} \times (1 + ET \times DELTEMP)\)

\(SB = \text{SQR} \times (\text{HOR} \times \text{HOR} + \text{VER} \times \text{VER})\)

\(GP = \text{XL} / \text{CORD}\)

\(= \text{HOR} / \text{XL}\)

\(= \text{VER} / \text{XL}\)

\(S1 = \text{EP1} \times \text{ABS}(X)\)
$I_2 = \text{EP1} \times \text{ABS(V)}$

$\text{EPS1} < \text{EP2} \text{ THEN } \text{EPS1} = \text{EP2}$

$\text{EPS2} < \text{EP2} \text{ THEN } \text{EPS2} = \text{EP2}$

$= 0$

$V > 0! \text{ THEN}$

$X = 1$

$V = -V$

$H = -H$

0 IF

$= \text{PROP}$

$= 1!$

$= \text{WD} \times \text{XLQ}$

$= \text{WX} / \text{AE}$

$= \text{WD}$

$= \text{XL}$

$= V - D3 / 2$

$D1 <= 1! \text{ THEN}$

$\text{AMBBA} = .18$

SE

$\text{IF ABS(H) < 1E-20 THEN}$

$\text{AMBBA} = 1000000 \text{ 'AMBBA IS ABOUT 4 TIMES SAG TO SPAN RATIO}$

ELSE

$\text{AMBBA} = \text{SQR}(3 \times (1 - 1 / (\text{PROP} \times \text{PROP})) / (H \times H))$

END IF

0 IF

$= H / (2 \times \text{AMBBA})$

$\text{IF AMBBA > 80 THEN}$

$\text{COT} = 1$

SE

$\text{COT} = (\text{EXP(AMBBA)} + \text{EXP(-AMBBA)}) / (\text{EXP(AMBBA)} - \text{EXP(-AMBBA)})$

0 IF

$2 = .5 \times (1 + V \times \text{COT})$

$F1 = 0$

$F2 = 0$

$-----------------------------$

$\text{CYCLE: 'start of cycle}$

$-----------------------------$

$1 = C1 - DF1$

$2 = C2 - DF2$

$1 = \text{SQR}(C1 \times C1 + C2 \times C2 - 2 \times C2 + 1)$

$J = \text{SQR}(C1 \times C1 + C2 \times C2)$

$= C2 + TJ$

$F = TI - 1 + C2$

$F (1 - (1 - C2) / TI) <= .0001 \text{ THEN}$

$F = TI + 1 - C2$

$FF = TJ - C2$

0 IF

$F FF < 1E-10 \text{ THEN } FF = 1E-10$

$= F / FF$

$G < 1E-10 \text{ THEN } G = 1E-10$

$L = \text{LOG}(G)$

$AH = DL + D3$
= H = C1 * AAH
= D4 + D3 * (1 - C2) - TJ + TI
= ABS(CA)
= ABS(CB)
ITPRT = 1 THEN
RINT ITERA; ACA: " vs "; EPS1; ACS: " vs "; EPS2
IF
(ACA <= EPS1 AND ACB <= EPS2) THEN GOTO ALLDONE
RA = ITERA + 1
ITERA > 14 THEN
RINT "FAILURE TO CONVERGE"; HQR, VER, ACA, ACB
IF
R = (1 - C2) / TI + C2 / TJ
VAR = D3
AAH = VAR
C1 = (1 / TJ - 1 / TI)
T = (A1 * E2 - A2 * A2)
1 = (A1 * E2 - CB * A2) / DET
2 = (A1 * CB - A2 * CA) / DET
ITQ NENCYCLE
DONE: ' converged - do cleanup
Determine coordinates along cable element
IDIV = 0 THEN RETURN
I = FOC(1) * (1 - 2 * K)
J = FOC(2) + KK * (FOC(4) - FOC(2))
= H * XL0
= V * XL0
I = TI * WX
J = TJ * WX
A = W * XL - FD2
AFST = X + (FO4 * TJ + FD2 * TI + F01 * F01 * LOG(F1)) / (2 * AE * W)
SUBXL = X / (NPTS - 1)
- = -SUBXL
SAB = ABS(FD2 / W)
II M = 1 TO NPTS
XL = XL + SUBXL
FO4 = W * XL - FD2
FO3 = -F01
$TI = SQRT(FD1 \times FD1 + FD2 \times FD2)$

$TJ = SQRT(FD3 \times FD3 + FD4 \times FD4)$

$F = FD4 + TJ$

$FF = TI - FD2$

IF $(1 - FD2 / TI) \leq .0001$ THEN

$F = TI + FD2$

$FF = TJ - FD4$

END IF

IF $FF < 1E-10$ THEN $FF = 1E-10$

$G = F / FF$

IF $G < 1E-10$ THEN $G = 1E-10$

$AH = LDG(G) / W + D2 * XL / AE$

$AH = -FD1 \times AH$

$BV = D2 * (TJ * TJ - TI * TI) / (2 * AE * W) + (TJ - TI) / W$

$MN = MM + (NPTS - 2 * MM + 1) \times KX$

$XCOORD(1, MN) = AH - H * KX$

$XCOORD(2, MN) = BV - V * KX$

IF $ABS(XL) > LSA$ THEN

$YSA = XCOORD(1, MN)$

$YSA = XCOORD(2, MN)$

$LSA = ABS(LSA - KX \times XL)$

END IF

NEXT MN

'---

'draw the cable configuration for cable not touching the ground
'---

CLS

IF MAINOPT# <> "3" THEN

LINE (120, 1)-(639, 349), . B

PSET (140, 80)

XSCALE = 450 / HP

YSCALE = 250 / ABS(YSA)

FOR MN = 1 TO NPTS

IF MN <= 1 THEN

$XORD = XSCALE \times ABS((XCOORD(1, MN) - XCOORD(1, MN - 1)))$

$YORD = -YSCALE \times (XCOORD(2, MN) - XCOORD(2, MN - 1))$

LINE .STEP(XORD, YORD)

ELSE

END IF

NEXT MN

LOCATE 4, 30:

INPUT "Press ENTER to continue", A#

ELSE

END IF

'---

'determine angles at ends of cable
'---

$PI = 3.1415926$

$ANGLEI = ATN(FDC(2) / ABS(FDC(1))) \times 180 / PI$

$ANGLEJ = ATN(FDC(4) / ABS(FDC(3))) \times 180 / PI$

'---

'print results if IPRINT<>0
PRINT = 0 THEN RETURN

IT "---"
IT " COORDINATES ALONG CABLE"
IT "---"
IT " POINT X Y POINT X Y"
IT "---"

IT #2. : PRINT #2.
IT " #2. " COORDINATES ALONG CABLE"
IT " #2. "---"
IT " #2. " POINT X Y POINT X Y"
IT " #2. "---"

= NPTS \ 2 + 1
I = 1 TO NP
I + NP
I < NP THEN
PRINT #2, USING FMT1$: i; XCOORD(i, i); XCOORD(2, i); J; XCOORD(1, J); XCOORD(2, J)
PRINT USING FMT1$: i; XCOORD(1, i); XCOORD(2, i); J; XCOORD(1, J); XCOORD(2, J)
JE
PRINT #2, USING FMT1$: i; XCOORD(i, i); XCOORD(2, i)
PRINT USING FMT1$: i; XCOORD(1, i); XCOORD(2, i)
ENDIF

DATE 23, 20: INPUT "Press <ENTER> to continue", A$:
A$ = ((XLAFST - X) / X) * 100

INT "-------------------------------"
INT " CABLE FORCES & MISC"
INT "-------------------------------"

INT USING FMT2$: " Area (sq in) = "; E
INT USING FMT2$: " Elasticity Modulus (psi) = "; ED
INT USING FMT2$: " Weight (lbs per ft) = "; WD
INT USING FMT2$: " Hor proj (ft) = "; HP
INT USING FMT2$: " Ver proj (ft) = "; VP
INT USING FMT2$: " Original length (ft) = "; XLO
INT USING FMT2$: " Maximum sag from end I (ft) = "; YSAG
INT USING FMT2$: " Hor force left (lbs) = "; FOC(1)
INT USING FMT2$: " Hor force right (lbs) = "; FOC(3)
INT USING FMT2$: " Ver force left (lbs) = "; FOC(2)
INT USING FMT2$: " Ver force right (lbs) = "; FOC(4)
INT USING FMT2$: " Tension end I (lbs) = "; TI
INT USING FMT2$: " Tension end J (lbs) = "; TJ
INT USING FMT4$: " Angle end I (deg) = "; ANGLEI
INT USING FMT4$: " Angle end J (deg) = "; ANGLEJ
INT USING FMT4$: " Length after stretching (ft) = "; XLAFST
INT USING FMT3$: " Elongation = "; ELONG; "%"
INT USING FMT5$: " No. of iterations = "; ITERA
INT #2. : PRINT #2.
INT #2. "-------------------------------"
INT #2. " CABLE FORCES & MISC"
PRINT #2, "-----------------------------"
PRINT #2, USING FMT2$; " Area (sq in) " = "; AREA
PRINT #2, USING FMT2$; " Elasticity Modulus (osi) " = "; E
PRINT #2, USING FMT2$; " Weight (lbs per ft) " = "; W0
PRINT #2, USING FMT2$; " Hor proj (ft) " = "; HP
PRINT #2, USING FMT2$; " Ver proj (ft) " = "; VP
PRINT #2, USING FMT2$; " Original length (ft) " = "; XLO
PRINT #2, USING FMT2$; " Maximum sag from end I (ft) " = "; YSAG
PRINT #2, USING FMT2$; " Hor force left (lbs) " = "; FOC(1)
PRINT #2, USING FMT2$; " Hor force right (lbs) " = "; FOC(3)
PRINT #2, USING FMT2$; " Ver force left (lbs) " = "; FOC(2)
PRINT #2, USING FMT2$; " Ver force right (lbs) " = "; FOC(4)
PRINT #2, USING FMT2$; " Tension end I (lbs) " = "; TI
PRINT #2, USING FMT2$; " Tension end J (lbs) " = "; TJ
PRINT #2, USING FMT4$; " Angle end I (deg) " = "; ANGLEI
PRINT #2, USING FMT4$; " Angle end J (deg) " = "; ANGLEJ
PRINT #2, USING FMT4$; " Length after stretching (ft) " = "; XLAFST
PRINT #2, USING FMT4$; " Elongation " = "; ELONG; ";
PRINT #2, USING FMT5$; " NO. of iterations " = "; ITERA
LOCATE 23, 20: INPUT "Press <ENTER> to continue", A$
RETURN

';**'
'**
'SUBPROGRAMS FOR DATA ENTRY
'SUBPROGRAMS FOR DATA ENTRY
'**
'**
ENTERHP:
INPUT "ENTER: span between towers (feet) > ", HP: RETURN

'**
'**
ENTERET1:
INPUT "ENTER: attachment elevation at tower i (feet) > ", ET1: RETURN

'**
'**
ENTERET2:
INPUT "ENTER: attachment elevation at tower j (feet) > ", ET2: RETURN

'**
'**
ENTERDIAM:
INPUT "ENTER: diameter of conductor (inches) > ", DIAMC: RETURN

'**
'**
ENTERAREA:
INPUT "ENTER: total area of conductor (in2) > ", AREA: RETURN

'**
'**
ENTERARA:
INPUT "ENTER: area of aluminum strands (in2) > ", AREAA: RETURN

'**
'**
ENTERES:
INPUT "ENTER: E of steel (osi) > ", ES: RETURN

'**
'**
ENTEREA:
INPUT "ENTER: E of aluminum (osi) > ", EA: RETURN

'**
'**
ENTERETS:
INPUT "ENTER: coef. of exs. steel (/deg F) > ", ETS: RETURN

'**
'**
ENTERETA:
INPUT "ENTER: coef. of exp. aluminum (/deg F) > ", ETA: RETURN

ENTER WC:
INPUT "ENTER: conductor weight (pounds per ft) > ", WC: RETURN

ENTER TEMPS:
INPUT "ENTER: temperature at stringing (deg. F) > ", TEMPS: RETURN

ENTER P:
INPUT "ENTER: line tension (pounds) > ", P: RETURN

ENTER TEMP ICE:
IF MAINOPT$ = "2" OR MAINOPT$ = "3" THEN
 INPUT "ENTER: temperature change in deg F (use +/-) > ", DELTEMP: RETURN
ELSE
END IF
INPUT "ENTER: temperature for this analysis (deg. F) > ", TEMPSICE: RETURN

ENTER RICE:
INPUT "ENTER: radial thickness of ice (inches) > ", RICE: RETURN

ENTER XLO:
INPUT "ENTER: original conductor length (feet) > ", XLO: RETURN

ENTER N:
INPUT "ENTER: number of suspension insulators per span > ", N: RETURN

ENTER NL:
INPUT "ENTER: number of galloping loops per span > ", NL: RETURN

ENTER LI:
INPUT "ENTER: length of insulator (feet) > ", LI: RETURN

ENTER WI:
INPUT "ENTER: weight of insulator (pounds) > ", WI: RETURN

ENTER WIND:
INPUT "ENTER: wind velocity (ft/sec) > ", WIND: RETURN
'***
PRINT COND:
'***
PRINT #: PRINT #,
PRINT #: " LINE CONDITIONS FOR ANALYSIS "
PRINT #: "---"
PRINT #: "Span between towers (feet) = "; HP
PRINT #: "Attachment elev. at tower i (feet) = "; ET1
PRINT #: "Attachment elev. at tower j (feet) = "; ET2
PRINT #: USING "& #4.##": "Vert. projection of conductor (ft) = "; VP
IF #2.
 AINOPT$ = "1" THEN
 PRINT #2, "Line tension (pounds) = ", P
 PRINT #2, "Temperature at stringing (deg. F) = ", TEMPS
 PRINT #2, "Temperature for this analysis = ", TEMPICE
 PRINT #2, "Temperature change = ", DELTTEMP
 IF
 AINOPT$ <> "1" THEN
 PRINT #2, "Original conductor length (ft) = ", OXLG
 IF
 IF #2.
 "Diameter of conductor (inches) = ", DIAMC
 "Total area of conductor (in2) = ", AREA
 "Area of aluminum strands (in2) = ", AREAA
 USING FMT2$: "Area of steel strands (in2) = ", AREAS
 IF #2.
 USING FMT2$: "E of steel (osi) = ", ES
 USING FMT2$: "E of aluminum (osi) = ", EA
 USING FMT2$: "Modified E (osi) = ", E
 USING FMT6$: "E: " E
 USING FMT6$: "Coef. of exp.of steel = ", ETS: " per deg F "
 USING FMT6$: "Coef. of exp.of aluminum = ", ETA: " per deg F "
 USING FMT6$: "Modified coef. of exp. = ", ET: " per deg F "
 IF #2.
 "Conductor weight (pounds per ft) = ", WC
 A$ = "T" OR A$ = "t" THEN
 RICE <> 0 THEN
 PRINT #2, "Radial thickness of ice (inches) = ", RICE
 IF
 NT #2, USING FMT2$: "Ice load (pounds/ft) = ", WICE
135

ARE SUB D2LOX (FILENAME$)
ARE SUB INSTRUCTIONS()
ARE SUB SOLXLQ (MMAXX. ZHI. ZVH. ZGH. ZWDH. ZXLOH. ZP#, POLD#, FCD#())
ARE SUB GENDYD (NSPANX. NCSX. NPFX. NCSTX)
ARE SUB PDAFX (MMAXX. HDRX. VRTX. ARE#, WAH. XLLOH. FCD#(), TENVX. TENVX. NPPX. XCDOR#(), IDIVX. IPRINTX. NEX%)
ARE SUB DXTIM (NCABLEX. NPQLEX. NCTX. NFX% FILENAME$)
==== CABLE7 =====

AICALLING PROGRAM FOR DYNAMIC ANALYSIS

SPAN = NUMBER OF SPANS
SEG = MAXIMUM NUMBER OF DIVISIONS OF CONDUCTOR PER SPAN
UNIT = UNIT CODE (0=METRIC, 1=AMERICAN UNITS)

CONDUCTOR MOVEMENT IS SHOWN UNLESS SPECIFIED, ICODE = 2
CODE = 0 PRINTS DISPLACEMENTS, FORCES + SUMMARY OF DATA ONTO A FILE
CODE = 1 PRINTS FORCES + SUMMARY OF DATA ONTO A FILE
CODE = 2 PRINTS SUMMARY OF DATA ONTO A FILE WITHOUT SHOWING THE CONDUCTOR MOVEMENT
CODE = 3 PRINTS SUMMARY OF DATA ONTO A FILE
ICODE = 4 GENERATE DATA IN GENDYD ONLY, NO DYNAMIC ANALYSIS

H = HORIZONTAL LINE TENSION
POLD = FORCE TOLERANCE - INITIAL DATA
EPS4 = FORCE TOLERANCE - DYNAMIC EQUILIBRIUM
DT = TIME INTERVAL (SEC)
TF = TIME FINAL (SEC)
KINT = K DATA PRINTED AT EVERY K INTERVALS
GINT = G CONDUCTOR DRAWN EVERY G INTERVALS

CLS
CLEAR . , 4000
DEFDBL A-H, 0-Z
DEFINT I-N

THE GRAPHIC MODE IS SET TO VGA (640 * 480)

THE FILENAME SPECIFIED BY THE USER WILL BE THE BASE NAME FOR ALL THE FILES
RELATED TO THAT RUN, INCLUDE DRIVE SPECIFICATION TO CHANGE THE DEFAULT
DRIVE. THE EXTENSION FOR THE INPUT FILE MUST BE ".IN", THE OUTPUT FILE
CREATED WILL HAVE THE EXTENSION ".OUT". THE TWO FILES FOR USE BY THE
POST-PROCESSOR WILL HAVE THE EXTENSIONS PL1 AND PL2

SCREEN 12, 1
INPUT "ENTER: file name for the run >": FILENAME$
INPUT "Do you want the plots from a previous run (Y/N)"$, PLOT$
IF PLOT$ = "Y" OR PLOT$ = "Y" THEN GOTO PLOTS
OPEN FILENAME$ + ".IN" FOR INPUT AS #1
OPEN FILENAME$ + ".OUT" FOR OUTPUT AS #1
POLD = 1
EPS4 = 10
INPUT "ENTER: Problem title >", TITLE$
PRINT #1, USING "TITLE = ": TITLE$
INPUT #10, NSPAN, NSEG, NUNIT, ICODE, KINT, GINT
INPUT #10, PH, PCL1, EPSF, DT, TF
IF PCL1 > 0 THEN PCLD = PCL1
IF EPSF > 0 THEN EPS4 = EPSF
NMAXSEG = NSEG

ERMIN ESTIMATE OF ARRAY DIMENSIONS

= NUMBER OF CABLE ELEMENTS
= NUMBER OF DEGREES OF FREEDOM
= NUMBER OF CABLE ELEMENT TYPES

NCE = NSPAN + NSPAN * NSEG
NPE = NCE * 2 + NSPAN
NCT = NSPAN * 2

ERATE DYNAMIC DATA

CALL GENDYD(NSPAN, NCE, NPE, NCT)
IF IXCODE = 4 THEN GOTO 200
CLOSE #2
OPEN "TEMP1.DAT" FOR INPUT AS #2
INPUT #2, NCABLE, NPOLE, NCT, NP1, NSTAT, NSTM
NPOLE = NPOLE "NPOLE is the number of unfixed poles
IF NPOLE > 0 THEN GOTO 10
NPOLE = 1

ANMIC ANALYSIS OF A PLANE TRANSMISSION LINE SYSTEM

CALL DITEIMINCABLE, NPOLE, NCT, NP1, FILENAME$)
OCATE 18, 30: INPUT "PRESS <ENTER> TO CONTINUE": A$ S:
CALL PLOTT(FILENAME$)
END
DIM DITSIM (NCABLE, NPOLE, NP1, FILENAME$)

IIS SUBROUTINE DOES A SIMULATION OF A ONE-LINE, ONE-PLANE
TRANSMISSION LINE SYSTEM AFTER A CONDUCTOR BREAKAGE

E ALGORITHM IS AN ITERATIVE STEP-BY-STEP INTEGRATION
SUPRING LINEAR ACCELERATION OVER THE TIME INTERVAL.

ITSIM REQUIRES THE USE OF FILES TEMP1.DAT AND TEMP2.DAT
FILES *.PL1 AND *.PL2 ARE USED FOR SAVING DATA REQUIRED
/ SUBROUTINE PLTT FOR CREATING THE TIME PLOTS
IS THE BASENAME SPECIFIED BY THE USER

DIM AMASS(NP1), ALFA(NP1), XIP(NP1), XE(NP1), XD(NP1)
DIM XDI(NP1), XDGR(NP1), XDDE(NP1)
DIM FQRR(4), ISTNiS;
DIM ZF0C(4)
DIM ZCCX3H(2, 2)
DIM VMAXS, VMIN(13, 2)
DIM SAV(50, 1)
DIM SHAFNUNIT, KINT, GINT, ITC1, ITC2, IPOLE, N3TM, FILES.

SHARED DT, FELD, PH, TF, EPS4, HCMAX, VII, INPE, INBT, INDS, NPP, HAXNSEG, MINS

SHARED DT, FELD, PH, TF, EPS4, HCMAX, VII, INPE, INBT, INDS, NPP, HAXNSEG, MINS

SUMMARY

1ST TOWER INSULATOR TENSION

1ST SPAN CONDUCTOR TENSION

2ND TOWER INSULATOR TENSION

1ST TOWER HORIZONTAL FORCE

1ST TOWER VERTICAL FORCE

1ST SPAN CONDUCTOR TENSION

2ND TOWER INSULATOR TENSION

1ST TOWER HORIZONTAL FORCE

1ST TOWER VERTICAL FORCE

2ND TOWER HORIZONTAL FORCE

2ND TOWER VERTICAL FORCE

1ST TOWER HORIZONTAL DISPLACEMENT

2ND TOWER HORIZONTAL DISPLACEMENT

1ST TOWER INSULATOR HORIZ. DIS. (LOWER END)

1ST TOWER INSULATOR VERT. DIS. (LOWER END)

2ND TOWER INSULATOR HORIZ. DIS. (LOWER END)

2ND TOWER INSULATOR VERT. DIS. (LOWER END)

SWERT: DISPLACEMENT AT MIDSPAN OF CONDUCTOR

FAILURE TO CONVERGE IN PCAFX AT T=

CHECK DATA AT ERROR PRINT OUT, INFORMATION BELOW, AND ERROR MESSAGE RECOMMENDATIONS IN USER MANUAL

FAILURE TO MEET FORCE CONVERGENCE CRITERIA OF

RECOMMENDED MAXIMUM TIME INTERVAL. DT=
$\text{RECOMMENDED FORCE TOLERANCE= \#.###}$$
$\text{PLEASE CONSULT RECOMMENDATIONS IN USER MANUAL.}$
$\text{IMBALANCE IMBALANCE ABSOLUTE ALLOWED}$$
$\text{DOF FORCES LIN. ACC. DIFFERENCE TOLERANCE}$$
EXCEEDS TOLERANCE

$\text{DISPLACEMENTS FROM DYNAMIC ANALYSIS}$$
$\text{INSULATOR LOAD VS}$$
TIME ON THE SCREEN

GET (140, 101)-(601, 275), PL1

IF ICODE O 2 THEN
 LOCATE 4: PRINT : "ELAPSED TIME"
 IF V11 O 0 THEN
 LOCATE 12: PRINT ; "INSULATOR"
 ELSE
 LOCATE 12: PRINT ; "CONDUCTOR"
 END IF
 LOCATE 13: PRINT ; "ANGLE PER": KINT
 LOCATE 14: PRINT ; "TIME INTERVAL"
 LOCATE 15: PRINT ; "FROM HORIZONTAL"
 IF V11 O 0 THEN
 LOCATE 23: PRINT ; "INSULATOR"
 ELSE
 LOCATE 23: PRINT ; "CONDUCTOR"
 END IF
 LOCATE 24: PRINT ; "TENSION PER": KINT
 LOCATE 25: PRINT ; "TIME INTERVAL"
ELSE
 END IF

OPEN FILE TO STORE DATA FOR PLOTTING

OPEN FILENAME$ + "PL1" FOR OUTPUT AS #6
OPEN FILENAME$ + "PL2" FOR OUTPUT AS #7

INITIALIZE CONSTANTS

PI = 3.14159
NP = NP1 - 1
EPS = .001
D1 = DT * DT / 2
D2 = D1 * DT / 3
T = 0
KPR$ = "0"
IF ICODE > 1 THEN KPR$ = "1"
NSH$ = "0"
KNPOL$ = "0"
N3K = KINT
N3K = N3K - 1
NRT = 0
ISTOP1 = 500
IF IPOLE = 0 THEN KNPOL$ = "1"
NFILLES = 0
IDIV = 0
CLOSE #3
OPEN "TEMP2.DAT" FOR OUTPUT AS #3
IF ICODE O 2 THEN
 XSCALE = 450 / HCMAX
 YSCALE = 300 / 150
V = 1

IF

ALIZE ARRAYS

I = 1 TO NP1

I(I) = 0

I(I) = 0

H(I) = 0

(I) = 0

(NP1) = 0

FROM FILE TEMP1.DAT THE DATA GENERATED IN GENDYD

I = 1 TO NCT

PUT #2, AET(I), MDT(I), XLOT(I)

T I

I = 1 TO NCA6LE

UT #2, CH(I), CV(I), INDT(I), INDS(I)

J = 1 TO 4

UT #2, INPE(I, J)

T J

UT #2, DAMP(I)

T I

NPOLE$ = "I" GOTO 551

I = 1 TO NPOLE

UT #2, NPP(I), AK(I)

T I

R I = 1 TO NP

UT #2, AMASS(I), FI(I), XDDS(I)

T I

I = 1 TO NETH

UT #2, ISTM(I)

T I

UT #1, USING D5020$: SPACE$(0)

NINS = 0 THEN

PRINT #1, USING D5021$: SPACE$(0)

PRINT #1, USING D5022$: SPACE$(0)

PRINT #1, USING D5023$: SPACE$(0)

ELSE

PRINT #1, USING D5021$: SPACE$(0)

PRINT #1, USING D5022$: SPACE$(0)

PRINT #1, USING D5023$: SPACE$(0)

IF

ICODE < 2 THEN PSET (140, 50)

LEASE COUNTERS EACH TIME INTERVAL

K = H3K + 1
KKK < NNK THEN GOTO 1002
 = 0
V$ = "O"
D 103
SAV$ = "1"
D 105

TI = NCNT + 1
NCNT <= KSTOP THEN GOTO 105
TI = 1
DO 5001

; PORTION OF THE PROGRAM DOES AN ITERATIVE LINEAR
ACCELERATION ROUTINE ON EACH DOF

; DETERMINE END OF INTERVAL VALUES OF DISPLACEMENT, VELOCITY,
ACCELERATION
ACCELERATION IS LINEAR OVER TIME INTERVAL-ALPHA (CONSTANT)
IT = 0
OR I = 1 TO NP
DDE(I) = XDOS(I) + ALPHA(I) * DT
DE(I) = XDS(I) + ALPHA(I) * D1 + XDOS(I) * DT
E(I) = XS(I) + XDS(I) * DT + ALPHA(I) * D2 + XDOS(I) * D1
EXT I

; DETERMINE THE IMBALANCE OF FORCES ON EACH LUMPED MASS
NEW POSITION
L IMBALANCE FORCE ARRAY (FI)
OR I = 1 TO NP1
I(I) = 0
EXT I
F KNPOL$ = "1" GOTO 135

; FORCES FROM TOWER SUPPORTS
OR I = 1 TO NPOLE
PPI = NPP(I)
I(NPPI) = FI(NPPI) - XE(NPPI) * AK(I)
NEXT I
IS = 0
LI = 0

; DETERMINE THE FORCES ON THE CABLE SEGMENTS DUE TO THE
DISPLACEMENTS OF THE ENDS
LI = ILI + 1
IPE1 = INPE(ILI. 1)
IPE2 = INPE(ILI. 2)
IPE3 = INPE(ILI. 3)
IPE4 = INPE(ILI. 4)
ZH = XE(NPE3) - XE(NPE1)
ZV = XE(NPE4) - XE(NPE2)
ZH = CH(IL1) + ZH
ZV = CV(IL1) + ZV
MN = IL1
INCT = IND1(MN)
ZAE = AET(INCT)
ZWO = WOT(INCT)
ZXLO = XLOT(INCT)
IF ZXLO <> 0 THEN
 CALL PCAFXX(IL1, ZH, ZV, ZAE, ZWO, ZXLO, ZFDC(1), ZTEN1, ZTEN2, 2, ZCOOR(), IDIV, 0, NE)
ELSE
 ZH = 0
 ZV = 0
 ZFDC(1) = 0
 ZFDC(2) = 0
 ZFDC(3) = 0
 ZFDC(4) = 0
 ZTEN1 = 0
 ZTEN2 = 0
 ZCOOR(1, 1) = 0
 ZCOOR(1, 2) = 0
 ZCOOR(2, 1) = 0
 ZCOOR(2, 2) = 0
 NE = 0
END IF
IF NE = 0 THEN GOTO 350
NRT = 2
GOTO 600
350 FOR I = 1 TO 4
 FDR1(I) = ZFDC(I)
360 NEXT I
 TEN = ZTEN1
 'STORE THE VALUES OF TENSION
 IF KSAV* = "1" THEN GOTO 1401
 IIS = IND1(IL1)
 IF IIS = 0 THEN GOTO 1401
 NIS = NIS + IIS
 SAV(NCNT1, NIS) = TEN
 IF ILI > 2 THEN GOTO 1401
 IF NIS = 0 AND ILI = 2 THEN GOTO 1401
 SAV(NCNT1, 4) = FDR1(3)
 SAV(NCNT1, 5) = -FDR1(2)
 IF SAV(NCNT1, 4) <> 0 THEN
 ANG = ATN(SAV(NCNT1, 5) / SAV(NCNT1, 4)) * 180 / PI
 ELSE
 ANG = 90
 END IF
 'ADD CABLE FORCES TO IMBALANCE ARRAY
140 FOR J = 1 TO 4
 NPEJ = INPE(ILI. J)
 FI(NPEJ) = FI(NPEJ) - FORR(J)
150 NEXT J

ADD DAMPING FORCES TO IMBALANCE ARRAY

 C = DAMP(ILI)
 DVH = XDE(NPE3) - XDE(NPE1)
 DVV = XDE(NPE4) - XDE(NPE2)
 HOR = 2H
 VER = IV
 C1 = HOR * HOR
 C2 = HOR * VER
 C3 = VER * VER
 IF C1 < 0 OR C3 < 0 THEN
 C4 = C / (C1 + C3)
 ELSE
 END IF
 END IF
 DH = C4 * (DVH * C1 + DVV * C2)
 DV = C4 * (DVH * C2 + DVV * C3)
 FI(NPE1) = FI(NPE1) + DH
 FI(NPE2) = FI(NPE2) + DV
 FI(NPE3) = FI(NPE3) - DH
 FI(NPE4) = FI(NPE4) - DV

DRAW THE CONDUCTOR AND THE INSULATORS OF THE FIRST SPAN
FOR EVERY GINT TIME INTERVALS

 IF ICODE < 2 AND ABS(GCHI) < .000001 THEN
 IF KAC$ = "I" AND ILI < MAXSEG + 3 THEN
 XORD = XSCALE * (ZCODR(1, 2) - ZCODR(1, 1))
 YORD = -YSOALE * (ZCODR(2, 2) - ZCODR(2, 1))
 IF ILI = MAXSEG + 2 THEN
 YORD = YSCALE * (ZCODR(2, 2) - ZCODR(2, 1))
 XORD = -XSCALE * (ZCODR(1, 2) - ZCODR(1, 1))
 ELSE
 END IF
 END IF
 END IF
 VIEW SCREEN (121, 1)-(638, 299)
 CLS 1
 PUT (140, 10), PLT1, OR
 PSET (140 + XSCALE * XE(ILI), 50)
 ELSE
 END IF
 END IF
 IF ILI = 1 OR ILI = MAXSEG + 2 THEN
 LINE -STEP(XORD, YORD), 4
 ELSE
 LINE -STEP(XORD, YORD), 3
 END IF
 ELSE
 END
IF $I < \text{NCABLE}$ THEN GOTO 136

ECK BUFFER FOR SPECIAL LETTER IF FIND "0" OR "O" FREEZE THE SCREEN

$ = \text{INKEYS} \\
F \text{IF } $ = "0" OR $ = "O" \text{ THEN CALL INSTRUCTIONS}

COMPARE IMBALANCE FROM LINEAR ACCELERATION CALCULATION
TO IMBALANCE FROM FORCES

FOR $I = 1$ TO NP \\
$FILA(I) = XDE(I) \times AMAS(I)$ \\
NEXT I

IF KAC = "I" \\
FOR $I = 1$ TO NP \\
IF $\text{ABS}(FILA(I) - FI(I)) < \varepsilon$ THEN GOTO 2101 \\
KAC = "0" \\
NEXT I

IF KAC = "I" GOTO 230 \\
NIT = NIT + 1 \\
IF NIT = 8 THEN GOTO 290

DETERMINE THE NEW CONSTANT FOR THE LINEAR ACCELERATION OVER THE
TIME INTERVAL IF CONVERGENCE CRITERIA ARE NOT MET

FOR $I = 1$ TO NP \\
$ALPHA(I) = (FI(I) / AMAS(I) - XDDS(I)) / \Delta T$ \\
NEXT I

GOTO 115

AFTER CONVERGENCE CRITERIA ARE MET

ASSIGN NEW $X'S, XDS, XDDS$ FOR THE START OF THE NEXT INTERVAL

FOR $I = 1$ TO NP \\
$XDDS(I) = XDE(I)$ \\
$XDS(I) = XDS(I)$ \\
$XS(I) = XS(I)$ \\
NEXT I

STORE DISPLACEMENTS

IF $KSAV$ = "1" GOTO 2501 \\
FOR $I = 1$ TO $NSTM$ \\
$J = \text{ISTM}(I)$ \\
$K = I + 5$ \\
$\text{SAV}(\text{NCT1}, K) = XS(J)$ \\
NEXT I \\
GOTO 391
LOT LOAD VS DISPLACEMENT UNDER THE CONDUCTOR SHAPE
OR EVERY GINT TIME INTERVALS

T = T + DT
GE4: = CINT((T / DT) / GINT) - (T / DT) / GINT
IF ICOD = 2 AND KSAM$ = "1" THEN
 LOCATE 6: PRINT USING "###.#### &": T; "SEC"
 LOCATE 17: PRINT USING "###.#### &": ANG: " DEG"
 LOCATE 27: PRINT USING "####.####": SAV(NINT1. 1)
IF NUNIT = 0 THEN LOCATE 28: PRINT: "NEWTONS"
IF NUNIT = 1 THEN LOCATE 28: PRINT: "LBS"
VIEW SCREEN (120, 300)-(639, 475);
 PS67 (140 * T * 450 / TF, 450 - SAV(NINT1. 1) * 150 / (ABS(PH) * 2.5))
ELSE
 END IF
PRINT THE DATA STORED IN SAV
BEGIN NEXT TIME INTERVAL IF T < TF

IF (KSAM$ = "1") THEN GOTO 280
SAV(NINT1. 14) = T
IF XR = "1" THEN GOTO 280
PRINT #1. USING D5000#: SAV(NINT1. 14):
 FOR I = 1 TO 5
 IF I <> 3 THEN PRINT #1. USING D5000#: SAV(NINT1. I):
 NEXT I
 PRINT #1. USING "&": SPACE(0)
 IF T > TF THEN GOTO 600
GOTO 90

DATA PRINTED IF NON-CONVERGENCE IN ITERATIVE PORTION

IF NRT = 1
GOTO 600
STORE DATA IN SAV ON FILE TEMP2.DAT AND RETURN TO ALGORITHM

NFILES = NFILES + 1
 FOR NI = 1 TO 500
 FOR N1 = 1 TO 14
 PRINT #3. SAV(NI, N1):
 NEXT N1
 IF SAV(NI, 4) <> 0 THEN
 ANG = ATN(SAV(NI, 5) / SAV(NI, 4)) * 180 / PI
 ELSE
 ANG = 90
 END IF
 NEXT NI
GOTO 105

STORE DATA AND PRINT RESULTS

THIS IS WHERE THE FINAL VALUES OF SAV ARE SAVED ONTO A FILE

NFILES = NFILES + 1
FOR NI = 1 TO NONT1
 FOR NJ = 1 TO 14
 PRINT #3, SAV(NI, NJ).
 NEXT NJ
 IF SAV(NI, 4) <> 0 THEN
 ANG = ATN(SAV(NI, 5) / SAV(NI, 4)) * 180 / PI
 ELSE
 ANG = 90
 END IF
 PRINT #6, USING D6666#; SAV(NI, 14); SAV(NI, 1); SAV(NI, 4); SAV(NI, 5); SAV(NI, 7); SAV(NI, 8); SAV(NI, 10); SAV(NI, 6)
NEXT NI

PRINT DISPLACEMENTS IF ICODE = 0

IF ICODE <> 0 THEN GOTO 625
PRINT #1, USING D5005#: SPACE$(0)
IF NSTN <> 8 THEN GOTO 601
IF NINS = 0 THEN
 PRINT #1, USING D5006#: SPACE$(0)
 PRINT #1, USING D5007#: SPACE$(0)
 PRINT #1, USING D5009#: SPACE$(0)
 PRINT #1, USING D5010#: SPACE$(0)
ELSE
 PRINT #1, USING D5006B#: SPACE$(0)
 PRINT #1, USING D5007B#: SPACE$(0)
 PRINT #1, USING D5009B#: SPACE$(0)
 PRINT #1, USING D5010B#: SPACE$(0)
END IF
FOR I = 1 TO NSTN
 IF ISTN(I) <> 0 THEN PRINT #1, USING D5010#: SPACE$(0); ISTN(I); SPACE$(0);
 NEXT I
PRINT #1, USING "&": SPACE$(0)
GOTO 605

01 IF ITC1 = 1 THEN GOTO 603
IF ITC2 = 0 THEN GOTO 602
IF NINS = 0 THEN
 PRINT #1, USING D5011#: SPACE$(0)
 PRINT #1, USING D5012#: SPACE$(0)
 PRINT #1, USING D5013#: SPACE$(0)
 PRINT #1, USING D5010#: SPACE$(0)
ELSE
 PRINT #1, USING D5011B#: SPACE$(0)
 PRINT #1, USING D5012B#: SPACE$(0)
 PRINT #1, USING D5013B#: SPACE$(0)
PRINT #1, USING D5010B$; SPACE$(O);
END IF
FOR I = 1 TO NSTM
IF ISTM(I) <> 0 THEN PRINT #1, USING D5010A$; ISTM(I); SPACE$(O);
NEXT I
PRINT #1, USING "&"; SPACE$(O)
GOTO 605

602 IF NINS = 0 THEN
PRINT #1, USING D5011B$: SPACE$(O)
PRINT #1, USING D5011B$: SPACE$(O)
PRINT #1, USING D5011B$: SPACE$(O)
PRINT #1, USING D5011B$: SPACE$(O);
ELSE
PRINT #1, USING D5011B$: SPACE$(O)
PRINT #1, USING D5011B$: SPACE$(O)
PRINT #1, USING D5011B$: SPACE$(O)
PRINT #1, USING D5011B$: SPACE$(O);
END IF
FOR I = 1 TO NSTM
IF ISTM(I) <> 0 THEN PRINT #1, USING D5010A$; ISTM(I); SPACE$(O);
NEXT I
PRINT #1, USING "&"; SPACE$(O)
GOTO 605

603 IF NINS = 0 THEN
PRINT #1, USING D5006B$: SPACE$(O)
PRINT #1, USING D5006B$: SPACE$(O)
PRINT #1, USING D5006B$: SPACE$(O)
PRINT #1, USING D5006B$: SPACE$(O);
ELSE
PRINT #1, USING D5006B$: SPACE$(O)
PRINT #1, USING D5006B$: SPACE$(O)
PRINT #1, USING D5006B$: SPACE$(O)
PRINT #1, USING D5006B$: SPACE$(O);
END IF
FOR I = 1 TO NSTM
IF ISTM(I) <> 0 THEN PRINT #1, USING D5010A$; ISTM(I); SPACE$(O);
NEXT I
PRINT #1, USING "&"; SPACE$(O)

605
K1 = 5 + NSTM
CLOSE #3
OPEN "TEMP2.DAT" FOR INPUT AS #3
NN = 500
FOR I = 1 TO NFILES
IF I = NFILES THEN NN = NCMT1
FOR NI = 1 TO NN
FOR NJ = 1 TO 14
INPUT #3, SAV(NI, NJ)
NEXT NJ
NEXT NI
FOR J = 1 TO NN
PRINT #1, USING D5008B; SAV(J, 14);
FOR K = 6 TO K1
 IF NINS = 0 THEN
 PRINT #1, USING D5008A$, SAV(J, K);
 ELSEIF ITCI = 1 THEN
 IF K > 7 AND K < 8 THEN PRINT #1, USING D5008A$, SAV(J, K);
 ELSEIF ITCI = 0 THEN
 IF K < 6 AND K > 7 THEN PRINT #1, USING D5008A$, SAV(J, K);
 END IF
 NEXT K
 PRINT #1, USING "&"; SPACE$(0)
 NEXT J
620 NEXT I
625 CLOSE #3
 OPEN "TEMP2.DAT" FOR INPUT AS #3

' DETERMINE THE RANGE OF TENSIONS AND DISPLACEMENTS

J = 1
K1 = 5 + NSMT
FOR I = 1 TO 13
 VMAX(I, J) = 0
 VMIN(I, J) = 1000000
672 NEXT I
 CLOSE #3
 OPEN "TEMP2.DAT" FOR INPUT AS #3
 NN = 500
 FOR J = 1 TO NFILES
 IF J = NFILES THEN NN = NCNT1
 FOR NI = 1 TO NN
 FOR NJ = 1 TO 14
 INPUT #3, SAV(NI, NJ)
 NEXT NJ
 NEXT NI
 FOR K = 1 TO NN
 FOR I = 1 TO K1
 P = SAV(K, I)
 IF P < VMAX(I, 1) THEN GOTO 675
 VMAX(I, 1) = P
 VMAX(I, 2) = SAV(K, 14)
 NEXT I
 IF P < VMIN(I, 1) THEN GOTO 680
 VMIN(I, 1) = P
 VMIN(I, 2) = SAV(K, 14)
680 NEXT I
 NEXT K
 NEXT J
 PRINT #1, USING D683$: SPACE$(0)
 PRINT #1, USING D684$: SPACE$(0)
 PRINT #1, USING D683$: SPACE$(0)
 PRINT #1, USING D685$: SPACE$(0)
 PRINT #1, USING D683$: SPACE$(0)
 PRINT #1, USING D685$: SPACE$(0)
 IF NINS = 0 THEN
 PRINT #1, USING D686$: SPACE$(0); VMAX(I, 1); SPACE$(0); VMAX(I, 2); SPACE$(0); VMIN(I, 1); SPACE$(0); VMIN(I,
PRINT #1. USING D687S: SPACE#(0); VMAX(2, 1); SPACE#(0); VMAX(2, 2); SPACE#(0); VMIN(2, 1); SPACE#(0); VMIN(2, 2); SPACE#(0);

PRINT #1. USING D688S: SPACE#(0); VMAX(3, 1); SPACE#(0); VMAX(3, 2); SPACE#(0); VMIN(3, 1); SPACE#(0); VMIN(3, 2); SPACE#(0);

PRINT #1. USING D689S: SPACE#(0); VMAX(4, 1); SPACE#(0); VMAX(4, 2); SPACE#(0); VMIN(4, 1); SPACE#(0); VMIN(4, 2); SPACE#(0);

PRINT #1. USING D690S: SPACE#(0); VMAX(5, 1); SPACE#(0); VMAX(5, 2); SPACE#(0); VMIN(5, 1); SPACE#(0); VMIN(5, 2); SPACE#(0);

PRINT #1. USING D691S: SPACE#(0); VMAX(6, 1); SPACE#(0); VMAX(6, 2); SPACE#(0); VMIN(6, 1); SPACE#(0); VMIN(6, 2); SPACE#(0);

PRINT #1. USING D692S: SPACE#(0); VMAX(7, 1); SPACE#(0); VMAX(7, 2); SPACE#(0); VMIN(7, 1); SPACE#(0); VMIN(7, 2); SPACE#(0);

PRINT #1. USING D693S: SPACE#(0); VMAX(8, 1); SPACE#(0); VMAX(8, 2); SPACE#(0); VMIN(8, 1); SPACE#(0); VMIN(8, 2); SPACE#(0);

PRINT #1. USING D694S: SPACE#(0); VMAX(9, 1); SPACE#(0); VMAX(9, 2); SPACE#(0); VMIN(9, 1); SPACE#(0); VMIN(9, 2); SPACE#(0);

ELSE

PRINT #1. USING D696S: SPACE#(0); VMAX(1, 1); SPACE#(0); VMAX(1, 2); SPACE#(0); VMIN(1, 1); SPACE#(0); VMIN(1, 2); SPACE#(0);

PRINT #1. USING D697S: SPACE#(0); VMAX(2, 1); SPACE#(0); VMAX(2, 2); SPACE#(0); VMIN(2, 1); SPACE#(0); VMIN(2, 2); SPACE#(0);

PRINT #1. USING D698S: SPACE#(0); VMAX(4, 1); SPACE#(0); VMAX(4, 2); SPACE#(0); VMIN(4, 1); SPACE#(0); VMIN(4, 2); SPACE#(0);

PRINT #1. USING D699S: SPACE#(0); VMAX(5, 1); SPACE#(0); VMAX(5, 2); SPACE#(0); VMIN(5, 1); SPACE#(0); VMIN(5, 2); SPACE#(0);

PRINT #1. USING D700S: SPACE#(0); VMAX(6, 1); SPACE#(0); VMAX(6, 2); SPACE#(0); VMIN(6, 1); SPACE#(0); VMIN(6, 2); SPACE#(0);

ENDIF

IF ITC1 = 1 THEN I = 7

IF NINE = 0 THEN PRINT #1, USING D693S: SPACE#(0); VMAX(1, 1); SPACE#(0); VMAX(1, 2); SPACE#(0); VMIN(1, 1); SPACE#(0); VMIN(1, 2); SPACE#(0);

I = I + 1

IF NINE = 0 THEN PRINT #1, USING D694S: SPACE#(0); VMAX(1, 1); SPACE#(0); VMAX(1, 2); SPACE#(0); VMIN(1, 1); SPACE#(0); VMIN(1, 2); SPACE#(0);

I = I + 1

PRINT #1, USING D695S: SPACE#(0); VMAX(1, 1); SPACE#(0); VMAX(1, 2); SPACE#(0); VMIN(1, 1); SPACE#(0); VMIN(1, 2); SPACE#(0);

I = I + 1

PRINT #1, USING D696S: SPACE#(0); VMAX(1, 1); SPACE#(0); VMAX(1, 2); SPACE#(0); VMIN(1, 1); SPACE#(0); VMIN(1, 2); SPACE#(0);

I = I + 1

PRINT #1, USING D697S: SPACE#(0); VMAX(4, 1); SPACE#(0); VMAX(4, 2); SPACE#(0); VMIN(4, 1); SPACE#(0); VMIN(4, 2); SPACE#(0);

IF ITCL = 0 THEN GOTO 681

PRINT #1, USING D691S: SPACE#(0); VMAX(6, 1); SPACE#(0); VMAX(6, 2); SPACE#(0); VMIN(6, 1); SPACE#(0); VMIN(6, 2); SPACE#(0);

681 IF ITCL = 0 THEN GOTO 682

I = I + 1

PRINT #1, USING D692S: SPACE#(0); VMAX(7, 1); SPACE#(0); VMAX(7, 2); SPACE#(0); VMIN(7, 1); SPACE#(0); VMIN(7, 2); SPACE#(0);

682 PRINT #1, USING D683S: SPACE#(0)

WRITE ERROR MESSAGES IF CONVERGENCE FAILURE

IF NRT = 0 THEN GOTO 800

IF NRT = 1 THEN GOTO 702

PRINT #1, USING D695S: SPACE#(0); T

PRINT #1, USING D699S: SPACE#(0)

GOTO 704

702 PRINT #1, USING D703S: SPACE#(0); EPS4; SPACE#(0); T; SPACE#(0); DT

704

TDL = .001 * ABS(Phi)

PRINT #1, USING D711s: SPACE#(0)

PRINT #1, USING D712s: SPACE#(0)

PRINT #1, USING D713s: SPACE#(0)
FOR IA = 1 TO NUNIT

I = IND(TIA)

AEWXL = AET(I) / (WOT(I) * XLOT(I) * XLOT(I))

G = 32.2

IF NUNIT = 1 THEN GOTO 705

G = G * .3048

FREQ = SQRT(AEWWX * G)

FREQ = FREQ / (PI * 2)

PER = 1 / FREQ

DTREC = .01 * PER

PRINT #1, USING D714$: IA; AET(I); WOT(I); XLOT(I); FREQ; PER; DTREC

IF DTREC > DTM THEN GOTO 710

DTM = DTREC

IDT = IA

NEXT IA

DTM2 = 5 * DTM

PRINT #1, USING D715$: SPACE$(0); DTM; SPACE$(0); DTM2; SPACE$(0); IDT; SPACE$(0)

IF NRT = 2 THEN GOTO 800

PRINT #1, USING D716$: SPACE$(0); TOL

PRINT #1, USING D717$: SPACE$(0)

PRINT #1, USING D718$: SPACE$(0)

PRINT #1, USING D719$: SPACE$(0)

FOR I = 1 TO NP

TFC = ABS(FILA(I) - FI(I))

IF TFC > EPS4 THEN GOTO 725

PRINT #1, USING D720$: I; FILA(I); FI(I); TFC; EPS4

GOTO 730

PRINT #1, USING D721$: I; FILA(I); FI(I); TFC; EPS4; SPACE$(0)

NEXT I

PRINT #7, NUNIT, TF. PH. VII, NFILES, NCNT1, VMAX(1, 1), VMAX(7, 1), VMAX(8, 1), VMIN(10, 1), VMAX(6, 1), NINS

CLOSE #7

END SUB
SUB GENDYD (NSPAN, NCE, NPE, NCTE)

" THIS SUBROUTINE GENERATES THE CABLE PROPERTY DATA FOR A DYNAMIC ANALYSIS
" OF A POLE/INSULATOR/CONDUCTOR SYSTEM DUE TO A BROKEN CONDUCTOR

" DATA IS STORED FOR USE BY THE MAIN PROGRAM ON FILE TEMP1.DAT
" GENDYD USES SCRATCH FILES TEMP2.DAT, TEMP3.DAT FOR TEMPORARY STORAGE

INDS=ARRAY CONTAINING CODE TO PRINT TENSION IN DYNAMIC ANAL
INDT=ARRAY CONTAINING CABLE ELEMENT TYPE
INPE=ARRAY CONTAINING CABLE ELEMENT DEGREES OF FREEDOM
INPP=ARRAY CONTAINING THE DOF FOR POLE/TOWER
DAMP=ARRAY CONTAINING DAMPING CONSTANT FOR EACH CABLE ELEMENT
AMASS=MASS FOR EACH DEGREE OF FREEDOM
FI=INITIAL FORCE IMBALANCE FOR EACH DOF
XDOS=INITIAL ACCELERATION FOR EACH DOF
NSTAT=NUMBER OF CABLE ELEMENT TENSIONS TO BE PRINTED IN DYN ANAL
NSTM=NUMBER OF DISPLACEMENTS TO BE PRINTED DURING DYN ANAL
ISTM=DEGREES OF FREEDOM FOR PRINTED DISPLACEMENTS
VI=LENGTH OF INSULATOR
HC=HORIZONTAL PROJECTION OF CONDUCTOR
VC=VERTICAL PROJECTION OF CONDUCTOR
WOI=WEIGHT OF INSULATOR
WOC=WEIGHT/LENGTH OF CONDUCTOR
AE=AREA TIMES MODULUS OF ELASTICITY FOR CONDUCTOR
AEI=AREA TIMES MODULUS OF ELASTICITY FOR INSULATOR
NSEG=NUMBER OF CABLE ELEMENTS FOR DIVIDING CONDUCTOR
AKT=POLE OR TOWER STIFFNESS
AM=POLE MASS FOR DOF AT INSULATOR ATTACHMENT
AET=AE FOR EACH CABLE ELEMENT TYPE
AENXT=AE/WX FOR EACH CABLE ELEMENT TYPE
WDT=WEIGHT/LENGTH FOR EACH CABLE ELEMENT TYPE
WXT=WEIGHT FOR EACH CABLE ELEMENT TYPE
XLOT=LENGTH FOR EACH CABLE ELEMENT TYPE
CD=PERCENT OF CRITICAL DAMPING/100
" (PROGRAM USES 20 PERCENT)
PH=HORIZONTAL LINE TENSION
" (VERTICAL LOAD AT BREAK IS THE SAME AS FOR THE 1ST SPAN)
FCLD=LOAD TOLERANCE -- CONVERGENCE CRITERIA
FP=POLE TYPE
NCE=ESTIMATE OF THE NUMBER OF CABLE ELEMENTS
NPE=ESTIMATE OF THE NUMBER OF DOF
NCTE=ESTIMATE OF THE NUMBER OF CABLE ELEMENT TYPES

IIS=0 TENSION NOT PRINTED DURING DYNAMIC ANALYSIS
IIS=1 TENSION PRINTED DURING DYNAMIC ANALYSIS

UNIT=0 METRIC UNITS(KILOGRAMS FORCE -- METERS)
UNIT=1 AMERICAN UNITS(POUNDS -- FEET)

DIM XLOT(NCTE), AET(NCTE), WDT(NCTE)
DIM PVER(NSPAN), AMPOL(NSPAN), AKINSANP, INPP(NSPAN)
DIMM(30, 2), XCOORD(2, 30), FOC4(4)
AMASS(NPE), FI(NPE), XIDS(NPE)
CH(NCE), CV(NCE), FNPE(NCE, 4), INDT(NCE), DAMP(NCE)
AWAXT(NOTE), WXT(NOTE)
INDE(NCE)
ISTM(G)
ED NUNIT, KINT, IOODE, ITCL, ITC2, IPOL, NSTM, HCMAX
KD DT, POLD, PH, TF, EPS4, MAXSEG, VII, NINS
"&
"%" INPUT DATA FOR SUBROUTINE GENDY"
"&
" DATA UNITS= FEET -- POUNDS"
"&
" DATA UNITS=METERS -- HILLOGRAMS-FORCE"
"&
" LOAD TOLERANCE (GENDY)= #.## UNITS-FORCE"
"&
" NO. OF SPANS= ##"
"&
" EXT. HOR. LOAD= #.######"
"&
" PERCENT OF CRITICAL DAMP= #.####"
"&
"------------------CONDUCTOR DATA-------------------INSULATOR DATA-----TOWER/POLE DATA-----I"
"&
" HORIZ VERT WEIGHT PER NUMBER"
"&
" SPAN PROJ PROJ UNIT LENGTH AE ELEMENTS LENGTH WEIGHT AE TYPE MASS STIFFNESS"
"&
" LOAD TOLERANCE (DITSIM)= #.## UNITS-FORCE"
"&
" CABLE ELEMENTS FOR DYNAMIC ANALYSIS"
"&
" STATIC DYN DEGREES OF FREEDOM"
"&
" NO NO NPE1 NPE2 NPE3 NPE4 H V AE AE/WX WD XLD WX=WD*XLO MASS IS NOT"
"&
" ERROR IS GREATER THAN NPD1--REVISE MAIN"
"&
" DYNAMIC CABLE SYSTEM - INITIAL CONDITIONS"
"&
" SUMMARY OF PARAMETERS FOR DYNAMIC ANALYSIS"
"&
" NO. OF POLES(DYNAMIC)= ##"
"&
" NO. OF CABLES(DYNAMIC)= ##"
"&
" NP1= ##"
"&
" CABLES FOR DYNAMIC ANALYSIS -- CHECK FORCES"
"&
" SUMMARY OF PARAMETERS FOR DYNAMIC ANALYSIS"
"&
" DATA PRINTED EVERY # INTERVALS"
INITIALIZE ARRAYS AND CONSTANTS

PCLM = PCLD
NCA = NSPAN
NINSUL = NSPAN
NPOLE = NSPAN
NP = NPE
ND = NPE
E = .2
EPS = .0001
NINS = 0
FOR I = 1 TO NP
AMASS(I) = 0
NEXT I
FOR I = 1 TO NINSUL
FVER(I) = 0
NEXT I
UMASS = 32.2
IF NUNIT = 0 THEN UMASS = UMASS * .30481
NINT = TF / DT

PRINT GENERAL PROGRAM DATA

PRINT #1, USING G701$: SPACE$(O)
IF NUNIT = 0 THEN GOTO S1
PRINT #1, USING G702$: SPACE$(O)
GOTO 6
S1 PRINT #1, USING G703$: SPACE$(O)
6 PRINT #1, USING G704$: SPACE$(O); PCLD; SPACE$(O)
PRINT #1, USING G714$: SPACE$(O); EPS4; SPACE$(O)
PRINT #1, USING G705$: SPACE$(O); NSPAN
PRINT #1, USING G706$: SPACE$(O); PH
C = CD * 100
PRINT #1, USING G707$: SPACE$(O); C

READ AND PRINT CABLE/INSULATOR/POLE DATA FOR A TRANSMISSION LINE SYSTEM

STORER CONDUCTOR DATA ON FILE TEMP1.DAT

OPEN "TEMP1.DAT" FOR OUTPUT AS #2
OPEN "TEMP2.DAT" FOR OUTPUT AS #3
OPEN "TEMP3.DAT" FOR OUTPUT AS #4
PRINT #1, USING G699$: SPACE$(O)
PRINT #1, USING G706$: SPACE$(O)
PRINT #1, USING G709$: SPACE$(O)
PRINT #1, USING G710$: SPACE$(O)
PRINT #1, USING G699$: SPACE$(O)
PH = -PH
FOR I = 1 TO NSPAN
INPUT #10, VI, HC, VC, WDF, WCC, AEI, AEC, NSEG, NPT, AKT, AM
PRINT #1, USING G712$; I; HC; VC; WDF; WCC; AEI; AEC; NSEG; VI; WDF; AEI; NPT; AM; AKT

' IF THE LENGTH OF THE FIRST INSULATOR, VII, IS ZERO, THIS INSULATOR IS NOT INCLUDED IN THE NUMBERING OF THE DEGREES OF FREEDOM

IF I = 1 THEN VII = VI
IF VII = 0 THEN NSNI = 1
IF I = 1 THEN HCMAX = HC
HC = ABS(HC)
XLO = HC
IIS = 0
IF I <> 1 THEN GOTO 21
IIS = 1
NNSNI = NSEG

21 PRINT #2, HC, VC, AEC, WCC, XLO, NSEG, IIS

' STORE INSULATOR DATA ON FILE TEMP2.DAT

NSEG = 1
VI = -VI
XLO = ABS(VI)
HI = 0
IF XLO > 0 THEN
WOI = WDI / XLO
ELSE
WOI = 0
END IF
IIS = 0
IF I <= 2 AND XLO > 0 THEN IIS = 1
PRINT #3, HI, VI, AEI, WDI, XLO, NSEG, IIS, I, NPT

' STORE POLE/TOWER DATA

AMPOL(I) = AM
AK(I) = AKT
IF I <> 1 THEN GOTO 25
NMP1 = NPT
25 IF I <> 2 THEN GOTO 30
NMP2 = NPT
NEXT I
PRINT #1, USING G699$; SPACE$(0)
IDIV = 0

' SET PROGRAM UP FOR DRAWING THE CONDUCTOR (ICODE = 2)

IF ICODE = 2 THEN
CLS
LINE (120, 0)-(639, 475), B
LINE (120, 300)-(639, 300)
```plaintext
PSET (140, 50)
XSCALE = 450 / HCMAX
YSCALE = 300 / 150
IDIV = 1
ELSE
END IF

DETERMINE THE DEGREES OF FREEDOM FOR THE DISPLACEMENTS WHICH ARE TO BE
PRINTED DURING THE DYNAMIC ANALYSIS

ITC1 = 0
ITC2 = 0
IF MNF1 = 0 THEN GOTO 31
ISTM(1) = 1
IF NINS = 0 THEN ISTM(2) = 2
IF NINS = 0 THEN ISTM(3) = 3
ISTM(4) = NNSG + ISTM(2)
ISTM(5) = ISTM(4) + 1
ISTM(6) = 2 * NNSG + ISTM(2)
ISTM(7) = ISTM(6) + 1
ITC1 = 1
NSTM = 7
IF NNP2 = 0 THEN GOTO 32
ISTM(8) = ISTM(7) + 1
ITC2 = 1
NSTM = 8
GOTO 32
31 IF NINS = 0 THEN ISTM(1) = 1
IF NINS = 0 THEN ISTM(2) = 2
ISTM(3) = NNSG + ISTM(1)
ISTM(4) = ISTM(3) + 1
ISTM(5) = 2 * NNSG + ISTM(1)
ISTM(6) = ISTM(5) + 1
NSTM = 6
IF NNP2 = 0 THEN GOTO 32
ISTM(7) = ISTM(6) + 1
ITC2 = 1
NSTM = 7
32

RESTORE INSULATOR DATA AFTER CONDUCTOR DATA ON FILE TEMP1.DAT

CLOSE #3
OPEN "TEMP2.DAT" FOR INPUT AS #3
FOR I = 1 TO NSPAN
  INPUT #3, H, V, AE, WD, XLD, IC, IIS, J, NPT
  PRINT #2, H, V, AE, WD, XLD, IC, IIS, J, NPT
NEXT I

COMPUTE THE CONDUCTOR LENGTHS TO MATCH PROBLEM GEOMETRY
AND MATERIAL PROPERTIES
```
CLOSE #2, #3
OPEN "TEMP1.DAT" FOR INPUT AS #2
OPEN "TEMP2.DAT" FOR OUTPUT AS #3
N = 0
FOR II = 1 TO NCABLE
 INPUT #2. H, V, AE, WO, XLO, IC, IIS
 IF XLO < 0 THEN
 CALL SOLXLO(I), H, V, AE, XLO, PH, PCLM, FOC(1)
 ELSE
 H = 0
 V = 0
 END IF
 PRINT #3, H, V, AE, WO, XLO, IC, IIS
 N = N + 1
 NCABD = N + 1
 PH = -FOC(3)
 PVER(N) = PVER(N) - FOC(2)
 IF II = 1 THEN GOTO 34
 PVER(N) = PVER(N) - FOC(2)
34 IF NI > NSPAN THEN GOTO 35
 PVER(N1) = PVER(N1) - FOC(4)
35 NEXT II

' COMPUTE INSULATOR VERTICAL DIMENSION
' (ASSUMES THAT H=0)

FOR I = 1 TO NINSUL
 INPUT #2. H, V, AE, WO, XLO, IC, IIS, NPOL, NPT
 TJ = ABS(PVER(I))
 TI = ABS(WO * XLO - PVER(I))
 IF WO < 0 THEN
 V = (TJ * TJ - TI * TI) / (2 * AE * WO) + (TJ - TI) / WO
 ELSE
 V = 0
 END IF
 PRINT #4, H, V, AE, WO, XLO, IC, IIS, NPOL, NPT
42 NEXT I

' DIVIDE CONDUCTORS AND INSULATORS INTO CABLE SEGMENTS,
' AND NUMBER THE DEGREES OF FREEDOM

CLOSE #2, #3, #4
OPEN "TEMP2.DAT" FOR INPUT AS #3
OPEN "TEMP3.DAT" FOR INPUT AS #4
NCABD = 0
NCSTAT = 0
NCT = 0
NC = 0
DIVIDE INSULATORS INTO M SEGMENTS
M=1 ASSUMED FOR ALL INSULATORS

FOR II = 1 TO NINSUL
 INPUT #4. H, V, AE, W0, XLO, NSEG, IIS, NFOL, NPT
 NP0 = NFOL
 IF NSEG = 1 THEN GOTO 65
 NPTS = NSEG + 1
 AH = H
 AV = V
 AAE = AE
 AXLO = XLO
 AW0 = W0
 IF AXLO < 0 THEN
 CALL PCAFX(II, AH, AV, AAE, AW0, AXLO, FOCO, TENJ, TENG, NPTS, XCOORD(), 1, 0, N)
 ELSE
 AH = 0
 AV = 0
 XCOORD(1, 1) = 0
 XCOORD(1, 2) = 0
 XCOORD(2, 1) = 0
 XCOORD(2, 2) = 0
 END IF
 FOR I = 1 TO NSEG
 J = I + 1
 DIMM(I, 1) = XCOORD(1, J) - XCOORD(1, I)
 DIMM(I, 2) = XCOORD(2, J) - XCOORD(2, I)
 NEXT I
 GOTO 66
65 DIMM(1, 1) = H
 DIMM(1, 2) = V
66

DETERMINE THE MASS/SEGMENT FOR THE INSULATOR

XLOS = XLO / NSEG
XMASS = W0 * XLOS / UMASS
NSTAT = NSTAT + IIS
NCABD = NCABD + NSEG

DETERMINE THE BOUNDARY CONDITIONS FOR NUMBERING THE DOF

NCOND = 1
IF II = 1 THEN NCOND = 0 'for the first insul the DOF at I are given
MT = 0
MN = II
NECJ = 2
IF NPT = 0 THEN NPCLE = NPCLE - 1
68 NEDI = NPT
W = WO
XLO = XLO
LM = 1
GOTO 300

70
DIVIDE CONDUCTORS INTO NSEG SEGMENTS

INPUT #3, H, V, AE, WO, XLO, NSEG, IIS
IF NSEG = 1 THEN GOTO 72
NPTS = NSEG + 1
AH = H
AV = V
AAE = AE
AXLO = XLO
AWO = WO
IF AXLO < 0 THEN
CALL PCAFXT(II, AH, AV, AAE, AWO, AXLO, FDD1(), TEND, TEND, NPTS, XCOORD(), 1, 0, N)
ELSE
AH = 0
AV = 0
XCOORD(1, 1) = 0
XCOORD(1, 2) = 0
XCOORD(2, 1) = 0
XCOORD(2, 2) = 0
END IF
FOR I = 1 TO NSEG
J = I + 1
DIMH(1, 1) = XCOORD(1, J) - XCOORD(1, I)
DIMH(1, 2) = XCOORD(2, J) - XCOORD(2, I)
72 NEXT I
GOTO 74
73
DIMH(1, 1) = H
DIMH(1, 2) = V

74
DETERMINE THE MASS/SEGMENT FOR CONDUCTORS

XLOS = XLO / NSEG
XMASS = WO * XLOS / UMASS
NSTAT = NSTAT + IIS
NCABD = NCABD + NSEG

DETERMINE THE BOUNDARY CONDITIONS FOR NUMBERING THE DOF

MCOND = 0
MT = 1
1 W1 = I
 NECI = 2
 IF II < NINSUL THEN GOTO 75
 NECJ = 0
 GOTO 90
5 NECJ = 2
)
 W = WC
 XLD = XLO
 LM = 2
90

NECI=NECJ=NPT=0 FIXED HORIZONTAL AND VERTICAL SUPPORT
NECI=NECJ=NPT=1 FIXED VERTICAL AND FREE HORIZONTAL SUPPORT
NECI=NECJ= 2 FREE HORIZONTAL AND FREE VERTICAL

NCOND=0 STARTING VALUES FOR I END ARE GIVEN
NCOND=1 STARTING VALUES FOR J END ARE GIVEN

MT=0 INSULATOR
MT=1 CONDUCTOR

ASSIGN THE NUMBER OF DEGREE OF FREEDOM BY KNOWN END CONDITION

05 IF NCOND = 0 THEN GOTO 325

NUMBER OFF FOR THE 1ST SPAN INSULATORS AND ALL CONDUCTORS

IS1 = IIS
I = 1
KK = 1 + NECI
ON KK GOTO 310. 311. 312

I END IS FIXED, J END IS FREE

310 N1 = NP01
 N2 = NP01
 IF XLO = 0 THEN
 N3 = NP + 1
 N4 = NP + 2
 NP = NP + 2
 ELSE
 N3 = N1
 N4 = N2
 NP = NP + 0
 END IF
 GOTO 314

I END IS FIXED VERTICALLY AND J END FREE
$\text{N1} = \text{NP} + 1$
$\text{N2} = \text{NP} + 1$

\text{IF XLD} < 0 \text{ THEN}
$\text{N3} = \text{NP} + 2$
$\text{N4} = \text{NP} + 3$
$\text{NP} = \text{NP} + 3$
\text{ELSE}
$\text{N3} = \text{N1}$
$\text{N4} = \text{N2}$
$\text{NP} = \text{NP} + 1$
\text{ENDIF}

\text{IF ELEMENT IS AN INSECTOR STORE THE MASS FOR POLE/TOER}
\text{IF FREE FOR HORIZONTAL MOVEMENT}

\text{IF MT} = 1 \text{ THEN GOTO 314}
$\text{NP} = \text{NPO} = \text{NI}$
$\text{AMASS(N1)} = \text{AMASS(N1)} + \text{AMPCL(NPO)}$
\text{GOTO 314}

\text{I END IS FREE AND J END IS FREE. I END DOF IS ALREADY KNOWN}

\text{312} \text{ N1 = NP+1}
\text{N2 = NPV}
\text{IF XLD} < 0 \text{ THEN}
$\text{N3} = \text{NP} + 1$
$\text{N4} = \text{NP} + 2$
$\text{NP} = \text{NP} + 2$
\text{ELSE}
$\text{N3} = \text{N1}$
$\text{N4} = \text{N2}$
$\text{NP} = \text{NP} + 0$
\text{ENDIF}

\text{ESTABLISH THE FOLLOWING ELEMENT I END DOF NUMBERS}

\text{314} \text{ IF NSEG} > 1 \text{ THEN GOTO 317}
$\text{NP} = \text{N3}$
$\text{NPV} = \text{N4}$
\text{IF NEG} = 2 \text{ THEN GOTO 315}
$\text{N4} = \text{NPD1}$
$\text{NP} = \text{NP} - 1$
\text{IF NEG} = 1 \text{ THEN GOTO 315}
$\text{N3} = \text{NPD1}$
$\text{NP} = \text{NP} - 1$

\text{NUMBER THE CABLE ELEMENT AND STORE CABLE ELEMENT H AND V PROJ}

\text{315} \text{ NC} = \text{NC} + 1$
$\text{CH(NC)} = \text{DIMM(1, 1)}$
$\text{CV(NC)} = \text{DIMM(1, 2)}$
$\text{LN} = 1$
GOTO 400

NC = NC + 1
CH(NC) = DIMM(1, 1)
CV(NC) = DIMM(1, 2)
LN = 2
GOTO 400

NUMBER THE DOF FOR THE INTERMEDIATE ELEMENTS OF THE
CONDUCTOR DIVIDED IN NSEG SEGMENTS

IS1 = 0
IF NSEG = 2 THEN GOTO 321
JJ = 1
JJ = JJ + 1
N1 = N3
N2 = N4
IF XLO < 0 THEN
N3 = NP + 1
N4 = NP + 2
NP = NP + 1
ELSE
N3 = N1
N4 = N2
NP = NP + 0
END IF

NUMBER THE CABLE ELEMENT AND STORE THE CABLE ELEMENT H AND V PROJ

NC = NC + 1
CH(NC) = DIMM(JJ, 1)
CV(NC) = DIMM(JJ, 2)
LN = 3
GOTO 400

DETERMINE THE DOF FOR THE LAST ELEMENT OF CONDUCTOR
DIVIDED INTO NSEG ELEMENTS

IF JJ < NSEG - 1 THEN GOTO 319
321 I = NSEG

J END OF CONDUCTOR FIXED

N1 = N3
N2 = N4
IF XLO < 0 THEN
N3 = NPD1
N4 = NPD1
ELSE
N3 = N1
N4 = N2
END IF
IF NECJ = 0 THEN GOTO 322
J END OF CONDUCTOR FREE

IF XLD <> 0 THEN
 N3 = NP + 1
 N4 = NP + 2
 NP = NP + 2
ELSE
 N3 = N1
 N4 = N2
 NP = NP + 0
END IF

NUMBER CABLE ELEMENT AND STORE H AND V PROJECTION

NC = NC + 1
LN = 4
CH(NC) = DIMM(I, 1)
CV(NC) = DIMM(I, 2)

ASSIGN DOF NUMBERS FOR INSULATORS OTHER THAN 1ST SPAN

IS1 = IS
M = NSEG
I = 1
KK = 1 + NSECl
ON KK GOTO 330, 331

I END IS FIXED, J END IS FREE AND VALUES ARE KNOWN

N1 = NP01
N2 = NP01
IF XLD <> 0 THEN
 N3 = NP + (M - 1) * 2 - 1
 N4 = N3 + 1
 NP = NP + (M - 1) * 2
ELSE
 N3 = N1
 N4 = N2
 NP = NP + (M - 1) * 2
END IF
GOTO 333

I END IS FIXED VERTICALLY. J END IS FREE AND VALUES ARE KNOWN

N1 = NP + (M - 1) * 2 + 1
N2 = NP01
IF XLD <> 0 THEN
N3 = N1 - 2
N4 = N1 - 1
NP = NP + (M - 1) * 2 + 1
ELSE
 N3 = N1
 N4 = N2
 NP = NP + (M - 1) * 2
END IF

STORE MASS FOR POLE/TOWER
NP(NPD) = N1
AMASS(N1) = AMASS(N1) + AMPOL(NPD)

ESTABLISH THE FOLLOWING ELEMENT I END DOF NUMBERS
NUMBER THE CABLE ELEMENT AND STORE H AND V PROJECTION

NPH = N3
NPV = N4
NC = NC + 1
CH(NC) = DIMM(I, 1)
CV(NC) = DIMM(I, 2)
LN = 5
GOTO 400

NUMBER THE REMAINING ELEMENTS FOR INSULATOR WITH NSEG.GT.1

IF M = 1 THEN GOTO 340
ISI = 0
JJ = 1

JJ = JJ + 1
N1 = NPH
N2 = NPV
IF XLO < 0 THEN
 N3 = N1 - 2
 N4 = N1 - 1
ELSE
 N3 = N1
 N4 = N2
ENDIF
NPH = N3
NPV = N4
NC = NC + 1
CH(NC) = DIMM(JJ, 1)
CV(NC) = DIMM(JJ, 2)
LN = 6
GOTO 400

IF JJ < M THEN GOTO 335
ON LM GOTO 70, 501
400
SET UP PROPERTY ARRAYS BY CABLE TYPE

IF NCT = 0 THEN GOTO 402

401 NCT = NCT + 1
AET(NCT) = AE
WOT(NCT) = W
XLOT(NCT) = XLO
WX = WOT(NCT) * XLOT(NCT)
IF AET(NCT) < 0 OR WX < 0 THEN
AEWX = AET(NCT) / WX
ELSE
END IF
AETX(NCT) = AEXW
WX(NCT) = WX
J = NCT
GOTO 404

402 J = 0
FOR I = 1 TO NCT
IF ABS(XLO - XLOT(I)) > EPS THEN GOTO 403
IF ABS(W - WOT(I)) > EPS THEN GOTO 403
J = I
NEXT I
IF J = 0 THEN GOTO 401

SET UP THE INDEX FOR CABLE TYPE, STATISTICS AND DOF

404 INOT(NC) = J
INDS(NC) = IS1
INPE(NC, 1) = N1
INPE(NC, 2) = N2
INPE(NC, 3) = N3
INPE(NC, 4) = N4

BUILD THE MASS AND DAMPING ARRAYS

C = 2 * CD * SQRT(AE * W / UMASS)
 DAMP(NC) = C
FOR I = 1 TO 4
NPEI = INPE(NC, I)
AMASS(NPEI) = AMASS(NPEI) + XMASS / 2
NEXT I
N = INOT(NC)
M1 = INDS(NC)
IF MT = 0 THEN GOTO 420

PRINT NEW CABLE ELEMENT PROPERTIES

PRINT #1 USING G722A; SPACE=0; M1; N;
FOR J = 1 TO 4
PRINT #1 USING G722B; INPE(NC, J);
NEXT J
PRINT #1 USING G722C; CH(NC); CV(NC); AET(N); AEWX(N); WOT(N); XLOT(N); WXT(N); XMASS; DAMP(NC); M1; N
GOTO 425
20 PRINT #1, USING G723A; SPACE(0); MN; NC;
 FOR J = 1 TO 4
 PRINT #1, USING G723B; INP(N, J);
 NEXT J
 PRINT #1, USING G723C; CH(NC); CV(NC); AET(N); AEWAT(N); WOT(N); XLOT(N); WXT(N); XMASS; DAMP(NC); M1; N
 ON LN GOTO 340, 310, 320, 340, 334, 336
01 NEXT II
 LOCATE 24, 20; INPUT "Press <ENTER> to continue", A#

 CHECK DATA AND FORCES

 PRINT #1, USING G713D; SPACE(0)
 IF NP < NPD1 THEN GOTO 550
 PRINT #1, USING G726D; SPACE(0)
 GOTO 999
550
 NP1 = NP + 1
 FOR I = 1 TO NP1
 FI(I) = 0
 NEXT I
 PRINT #1, USING G736D; SPACE(0)
 PRINT #1, USING G743D; SPACE(0)
 PRINT #1, USING G737D; SPACE(0)
 PRINT #1, USING G738D; SPACE(0)
 NCABLE = NC
 FOR I = 1 TO NCABLE
 N = INOT(I)
 AH = CH(I)
 AV = CV(I)
 AAE = AET(N)
 AND = WOT(N)
 AXLD = XLOT(N)
 IF AXLD < 0 THEN
 CALL PCAF(I, AH, AV, AAE, AND, AXLD, FOC(I), TENI, TENJ, 2, XCOD(), IDIV, 0, N)
 ELSE
 AH = 0
 AV = 0
 XCOD(1, 1) = 0
 XCOD(1, 2) = 0
 XCOD(2, 1) = 0
 XCOD(2, 2) = 0
 END IF

 DRAW THE CONDUCTOR AND THE INSULATORS OF THE FIRST SPAN

 IF ICODE < 2 AND I < MAXSEG + 3 THEN
 XORD = YSCALE * ABS(XCOD(1, 2) - XCOD(1, 1))
 YORD = -YSCALE * (XCOD(2, 2) - XCOD(2, 1))
 IF I = MAXSEG + 2 THEN
 YORD = YSCALE * (XCOD(2, 2) - XCOD(2, 1))
 END IF
XORD = -XSCALE * ABS(XCOORD(1, 2) - XCOORD(1, 1))
ELSE
END IF
IF I = 1 OR I = MAXSEG + 2 THEN
LINE -STEP(XORD, YORD), 4
ELSE
LINE -STEP(XORD, YORD)
END IF
ELSE
END IF
PRINT #1, USING G738A8; I;
FOR J = 1 TO 4
PRINT #1, USING G738B8; IMPE(I, J);
NEXT J
FOR J = 1 TO 4
PRINT #1, USING G738C8; FOC(J);
NEXT J
PRINT #1, USING G738D8; CH(I); CV(I); TENI; TENJ
' COMpute THE INITIAL FORCE imbalance FOR EACH DOF
FOR J = 1 TO 4
IF IMPE(I, J) >= NP1 THEN IMPE(I, J) = NP1
NPEJ = IMPE(I, J)
FI(NPEJ) = FI(NPEJ) - FOC(J)
NEXT J
' COMpute THE INITIAL ACCELERATION FOR EACH DOF
NEXT I
PRINT #1, USING G743A8; SPACE*(0)
FOR I = 1 TO NP
XDDS(I) = FI(I) / AMASS(I)
NEXT I
PRINT #1, USING G744A8; SPACE*(0)
PRINT #1, USING G727A8; SPACE*(0)
PRINT #1, USING G744A8; SPACE*(0)
PRINT #1, USING G729A8; SPACE*(0)
PRINT #1, USING G744A8; SPACE*(0)
FOR I = 1 TO NP
PRINT #1, USING G729A8; I; AMASS(I); FI(I); XDDS(I)
NEXT I
PRINT #1, USING G744A8; SPACE*(0)
OPEN "TEMP1.DAT" FOR OUTPUT AS #2
' STORE DATA ON DISK FILE TEMP1.DAT
PRINT #2, NCABLE, NPOLE, NCT, NP1, NSTAT, NSTM
FOR I = 1 TO NCABLE
PRINT #2, AEI(I); NCT(I); XLOT(I)
NEXT I
FOR I = 1 TO NCABLE
PRINT #2, CH(I), CV(I), IND(T(I)), IND(S(I));
FOR J = 1 TO 4
PRINT #2, INPE(I, J);
NEXT J
PRINT #2, DAMP(I)
592 NEXT I
IF NPCL = 0 THEN GOTO 594
FOR I = 1 TO NPCL
PRINT #2, NFPP(I); AK(I)
593 NEXT I
594 FOR I = 1 TO NP
PRINT #2, RHAE(I), FI(I), XDD(I)
595 NEXT I
FOR I = 1 TO NSTM
PRINT #2, STM(I)
NEXT I
PRINT #1, USING G730$; SPACES(0)
PRINT #1, USING G731$; SPACES(0); NPCL
PRINT #1, USING G732$; SPACES(0); NCABLE
PRINT #1, USING G734$; SPACES(0); NP
PRINT #1, USING G735$; SPACES(0); NP1
PRINT #1, USING G739$; SPACES(0); TF
PRINT #1, USING G740$; SPACES(0); IT
PRINT #1, USING G741$; SPACES(0); NINT
PRINT #1, USING G742$; SPACES(0); KINT; SPACES(0)
GOTO SEND
999 END
END
SUB INSTRUCTIONS
LOCATE 18, 30: INPUT "PRESS <ENTER> TO CONTINUE": A$"
LOCATE 18, 30: PRINT " "
END SUB
SUB PCAF XMEMNO, HOR, VER, AE, WO, XLO, FOC(), TENI, TENJ, NPTS, XCOORD(), IDIV, IPRINT, NEP)
COMPUTES THE FORCES ON CABLE ELEMENTS

HOR=HORIZONTAL PROJECTION OF CABLE ELEMENT
VER=VERTICAL PROJECTION OF CABLE ELEMENT
AE=AREA TIMES MODULUS OF ELASTICITY
WO=WEIGHT OF CABLE ELEMENT PER UNIT LENGTH
XLO=UNSTRETCHED CABLE ELEMENT LENGTH
FOC=CABLE FORCES
TEN1=CABLE TENSION AT THE I END
TENJ=CABLE TENSION AT THE J END
NPTS=NUMBER OF COORDINATE POINTS ALONG THE CABLE ELEMENT
XCOORD=COORDINATES OF NPTS POINTS ALONG THE CABLE ELEMENT
WX=WX*XLO
C1=FOC(3)/WX
C2=FOC(4)/WX
EP1=CONVERGENCE CRITERIA
EP2=CONVERGENCE CRITERIA
ITERA= NUMBER OF ITERATIONS
IDIV=0 OMIT STEPS LISTED BELOW
IDIV=1 COORDINATES OF NPTS POINTS ON CABLE ARE DETERMINED
ELASTIC STRETCHED AND THE ANGLE OF CABLE ENDS
IPRINT=0 NO PRINTING
IPRINT=1 PRINTS XCOORD, FOC, ELASTIC STRETCHING

P333$ = "& SUMMARY FOR CABLE NO. ####"
P334$ = "& POINT ### &X= ####### &T= #######"
P335$ = "&F1= ####### &F2= ####### &F3= ####### &F4= #######"
P336$ = "&TI= ####### &TI= #######"
P337$ = "& ANGLE ELON HORIZONTAL IN DEGREES AT I= #### &AT J= ####"

P338$ = "& LENGTH AFTER ELASTIC STRETCHING= #######"

P339$ = "& ELONGATION= ####### &PERCENT NO. OF ITERATIONS= ####"

P401$ = "&FAILURE TO CONVERGE IN PCAF XMEMBER NO ####"

P402$ = "&AE= ####### &AO= ####### &XLO= #######"

P403$ = "&HOR= ####### &VER= ####### &ACA= ####### &ACB= #######"

INITIALIZE CONSTANTS

EP1 = .0000001
EP2 = .0000001
NEP = 0 "converges"
ITERA = 0
CORD = HOR * HOR + VER * VER
CORD = SQRT(CORD)
PROP = XLO / CORD
H = HOR / XLO
V = VER / XLO
EPS1 = EP1 * ABS(H)
EPS2 = EP1 * ABS(V)
IF EPS1 < EP2 THEN EPS1 = EP2
IF EPS2 < EP2 THEN EPS2 = EP2

IF V IS POSITIVE

INTERCHANGE ORIGIN AND END OF CABLE
40 KK = 0
 IF V <= 0 THEN GOTO 45
 KK = 1
 V = -V
 H = -H
45 D1 = PROP
 D2 = 1
55 WX = WD * XLO
 D3 = WX / AE
 W = WD
 X = XLO
 D4 = V - D3 / 2

; INITIALIZE LAMBDA AND DETERMINE STARTING VALUES

1001 AMBDA = 1000000
 IF D1 <= 1 THEN GOTO 130
 IF ABS(H) < 1E-20 THEN GOTO 140
 AMBDA = SQR(3 * (1 - 1 / (PROP * PROP)) / (H * H))
 GOTO 140
130 AMBDA = .12
140 C1 = H / (2 * AMBDA)
 IF AMBDA > 80 THEN
 COT = 1
 ELSE
 COT = (EXP(AMBDA) + EXP(-AMBDA)) / (EXP(AMBDA) - EXP(-AMBDA))
 END IF
 C2 = .5 * (1 + V * COT)
150 DF1 = 0
 DF2 = 0

; APPLY CORRECTIONS TO C1 AND C2

2001 C1 = C1 - DF1
 C2 = C2 - DF2
 TI = SQR(C1 * C1 + C2 * C2 - 2 * C2 + 1)
 TJ = SQR(C1 * C1 + C2 * C2)
 F = C2 + TJ
 FF = TI - 1 + C2
 IF (1 - (1 - C2) / TI) > .0001 THEN GOTO 210
 F = TI + 1 - C2
 FF = TJ - C2
210 IF FF < 1E-10 THEN FF = 1E-10
 G = F / FF
 IF G < 1E-10 THEN G = 1E-10

; COMPUTE VALUES OF H AND V
; CALCULATE MISCLBOSURE VECTOR AND CHECK CONVERGENCE

DL = LOG(G)
AAH = DL + D3
CA = H * C1 * AAH
CB = D4 + D3 * (1 - C2) - TJ + TI
ACA = ABS(CA)
ACB = ABS(CB)
IF ACA <= EPS1 AND ACB <= EPS2 THEN GOTO 250
ITERA = ITERA + 1
IF ITERA > 14 THEN GOTO 1400

Determine correction terms

VAR = (1 - C2) / TI + C2 / TJ
B2 = -VAR - D3
A1 = -AAH + VAR
A2 = -C1 * (1 / TJ - 1 / TI)
DET = A1 * B2 - A2 * A2
DF1 = (CA * B2 - CB * A2) / DET
DF2 = (A1 * CB - A2 * CA) / DET
GOTO 2001

Determine forces and length after convergence

250
C1 = C1 * (1 - 2 * KK)
C2 = C2 + KK * (1 - 2 * C2)
F0C(1) = -C1 * WX
F0C(3) = C1 * WX
F0C(4) = C2 * WX
F0C(2) = WX - F0C(4)
TENJ = (TI + KK * (TJ - TI)) * WX
TENJ = (TI + KK * (TI - TJ)) * WX
IF IDIV = 0 THEN GOTO 500

Determine the coordinates of NPTS points along the cable, the elastic stretching, and the angle of the cable ends

F01 = F0C(1) * (1 - 2 * KK)
F02 = F0C(2) + KK * (F0C(4) - F0C(2))
H = H * XLO
V = V * XLO
TI = TI * WX
TJ = TJ * WX
F04 = W * XLO - F02

Compute the elastic stretching

XLAFST = X + (F04 * TJ + F02 * TI + F01 * F01 + LOG(G)) / (2 * AE * W)

Determine the coordinates

SUBL = X / (NPTS - 1)
XL = -SUBL
FOR MM = 1 TO NPTS
XL = XL + SUBXL
FD2 = W * XL - FD2
F03 = -FD1
TI = SQRT(FD1 * FD1 + FD2 * FD2)
TJ = SQRT(FD3 * FD3 + FD4 * FD4)
F = FD4 / TJ
FF = TI / FD2
IF (1 - FD2 / TI) > .0001 THEN GOTO 1220
F = TI + FD2
FF = TJ + FD4
1220 IF FF < 1E-10 THEN FF = 1E-10
G = F / FF
IF G < 1E-10 THEN G = 1E-10
AAH = LOG3(G) / W + D2 * XL / A
AH = F0D1 * AAH
BV = D2 * (TJ - TI - TI / TI) / (2 * A * W) + (TJ - TI) / W
3301 MN = MN + NPTS - 2 * MM + 1 * KK
XCORR(1, MN) = AH - H * KK
XCORR(2, MN) = BV - V * KK
3401 NEXT MM
/
COMPUTE THE ANGLES
/
PI = 3.1415926#
IF ABS(FD(1)) = 0 OR ABS(FD(3)) = 0 THEN
ANGLEI = 90
ANGLEJ = 90
ELSE
ANGLEI = ATN(FD(2) / ABS(FD(1))) * 180 / PI
ANGLEJ = ATN(FD(4) / ABS(FD(3))) * 180 / PI
END IF
IF IPRINT = 0 THEN GOTO 500
/
PRINT THE COORDINATES, ANGLES, FORCES, STRETCHING
/
PRINT #1, USING P383#: SPACE#(0): MEMNO
FOR I = 1 TO NPTS
PRINT #1, USING P384#: SPACE#(0): I: SPACE#(0): XCOORD(I, 1): SPACE#(0): XCOORD(I, 2)
345 NEXT I
/
PRINT #1, USING P385#: SPACE#(0): TENI: SPACE#(0): TENJ
PRINT #1, USING P386#: SPACE#(0): ANGLEI: SPACE#(0): ANGLEJ
PRINT #1, USING P387#: SPACE#(0): XLAFFST
ELONG = ((XLAFFST - X) / X) * 100
PRINT #1, USING P388#: SPACE#(0): ELONG: SPACE#(0): ITERA
GOTO 500
/
1400
PRINT #1, USING P401#: SPACE#(0): MEMNO
PRINT #1, USING P402#: SPACE#(0): AE: SPACE#(0): WD: SPACE#(0): XL0
PRINT #1, USING P403#: SPACE#(0): HDR: SPACE#(0): VER: SPACE#(0): ACA: SPACE#(0): ACB
NEP = 1
US PLOTT (FILENAME*)

THIS SUBROUTINE WORKS AS A POST-PROCESSOR
IT PLOTS THE TIME HISTORIES OF FORCE AND DISPLACEMENTS
FOR THE FIRST SPAN OF THE LINE.
THE INPUT DATA FOR THE PLOTS ARE READ FROM *.PL1 AND *.PL2
* IS THE BASE NAME SPECIFIED BY THE USER.

XIM SAV(b01, 8) AS SINGLE, VMAX(12, 2) AS SINGLE, VMIN(13, 2) AS SINGLE

READ THE VALUES FOR THE BOUNDARIES OF THE AXES FROM *.PL2
DETERMINE THE SCALE TO BE USED FOR THE PLOTS

OPEN FILENAME* + *.PL2 FOR INPUT AS #7
INPUT #7, NUNIT, TF, PH, VFILES, NENT, VMAX(1, 1), VMAX(7, 1), VMAX(8, 1), VMIN(1
CLOSE #7
DMAX = VMAX(8, 1)
IF VMAX(7, 1) > VMAX(8, 1) THEN DMAX = VMAX(7, 1)
IF NINS < 0 THEN DMAX = VMAX(6, 1)
DOPLOT:
CLOSE #6
OPEN FILENAME* + *.PL1 FOR INPUT AS #6
CLS 0
PRINT "*******************************"PRINT " MENU"
PRINT "*******************************"PRINT IF NINS = 0 THEN
PRINT " 1 PLOT INSULATOR TENSION VS TIME"
PRINT " 2 PLOT HORIZONTAL COMPONENT OF"
PRINT " 3 PLOT VERTICAL COMPONENT OF"
PRINT " 4 PLOT HORIZONTAL DISPLACEMENT"
PRINT " 5 PLOT VERTIAL DISPLACEMENT"
PRINT " 6 PLOT INSULATOR ANGLE FROM "
PRINT " HORIZONTAL VS TIME"
PRINT ELSE
PRINT " 1 PLOT CONDUCTOR TENSION VS TIME"
PRINT " 2 PLOT HORIZONTAL COMPONENT OF"
PRINT " 3 PLOT VERTICAL COMPONENT OF"
PRINT "CONDUCTOR TENSION VS TIME"
PRINT"
IF ICODE=0 THEN PRINT "4 PLOT HORIZONTAL DISPLACEMENT"
IF ICODE=0 THEN PRINT "OF TOWER ONE"
IF ICODE=0 THEN PRINT"
PRINT "6 PLOT INSULATOR ANGLE FROM"
PRINT "HORIZONTAL VS TIME"
PRINT"
END IF
IF ICODE=0 THEN PRINT "7 PLOT CONDUCTOR MIDSPAN VERTICAL"
IF ICODE=0 THEN PRINT "DISPLACEMENT VS TIME"
IF ICODE=0 THEN PRINT"
PRINT "E END PLOT"
PRINT "*************** END PLOT***************"
INPUT "ENTER: selection > ". OPT$:
 IF OPT$="E" OR OPT$="e" THEN GOTO EPLDT
CLS

' PLOT THE GRAPHS

IF VMAX(1, 1) < 0 THEN PSCALE = 350 / (ABS(VMAX(1, 1)))
IF ABSD(VMAX) < 0 THEN PSCALE = 350 / (ABSD(VMAX));
CScale = 350 / (ABS(VMIN(1, 1)))
AScale = 350 / 100
TScale = 500 / IF
IF OPT$="1" THEN
IF NINS=0 THEN
 IF NUNIT=0 THEN LOCATE 30. 15: PRINT "INSULATOR TENSION, newtons. VS TIME, seconds"
 IF NUNIT=1 THEN LOCATE 30. 15: PRINT "INSULATOR TENSION, lbs. VS TIME, seconds"
ELSE
 IF NUNIT=0 THEN LOCATE 30. 15: PRINT "CONDUCTOR TENSION, newtons. VS TIME, seconds"
 IF NUNIT=1 THEN LOCATE 30. 15: PRINT "CONDUCTOR TENSION, lbs. VS TIME, seconds"
END IF
ELSE IF OPT$="2" THEN
IF NINS=0 THEN
 IF NUNIT=0 THEN LOCATE 30. 15: PRINT "X-COMPONENT INSULATOR TENSION, newtons, VS TIME, seconds"
 IF NUNIT=1 THEN LOCATE 30. 15: PRINT "X-COMPONENT INSULATOR TENSION, lbs. VS TIME, seconds"
ELSE
 IF NUNIT=0 THEN LOCATE 30. 15: PRINT "X-COMPONENT CONDUCTOR TENSION, newtons, VS TIME, seconds"
 IF NUNIT=1 THEN LOCATE 30. 15: PRINT "X-COMPONENT CONDUCTOR TENSION, lbs. VS TIME, seconds"
END IF
ELSE IF OPT$="3" THEN
IF NINS=0 THEN
 IF NUNIT=0 THEN LOCATE 30. 15: PRINT "Y-COMPONENT INSULATOR TENSION, newtons, VS TIME, seconds"
 IF NUNIT=1 THEN LOCATE 30. 15: PRINT "Y-COMPONENT INSULATOR TENSION, lbs. VS TIME, seconds"
ELSE
 IF NUNIT=0 THEN LOCATE 30. 15: PRINT "Y-COMPONENT CONDUCTOR TENSION, newtons, VS TIME, seconds"
 IF NUNIT=1 THEN LOCATE 30. 15: PRINT "Y-COMPONENT CONDUCTOR TENSION, lbs. VS TIME, seconds"
END IF
ELSE IF OPT$="4" THEN
IF NINS=0 THEN
 IF NUNIT=0 THEN LOCATE 30. 5: PRINT "X-COMPONENT INSULATOR END DISPLACEMENT, meters, VS TIME, secoun
IF NUNIT = 1 THEN LOCATE 30. 5; PRINT : "X-COMPONENT INSULATOR END DISPLACEMENT, feet. VS TIME, seconds"
ELSE
IF NUNIT = 0 THEN LOCATE 30. 5; PRINT : "Y-COMPONENT INSULATOR END DISPLACEMENT, meters. VS TIME, seconds"
ELSE IF NUNIT = 1 THEN LOCATE 30. 5; PRINT : "Y-COMPONENT INSULATOR END DISPLACEMENT, feet. VS TIME, seconds"
END IF
ELSEIF OPT$ = "S" THEN
IF NUNIT = 0 THEN LOCATE 30. 5; PRINT : "INSULATOR ANGLE FROM HORIZON, deg. VS TIME, seconds"
ELSE LOCATE 30. 5; PRINT : "CONDUCTOR ANGLE FROM HORIZON, deg. VS TIME, seconds"
END IF
ELSEIF OPT$ = "T" THEN
IF NUNIT = 0 THEN LOCATE 30. 5; PRINT : "CONDUCTOR MIDSPAN VERTICAL DISPLACEMENT, meters, VS TIME, seconds"
ELSEIF OPT$ = "U" THEN LOCATE 30. 5; PRINT : "CONDUCTOR MIDSPAN VERTICAL DISPLACEMENT, feet, VS TIME, seconds"
END IF
ELSEIF OPT$ = "6" THEN
LOCATE 7. (10 + TF * TSSCALE) / 640 * 80; PRINT USING "##.##": TF
LOCATE 26. (10 + TF * TSSCALE) / 640 * 80; PRINT USING "##.##": TF
LOCATE 26. 6; PRINT USING "##.##": 0
END IF
ELSEIF OPT$ = "4" OR OPT$ = "5" THEN
LOCATE (400 - DMAX * PSSCALE) / 350 * 25, 1; PRINT USING "###.###": DMAX
LOCATE (400 - 100 * ASSCALE) / 350 * 25, 1; PRINT USING "###.###": 10
LOCATE (400 - ABS(VMIN(10, 1)) * CSSCALE) / 350 * 25, 1; PRINT USING "##.##": ABS(VMIN(10, 1))
LOCATE (400 - VMAX(1, 1) * PSSCALE) / 350 * 25, 1; PRINT USING "##.##": VMAX(1, 1)
END IF
ELSEIF OPT$ = "6" THEN
LOCATE 26, 1; PRINT USING "##.##": -90
ELSE LOCATE 26, 1; PRINT USING "##.##": 0
END IF
ELSEIF OPT$ = "4" OR OPT$ = "5" THEN
LINE (65, 400)-(65 + TF * 450 / TF, 400)
ELSE LINE (65, 400)-(65 + TF * 450 / TF, 400 - 90 * ASCALE)
END IF
ELSEIF OPT$ = "6" THEN
LINE (65, 400)-(65 + TF * 450 / TF, 400 - ASCALE)
ELSE LINE (65, 400)-(65, 400 - ASCALE)
END IF
ELSEIF OPT$ = "7" THEN
LINE (65, 400)-(65, 400 - ASCALE)
ELSE LINE (65, 400)-(65, 400 - ASCALE)
END IF
ELSE
LINE (65, 400)-(65, 400 - VMAX(1, 1) * PSSCALE)
IF I = 1 TO 10
PF = 65 + (TF < 450 / TF) / 10 * I
IF OPT$ = "6" THEN
 LINE (PT, 400 - (PT, 397))
ELSE
 LINE (PT, 400 - 90 * ASCALE - 3)
END IF
IF OPT$ = "4" OR OPT$ = "5" THEN
 PF = 400 - DMAX * PSCALE / 10 * I
ELSEIF OPT$ = "6" THEN
 PF = 400 - 100 * ASCALE / 10 * I
ELSEIF OPT$ = "7" THEN
 PF = 400 - ABS(VMIN(1, 1)) * CSSCALE / 10 * I
ELSE
 PF = 400 - VMAX(1, 1) * PSCALE / 10 * I
END IF
LINE (65, PF) - (68, PF)
NEXT I
NN = 500
FOR I = 1 TO NFILES
 IF I = NFILES THEN NN = MCNT]
 FOR NI = 1 TO NN
 IF OPT$ = "1" THEN
 INPUT #6, SAV(NI, 1), SAV(NI, 2), SAV(NI, 3), SAV(NI, 4), SAV(NI, 5), SAV(NI, 6), SAV(NI, 7), SAV(NI, 8), ANG
 PTENS = SAV(NI, 2)
 PSET (65 + SAV(NI, 1) * 450 / TF, 400 - PTENS * PSCALE)
 ELSEIF OPT$ = "2" THEN
 INPUT #6, SAV(NI, 1), SAV(NI, 2), SAV(NI, 3), SAV(NI, 4), SAV(NI, 5), SAV(NI, 6), SAV(NI, 7), SAV(NI, 8), ANG
 PTENS = SAV(NI, 3)
 PSET (65 + SAV(NI, 1) * 450 / TF, 400 - PTENS * PSCALE)
 ELSEIF OPT$ = "3" THEN
 INPUT #6, SAV(NI, 1), SAV(NI, 2), SAV(NI, 3), SAV(NI, 4), SAV(NI, 5), SAV(NI, 6), SAV(NI, 7), SAV(NI, 8), ANG
 PTENS = ABS(SAV(NI, 4))
 PSET (65 + SAV(NI, 1) * 450 / TF, 400 - PTENS * PSCALE)
 ELSEIF OPT$ = "4" THEN
 INPUT #6, SAV(NI, 1), SAV(NI, 2), SAV(NI, 3), SAV(NI, 4), SAV(NI, 5), SAV(NI, 6), SAV(NI, 7), SAV(NI, 8), ANG
 IF NINS = 0 THEN
 PDISP = SAV(NI, 5)
 ELSE
 PDISP = SAV(NI, 6)
 END IF
 PSET (65 + SAV(NI, 1) * 450 / TF, 400 - PDISP * PSCALE)
 ELSEIF OPT$ = "5" THEN
 INPUT #6, SAV(NI, 1), SAV(NI, 2), SAV(NI, 3), SAV(NI, 4), SAV(NI, 5), SAV(NI, 6), SAV(NI, 7), SAV(NI, 8), ANG
 PDISP = SAV(NI, 6)
 PSET (65 + SAV(NI, 1) * 450 / TF, 400 - PDISP * PSCALE)
 ELSEIF OPT$ = "6" THEN
 INPUT #6, SAV(NI, 1), SAV(NI, 2), SAV(NI, 3), SAV(NI, 4), SAV(NI, 5), SAV(NI, 6), SAV(NI, 7), SAV(NI, 8), ANG
 PSET (65 + SAV(NI, 1) * 450 / TF, 400 - 90 * ASCALE - ANG * ASCALE)
 ELSEIF OPT$ = "7" THEN
 INPUT #6, SAV(NI, 1), SAV(NI, 2), SAV(NI, 3), SAV(NI, 4), SAV(NI, 5), SAV(NI, 6), SAV(NI, 7), SAV(NI, 8), ANG
PSET (65 + SAV(NI. 1) * 450 / TF. 400 - ABS(SAV(NI. 7)) * CSCALE)" ELSE
ELSE IF
EXT NI
EXT I
:1. 20: INPUT "PRESS ENTER TO CONTINUE": A$
SUB SOLXLO (MEMAG, ZH, ZV, ZAE, ZNO, ZXLG, ZP, PULD, FCD())

THIS SUBROUTINE DETERMINES THE VALUE OF XLO TO MATCH
SPECIFIED CABLE FORCES AND GEOMETRY

PULD=LOAD TOLERANCE FOR CONVERGENCE
H=HORIZONTAL PROJECTION OF CABLE ELEMENT
V=VERTICAL PROJECTION OF CABLE ELEMENT
W0=WEIGHT OF CABLE PER UNIT LENGTH
AE=AREA TIMES MODULUS OF ELASTICITY
XLO=UNSTRETCHED CABLE ELEMENT LENGTH
I PREFIX IS VARIABLE IN SINGLE PRECISION
DIM XCOORD(2, 30)

S2008 = "&NO CONVERGENCE IN SOLXLO FOR CABLE NO. ### &WITH P= ###### S CHECK LOAD AND DATA"
S2108 = "H. HHHHHHHH. H. HHHHHHHH. H.HHHHHHHH. H.HHHHHHHH. H. HHHHHHHH. H. HHHHHHHH. H. HHHHHHHH"

INITIALIZE DATA

P = ZP
H = ZH
V = ZV
W0 = ZW0
XLO = ZXLO
AE = ZAE
B = SQR(H * H + V * V)
FACT = .0002 + E
IF FACT < .005 THEN FACT = .005
NNN = 0
XLOS = 0
XLM = 0
FMAX = 0
FMIN = 0

DETERMINE A FIRST GUESS FOR XLO BASED ON THE CATENARY
EQUATIONS FOR AN INELASTIC CABLE

HOR = ABS(H)
HTENS = ABS(P)
AMBD = (W0 * HOR) / (2 * HTENS)
SHAMED = (EXP(AMBD) - EXP(-AMBD)) / 2
XL = (H * H * SHAMED + SHAMED) / (AMBD + AMBD) + V * V
XL = SQR(XL)
DXL = (HTENS * XL * XL) / (AE * H)
XL = XL - DXL
XLO = XL

USING ITERATIVE ALGORITHM, REFINES VALUE OF XLO TO
INCLUDE ELASTIC STRETCHING

IF XLO < 0 THEN CALL POFAX(MEMAG, H, V, AE, W0, XLO, FCD()), TI, TJ, 2, XCOORD(), 0, 0, N)
= FOC(1)
ABS(F - P) <= POLD THEN GOTO 5
IN = N01 + 1
N0N > 20 THEN GOTO 100
IF (ABS(F) - ABS(P)) > 0 THEN GOTO 12
LM = XLO
IN = F
IF (XLOM > 0 AND XLOS > 0) THEN GOTO 3
JO = XLO - FACT
JTO 1
JO = XLO
JAX = F
IF (XLOM > 0 AND XLOS > 0) THEN GOTO 3
JO = XLO + FACT
JTO 1
JO = XLOM + (XLOS - XLOM) * ((P - FMIN) / (FMAX - FMIN))
JTO 1
XLO = XLO
JTO 30:
 = -P
RINT #1. USING S200##; SPACES(0); MEMND; SPACES(0); P; SPACES(0)
RINT #1. USING S210##; FMIN; FMAX; XLO; ZXLO; F; XLOS; XLOM; FACT
ND
ND SUB