Decontamination of pork carcases with hot water or acidified sodium chlorite - a comparison in two Australian abattoirs

Hamilton D*, Holds, G., Lorimer M., Kidd C., Smith G., Slade J., Mattei V., Madigan T., Pointon A.

South Australian Research and Development Institute, Food Safety Research, Adelaide, Australia

aHamilton.david@sa.gov.sa.gov.au

Abstract
A decontamination trial on the effectiveness of hot water and acidified sodium chlorite (SANOVATM) treatment on TVC, E.coli and Salmonella spp. was undertaken on a total of 852 pork carcases prior to primary chilling in two pork abattoirs in Australia using belly-stripe excision sampling. Test pigs were selected from herds with a known high level of on-farm Salmonella infection. For control carcases at Abattoirs A and B, mean log10 Total Viable Count was 4.06 and 3.00 cfu/gram compared with 1.81 and 2.09 cfu/gram, for hot water and 2.76 and 2.53 cfu/gram for SANOVATM treated carcases, respectively. The prevalence of E. coli on control carcases at Abattoirs A and B was 92.9% and 69.3% compared with 9.8% and 21.3% for hot water and 12.5% and 30% for SANOVATM treated carcases, respectively. The censored mean log10 E.coli concentrations for control carcases at abattoirs A and B was 0.89 and 0.46 cfu/gram, compared with -0.83 and -0.65 cfu/gram from hot water and -0.64 and -0.61 cfu/gram from SANOVATM treated carcases, respectively. Salmonella was only isolated from carcases at Abattoir B. The prevalence of Salmonella on control carcases at Abattoir B was 16% compared with 2.7% for hot water and 7.0% for SANOVATM treated carcases. The reductions in prevalence and mean log10 concentrations in the present trial were all found to be statistically significant (p<0.001) and indicate that carcase decontamination with either hot water or SANOVATM are effective risk management options immediately available to the pork industry.

Introduction
In industrialised countries between 5 and 30% of all cases of foodborne Salmonellosis are estimated to have pork as the actual source (Berends et al, 1997). Historically, the focus of pork industries has been on S. Typhimurium, the most significant serovar in human infection (Mousing et al 1997a; van der Wolf; 2007, Hurd et al 2005; Rostagno et al 2003). However, in Australia S. Typhimurium is considerably less evident at slaughter representing only 5% of the isolates from the 1.9% Salmonella-positive carcases identified by national monitoring between 2000 and 2006 (Hamilton et al 2007a).

The direct relationship between Salmonella carriage rate in the slaughter pig population and carcase contamination has long been accepted internationally and forms the basis of the European (Danish) Salmonella monitoring and control programme (Mousing et al 1997b). In line with that view in 1997 Australia developed and validated a Salmonella ELISA for slaughter pig surveillance and on-farm control (van der Heijden 2001). Ongoing research since that time, however, has shifted the Australian focus to controls further along the pork supply chain as a more effective approach. This change in direction has been mirrored by international questionings of the cost effectiveness of on-farm control in the live animal, particularly at relatively low Salmonella prevalence (Miller 2005, Goldbach & Alban 2006).

Against this background we conducted a study at 2 Australian pig abattoirs to compare two decontamination processes on baconer pig carcases: hot water and acidified sodium chlorite (SANOVATM). The results of the trial are presented in these proceedings.

Materials and Methods
To maximise the potential for carcase Salmonella contamination, trial pigs were selected from herds identified as high prevalence by on-farm faecal sampling and were processed late in the slaughter shift. At each abattoir, trial pigs were slaughtered over three days, with a maximum of 150 carcases sampled daily.
at the end of the slaughter chain. In total, 852 carcases were sampled by excising and stomaching belly strips, a technique shown to increase the frequency of the *Salmonella* isolation from carcases by a factor of up to 7 (Swanenburg et al 2003; Hamilton et al 2007b). On each sampling day the trial carcases were subjected to one of three alternative treatments: up to 50 carcases standard hygienic slaughter (Controls); up to 50 carcases standard hygienic slaughter plus a final rinse with hot water (83.5°C at Abattoir A, 81.9°C at Abattoir B); up to 50 carcases standard hygienic slaughter plus a final rinse with SANOVATM sanitising solution (ECOLAB Inc) at ambient temperature. SANOVATM is a mixture of citric acid and sodium chlorite, which produces the microbiologically active chlorous acid. It is commonly used in the poultry industry (Oyarzabal et al 2004). The order of treatments was rotated on each day in a 3 x 3 Latin-square arrangement. Both hot water and SANOVATM were applied for approximately 15 seconds per carcase, with hot water being applied as a continuous cascade and SANOVATM as a pressurised spray.

Laboratory Methods: Each belly strip was collected into a sterile stomacher bag on the slaughter floor. Samples were chilled at 4°C until testing. At the lab the belly strip was weighed and an equal amount of Buffered Peptone Water (Oxoid CM509) added. The belly strip was then stomached for 60 seconds. A 1 mL aliquot was taken to estimate *E. coli* and TVC and the remainder processed for *Salmonella*.

Salmonella: Culture methods followed the Australian Standard (AS 5013.10-2004) with enrichment in Rappaport-Vassiliadis Soy broth (RVS) and Muller-Kauffmann tetrathionate/novobiocin broth (MKTTn) and plating on Xylose Lysine Desoxycholate (XLD) and Brilliant Green (BGA) agar plates. Confirmation was by latex agglutination using SerobactTM *Salmonella*. Colonies that were latex agglutination negative were checked by biochemistry (MICROBACTTM 12E). Isolates presumptively identified as *Salmonella* were forwarded for serotyping to the Australian *Salmonella* Reference Laboratory at the Institute of Medical and Veterinary Science, Adelaide.

E. coli and Total Viable Count: From the 1 mL aliquot taken immediately after stomaching, as appropriate, 1:10 serial dilutions of the BPW suspension were prepared in 0.1% peptone diluent and 1 mL from each dilution inoculated onto either Aerobic Plant Count Petrifilm (3M) or *E. coli* Petrifilm (3M) and incubated at 48 h ± 3 h at 35°C ± 1°C. Colonies were identified and counted according to the manufacturer’s instructions.

Statistical Analysis
Each abattoir was considered for analysis separately. Fisher’s Exact Test was used to test for differences in the prevalence of *Salmonella* and the prevalence of *E. coli* between the three treatments. Data for log₁₀ TVC per gram were analysed by analysis of variance to test for mean differences between the three treatments. In this analysis, positive samples greater than the upper limit of detection (> 250,000 cfu/g) or less than the lower limit of detection (<10 cfu/g) were assumed to be equal to the limit of detection. A Tobit (censored) regression was performed for log₁₀ *E. coli* per gram. This technique allows for the censored nature of the data, allowing the inclusion all observations, including those samples where *E. coli* was undetected, leading to more realistic comparisons between the treatments (Lorimer & Kiermeier, 2007). All analyses were performed in R 2.5.1 (R Development Core Team, 2006).

Results and Discussion
Salmonella: At Abattoir A, no *Salmonella* spp. were isolated from any carcase even though the pigs were sourced from a contaminated herd. At Abattoir B, both the hot water and SANOVATM treated carcases had a significantly lower prevalence of *Salmonella* contamination (2.7% and 7% respectively) compared to the control (16%, p<0.001). The prevalence of *Salmonella* was not significantly different (p=0.12) between the hot water and SANOVATM treatments. For hot water treatment this represents an 83% reduction.

E. coli and TVC: At both Abattoir A and B the *E. coli* prevalence and the mean log TVC and *E. coli* count were significantly reduced by both the hot water and SANOVATM treatments compared to the control (p<0.001). The greatest impact on *E. coli* and TVC was at Abattoir A with hot water treatment. For *E. coli*
there was an 83% reduction in prevalence and a 1.72 reduction in mean log count. For TVC there was a 2.25 reduction in mean log count. Abattoir A had the highest control levels of E.coli and TVC.

Table 1. Effect of hot water and SANOVATM treatments on the microbiological status of pork carcases (n= adjusted number tested and connected to new footnote)

<table>
<thead>
<tr>
<th>Abattoir</th>
<th>Control</th>
<th>Hot Water</th>
<th>SANOVA</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Mean log10 TVC</td>
<td>4.06 (0.42)</td>
<td>1.81 (0.55)</td>
<td>2.76 (0.53)</td>
</tr>
<tr>
<td></td>
<td>E. coli prevalence</td>
<td>39/42 (92.9%)</td>
<td>4/41 (9.8%)</td>
<td>5/40 (12.5%)</td>
</tr>
<tr>
<td></td>
<td>Mean log10 E. coli</td>
<td>0.89 (0.11)</td>
<td>-0.83 (0.23)</td>
<td>-0.64 (0.11)</td>
</tr>
<tr>
<td></td>
<td>Salmonella prevalence</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
</tr>
<tr>
<td>B</td>
<td>Mean log10 TVC</td>
<td>3.00 (0.40)</td>
<td>2.09 (0.77)</td>
<td>2.53 (0.56)</td>
</tr>
<tr>
<td></td>
<td>E. coli prevalence</td>
<td>104/150 (69.3%)</td>
<td>32/150 (21.3%)</td>
<td>30/100 (30%)</td>
</tr>
<tr>
<td></td>
<td>Mean log10 E. coli</td>
<td>0.46 (0.08)</td>
<td>-0.65 (0.11)</td>
<td>-0.61 (0.13)</td>
</tr>
<tr>
<td></td>
<td>Salmonella prevalence</td>
<td>24/150 (16%)</td>
<td>4/150 (2.7%)</td>
<td>7/100 (7%)</td>
</tr>
</tbody>
</table>

a Standard deviation in parenthesis
b Adjusted mean and standard deviation using censored data

Problems with the transport of samples the 2,000 km from abattoir A to the laboratory on the first 2 days meant that they fell outside the 24 hour time parameter and were not included in the analysis.

Organoleptic observations

Hot water: Immediately following the 15-second treatment with hot water, exposed muscle on the carcases had a grey “cooked” appearance, particularly the leg, sternum and neck. Within half an hour they had begun to recover some of their bloom and by the next morning the carcases were almost indistinguishable from untreated carcases. At Abattoir A the treated carcases were judged by the company to be acceptable for export. At Abattoir B there was initial unsought feedback from a retailer that the carcases “appeared a bit different” and required some superficial trimming. Subsequent reduction of the treatment temperature apparently resolved the issue.

SANOVATM: Treatment “whitened” both the skin and the fat, but this was judged by the company to be a potentially positive ascetic improvement, particularly for Asian export markets.

Conclusion

Hot water and chemical decontamination provide effective tools currently available to the Australian pig industry that can significantly improve the microbiological status of pig carcases. The economics of their use requires further investigation.

Acknowledgements

We gratefully acknowledge the funding support from Australian Pork Limited (APL Projects 2019 and 2132) for this work and the collaboration of the staff at the two participating abattoirs.

References

