Fall Nitrogen Applications and Soil Temperature

John E. Sawyer

Iowa State University, jsawyer@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation

http://lib.dr.iastate.edu/cropnews/873

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Fall Nitrogen Applications and Soil Temperature

Abstract
If you are considering fall application of anhydrous ammonia to corn fields (the only nitrogen fertilizer recommended for fall application), remember to wait until soil temperatures cool to 50° F and continue to trend colder. The same guidance applies to manure with high ammonium N content, like liquid swine manure.

Keywords
Agronomy

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/873
Pay Attention to Stewardship Requirements for Biotech Grains

October 28, 2014

By Charles Hurburgh, Department of Ag and Biosystems Engineering

Most of us have been following developments in biotechnology approval for many years. The most recent issue is the non-approval of certain corn events by China. Viptera (MIR162) corn has not been approved there since its introduction in 2010; Duracade, new this year, is in the same situation. The greatest impact of the Chinese situation is on distillers grains from ethanol production. China is a major importer of dried distillers grains with solubles (DDGS); much less so for whole corn.

Harvest is a key time for grains that carry stewardship requirements. Stewardship in biotechnology means directing the grain with the specific event toward uses that have full approval with no restrictions, even if there may be no economic premium for doing
so. In the current cases, stewardship means domestic feed use or domestic processing use as long as none of the process products enter export channels that could take them to restricted buyers. Restricted biotech events are very difficult to manage in open export markets. Once in general trade, agronomic biotech events cannot be identified or segregated quickly and inexpensively.

The most important step in a stewardship chain is the initial delivery from the farm to the first point of sale. If the chain is not started at that point, it almost never can be recaptured because of the commingling that happens in bulk commodity handling. If grain covered by a stewardship requirement is mixed in on farm storage, then the entire bin would be considered covered by the stewardship requirement. This demonstrates the need for planning before planting season to make the requirements as easy to meet as possible. Stewardship planning will be discussed in future articles.

Every bushel of stewardship grain that is accounted for in correct uses is one less bushel that could cause a problem in the marketing chain. There is a Stewardship Agreement behind every bag of covered seed. Understand where this grain should and should not go, and follow thru with what is required. If the covered grain is not identified at the first point of sale, the next handler cannot always do what is correct to maintain the chain of identity.

According to the National Grain and Feed Association, the trade disruptions, market value losses, and shipment redirections caused by the Chinese rejections have cost the grain market about $3 billion. This cost filters back through the system, eventually in part to the point of market price at the farm level. There are several lawsuits pending among producers, grain handlers and biotech providers. All parties have arguments to make. Perhaps the legal actions will clarify the responsibilities for biotech stewardship chains, likely at a significant cost.

However, at harvest, the more stewardship grain that is delivered and identified according to the agreement, the less likely further problems become. The economic benefits of doing the correct thing are diffused across the grain market. The largest benefit at the producer level may be continued availability of constantly upgraded traits at a pace faster than the entire world market might allow.

Charles Hurburgh is a professor in the Department of Ag and Biosystems Engineering. He can be reached at tatry@iastate.edu or 515-294-8629.

Category: Crop Production

Crop:
Corn
Charles Hurburgh Professor, Agricultural and Biosystems Engineering