Multilocus Sequence Typing for Characterization of Nontyphoidal Salmonella Strains in Swine Isolated on Farm and at Slaughter

Wang, B.¹, Logue, C.M.², Tivendale, K.³, McKean, J.¹, O'Connor, A.M.¹ *

¹Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
²Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, USA
³Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA

¹715 Vet Med, Iowa State University, Ames, IA, USA 50011-1250
E-mail: oconnor@iastate.edu; Fax: 001-515-2941072

Nontyphoidal Salmonella are among the leading causes of food-borne disease in the United States. The aim of this study was to compare nontyphoidal Salmonella spatially and temporally in pig production and design a source tracking tool for Salmonella shedding on farm and contamination at slaughter. In this study, a total of 265 nontyphoidal Salmonella spp. were isolated from 20 Iowa herds which were enrolled by cooperative agreement and visited from September 2006 to February 2009. Eleven of the 20 herds had multiple visits. At each farm visit, 30 individual fecal samples were collected. At slaughter, 30 mesenteric lymph nodes were collected. Samples were tested for Salmonella spp. using conventional microbiological methods and serotyped at the National Veterinary Services Laboratory (NVSL). All the 265 Salmonella isolates were further characterized by multilocus sequence typing (MLST). The MLST scheme used was based on amplification of the internal fragments of seven house-keeping genes using polymerase chain reaction (PCR). The seven genes selected included thrA (aspartokinase+homoserine dehydrogenase), purE (phosphoribosylaminomimidazole carboxylase), sucA (alpha ketoglutarate dehydrogenase), hisD (histidinol dehydrogenase), aroC (chorismate synthase), hemD (uroporphyrinogen III cosynthase), and dnaV (DNA polymerase III beta subunit). The sequence data of PCR products were imported into DNAStar seqman software for alignment and trimming. The internet-based MLST database http://www.mlst.net/ was used for analysis of the Salmonella enterica sequence types. Sequence data obtained for each gene was input into the database and a sequence type generated for each strain. Analysis was carried out to compare the similarity of the sequence types of isolates collected from different farms and within the same farm over time, and the similarity between isolates collected on farm and at slaughter.