






Toolkit65 (GTK+) is used for graphical user interface (GUI) creation. Since both OSG 

and GTK+ are cross-platform development tools, the client interface could be ported 

to additional operating systems.

Network—Network communications between the ASDS client and immersive 

applications are transported using a UDP (User Datagram Protocol) socket program. 

UDP sockets were chosen over other communication protocols due to its speed of 

data transmission. 

Immersive Application—The ASDS immersive application  operates under a 

64-bit Linux kernel calling OSG libraries and relying upon VR Juggler 2.2 for 

interface communication, stereoscopic viewing, and display-device abstraction. 

Additionally, the shared memory used in a cluster environment was redesigned to 

Figure 13: Schematic of the ASDS system architecture.
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maintain the softwareʼs performance between a single wall display or a large six-

walled computer cluster.

Data Source—As a final product, it is envisioned that the ASDS part libraries 

will consist of legacy geometric models and physical data properties of previous 

generations of products as well as newly created parts from programs such as 

Google SketchUp. The physical data is then drawn out of the legacy data and used 

for assessment tool calculations and concept evaluation.

3.4.2 
Interface Interactions

To begin designing concepts, engineers must first decide which existing 

models and legacy data will be useful. Then if necessary these models are 

converted to one of many different file formats the ASDS system can handle to form 

a modeling parts library. If legacy data does not fully represent all the necessary 

components to design a new concept, there are several options. First, a primitive 

shape can quickly be added into the scenegraph to represent the feature missing 

from the legacy data. If this is not sufficient, a more detailed part can be created 

quickly with an alternate model creation tool, such as Google SketchUp. 

Once the parts library  is created, any part or hierarchy of parts located in the 

parts library can be imported and edited inside the scenegraph by  using either 

translation, rotation, or scaling manipulations. The hierarchy is similar to many CAD 

packages and can be edited on-the-fly. Objects can be grouped and ungrouped as 

the user chooses. This allows for a useful and sensible tree structure to be built for 
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each concept and additional assemblies and parts to be appended into the existing 

structure. By reusing existing hierarchies and enabling hierarchy manipulation, the 

ASDS can save the scenegraph information so a designer can pick up  where they 

left off. These quick interaction methods enable engineers to quickly design multiple 

concepts on-the-fly and collaborate using the VR application to do real-time 

immersive conceptual design.

3.4.3 
Assessment Tools

A 3D visual representation of a new concept design is extremely useful and 

already puts engineers ahead of the curve. However, besides a visual 

representation, assessment tools can give designers additional information to make 

educated decisions about concept integrity and viability. The ASDS has implemented  

metamodeling techniques to incorporate high fidelity FEA analysis into real-time 

assessment tools. These assessment tools can be used at any time on any concept 

thus providing immediate feedback and factual information to help make quick and 

informed decisions.

3.4.3.1 
 Center of Gravity and Tipping Angle

The first assessment tool dynamically computes the center of gravity (CG) of 

the entire model in both the client and immersive applications. Individual part weight 

and CG positions are stored as metadata within the scenegraph. With this 

information, by concatenating all the part transforms together, the CG location of any 
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individual part, subassembly, or entire scenegraph model can be computed. The CG 

location is represented by a red sphere inside the scenegraph while the scenegraph 

model turns transparent to view the exact CG location.

A second assessment tool computes the tipping angle of the entire model. 

The term tipping angle refers to the minimum angle a product can be subjected to 

before tipping over. To calculate the tipping angle, support points—wheels, legs, etc.

—which keep the model in contact with the ground must be selected. The ASDS 

then uses the overall CG and contact positions of the support points to calculate the 

minimum tipping angle of the model and display it to the user as seen in Figure 14.

Figure 14: The tipping angle tool displays the smallest angle the product will tip 
based upon the selected wheels.
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3.4.3.2 
 Virtual Measuring and Wheel Loading

Since several CAD features such as mating and collision detection have been 

eliminated in the ASDS interface for quicker assembly, a visual measuring tool was 

integrated into the ASDS client and immersive applications. When design teams 

collaborate within the immersive application, quick dimensional information is key to 

making rapid drag-and-drop part manipulations to verify whether different part library 

objects can be swapped to create a new dimensionally sound concept. The virtual 

ruler system allows the user to manipulate components and return physical 

characteristics from the scenegraph. Once the user selects a geometric boundary, 

both applications return physical characteristics of the selected boundary such as 

radius, length, width, etc.

Another assessment tool built into the ASDS system is wheel loading as seen 

in Figure 15. The term wheel loading comes from our target application to ground 

vehicles, but “wheel” simply refers to any support point. This tool first requires each 

support point be selected just like the tipping angle tool. Once completed, the ASDS 

system uses the contact positions of the support points and the overall CG position 

and weight to calculate the load distribution for each selected object. This 

information is then displayed graphically in both the client and immersive 

environments. This calculation is accomplished by either using statics equations by 

summing the force and moments about a point, or a using one of the three 

metamodel approximations to estimate the wheel load at each support point.
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Figure 15: The wheel loading at each support position is graphically displayed to the 
user.
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4 RESULTS

In order to obtain conclusive evidence about performances of certain 

metamodeling techniques for conceptual design, it is imperative to obtain enough 

data to observe the general trends of each metamodeling technique. If only a small 

amount of metamodels are built upon a very specific type of dataset, then the 

conclusions drawn about each technique would only apply to that specific dataset.  

Any general conclusions drawn in a more broad sense would be dismissed due to 

the small nature of the study. Several measures were taken to avoid drawing broad 

conclusions on a very specific dataset. First off, multiple datasets with very different 

characteristics and behaviors were generated from hundreds of FEA simulations.

Another measure taken was to generate as many  metamodels as necessary 

to find conclusive evidence of specific metamodel performance. Therefore, 

thousands of metamodels were constructed on these datasets for each output 

variable of each metamodel type. For example, the Y1 output variable for the stress 

analysis dataset had many different metamodels constructed to predict its output. 

These metamodels include a second-order PRS model, a third-order PRS model, a 

constant Gaussian Kriging Approximation, a first-order Gaussian Kriging 

Approximation, a second-order Gaussian Kriging Approximation, a RBFNN - radius 

0.5, a RBFNN - radius 1.0, a RBFNN - radius 1.5, and a RBFNN - radius 2.0. These 

models were also constructed upon datasets consisting of a model size ranging 

between 20 and 60 sample points. The total FEA simulations and constructed 

metamodels for this study can be seen below in Table 12.
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Table 12: Shows the number of FEA and metamodel simulations required for the 
entire study.

Total FEA Simulations

Abaqus Solidworks

FEA Simulations 160 90

Total Metamodels Generated For Dataset 1
Metamodels Size 20 Size 30 Size 40 Size 50 Size 60

PRS - 2nd-order 32 32 32 32 32
PRS - 3rd-order 32 32 32 32 32

Kriging - constant 48 48 48 48 48
Kriging - 1st-order 48 48 48 48 48

Kriging - 2nd-order 48 48 48 48 48
RBFNN - 0.5 rad. 64 64 64 64 64
RBFNN - 1.0 rad. 64 64 64 64 64
RBFNN - 1.5 rad. 64 64 64 64 64
RBFNN - 2.0 rad. 64 64 64 64 64

Total Metamodels Generated For Dataset 2
Metamodels Size 20 Size 30 Size 40 Size 50 Size 60

PRS - 2nd-order 10 10 10 10 10
PRS - 3rd-order 10 10 10 10 10

Kriging - constant 15 15 15 15 15
Kriging - 1st-order 15 15 15 15 15

Kriging - 2nd-order 15 15 15 15 15
RBFNN - 0.5 rad. 20 20 20 20 20
RBFNN - 1.0 rad. 20 20 20 20 20
RBFNN - 1.5 rad. 20 20 20 20 20
RBFNN - 2.0 rad. 20 20 20 20 20

RBFNN - Best 1001 1001 1001 1001 1001

Total FEA Simulations = 250
Total Metamodels Generated = 8070
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4.1 
 Overall Summary Statistics


 With the vast amounts of data collected, looking at the overall performance of 

the three metamodeling techniques has little importance due to the large numbers of 

variable parameters for each method. The summary statistics for each of the three 

techniques can be seen below in Table 13. These statistics are the average of every 

metamodel built. For example, the data found under Kriging results from the average 

of the zero-order, first-order, and second-order performances on every dataset 

combined into a single average to show the overall performance.

This table alone shows Kriging Approximations to be a significant winner over 

the other two methods. However, to conclude from this table alone that Kriging is 

simply the best metamodel for conceptual design out of these three methods is 

simply untrue. Many additional considerations must be taken to adequately 

determine which metamodel performs the best under specific circumstances. In 

order to sift through the different levels of performance between the metamodels, the 

Table 13: An overall summary of statistical measurements for each of the three 
metamodeling techniques.

Summary Statistics
Statistical Properties PRS Kriging RBFNN

R 0.810 0.869 0.731
R2 0.739 0.777 0.626

Minimum Absolute Error 0.004 0.003 0.012
Average Absolute Error 0.165 0.084 0.324

Maximum Absolute Error 0.101 0.055 0.201
Absolute Error Standard Deviation 0.918 0.367 1.959

Root Mean Square Error 19.90% 9.22% 40.24%

62



results have been divided to look at specific circumstances to better understand 

exactly why certain types of metamodels perform better under specific cases.

First off, the performance of each metamodel is compared based upon 

sample size of both the first and second datasets each metamodel was constructed 

upon. Next, RBFNN parameters are redefined in the second dataset in order to find 

the ideal radius value before constructing the model. This helps to better understand 

the performance enhancements that are possible when ideal radius values for the 

Radial Basis Functions are determined prior to constructing the model itself.

The next section is based strictly on the first dataset and evaluates each 

models performance based upon the idea of interpolation and extrapolation. The two 

different ranged datasets having standard deviations of either 0.5 or 1.0 are 

compared against one another. The basis for these analysis was to determine which 

metamodel was best apt to handle extrapolating a small range of values outward 

across a much larger design space. Analysis was also done to determine which 

metamodel was most apt to interpolate data from a much larger dataset into a more 

concise region of the design space. These analysis breakdowns make it easier to 

draw accurate conclusions about each models performance.

Another important consideration was the normalization of the output variable 

design space. This was accomplished by using each output variableʼs minimum and 

maximum values and then normalizing these values between zero and one. 

Otherwise the RMSE values were up to five orders of magnitude different before the 

normalization. Therefore combining the results of the output variables to measure 
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performance characteristics would have been unreasonable since several output 

variables would have been insignificant when averaged with others.

The results of each specific case are presented as RMSE. This has been the 

dominate performance metric used throughout the cited work. Also zero conditioning 

of the dataset takes place before construction of the metamodels, so outlier data 

points can still exist in the dataset. These outliers can cause very large absolute 

errors on an individual basis. Even if the metamodel overall provides a good fit to the 

dataset, a single outlier data point can cause a large absolute error. If absolute error 

was used as the performance metric in this case, then the metamodel would appear 

to be a poor fit of the data, when in reality, the metamodel was actually a good 

representation. RMSE was used to provide a better understanding of not only the 

absolute error for the model, but also the models ability overall to fit the dataset.

4.2 
 Sample Size Analysis


 Varying the sample size was analyzed due to the fact that these metamodels 

were being constructed for conceptual design based upon legacy data. Generally 

companies have massive amounts of legacy data retained from previous designs. 

Each new design undergoes hundreds a data simulations before being produced. 

Therefore, the goal was to determine how many sample points are necessary for 

each metamodeling type to adequately model the design space. The first dataset 

consisted of five different sample sizes ranging between 20 and 50 in increments of 

10 while the second contained an additional 10 sample points.
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4.2.1 
PRS Results - Sample Size - Dataset 1

The results of the PRS performance for Dataset 1 can be seen below in 

Figure 16. The second-order PRS model performs slightly better with model sizes 

under 40 sample points. However, once the dataset consists of 40 or more sample 

points, a third-order PRS model fits the dataset more accurately. With a model size 

of 50, the third-order polynomial has almost 1.0% less error than the second-order 

PRS model. In summary for Dataset 1, second-order PRS models should be built up 

to 40 sample points. The extra coefficients of a third-order PRS model only show 

benefit with datasets containing 40 or more sample points. 
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Figure 16: A chart displaying the RMSE values for PRS based upon sample size.
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4.2.2 
Kriging Results - Sample Size - Dataset 1

The results of the Kriging Approximations performance for Dataset 1 can be 

seen below in Figure 17. To begin the constant global model seems to be 

significantly outperformed with every model size. First and second-order Kriging 

Approximations show similar results for almost every model size except 50. Here the 

second-order model shows a significant improvement in performance. To summarize 

Kriging Approximations for Dataset 1, first-order approximations provide high 

accuracy until a model size of 50 where a second-order Kriging Approximation 

should be implemented due to higher accuracy.

Figure 17: A chart displaying the RMSE values for Kriging based upon sample size.
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4.2.3 
RBFNN Results - Sample Size - Dataset 1

The results of the RBFNN models for Dataset 1 can be seen below in Figure 

18. The RMSE values are completely  scattered for each model size. There is no 

possible way to determine a best radius value based upon the four sampled radius 

values. Each model size has a different ideal radius value. In order to determine the 

performance of RBFNNs, ideal radius values must first be determined. Then the 

models should be constructed upon those ideal radius values. In summary, ideal 

radius values should be determined before constructing a RBFNN metamodel.
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Figure 18: A chart displaying the RMSE values for RBFNN based upon sample size 
for Dataset 1.
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4.2.4 
Metamodel Comparisons - Sample Size - Dataset 1

Figure 19 below shows the best performance result for each metamodeling 

technique. The best performance simply refers to each type of metamodeling 

technique. For example, for a model size of 20, the second-order PRS model RMSE 

value was used since it was better than the third-order value. So these values 

represent the best possible solution for each of the three metamodeling techniques 

with the data sampled.
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Figure 19: A chart displaying the RMSE values for each metamodeling technique 
based upon sample size for Dataset 1.
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From Figure 19, it is difficult to draw conclusions about which metamodeling 

technique produced the best results for several reasons. First of all each result is 

within approximately 1.0% of the other RMSE values. So to draw any conclusions 

specifying an obvious winner is difficult with such small differences between them. 

With that said, PRS models showed the best performance in model sizes of 30 and 

50 while RBFNN performed the worst. However, RBFNN outperformed the other two 

techniques with model sizes of 20 and 40. Kriging did not outperform either method 

with any model size which is quite surprising. Kriging uses a correlation function in 

addition to a global polynomial model to help  pull the function towards outlier data 

points. Basically it combines the best parts of PRS and RBFNN into a single method. 

Yet it performs the worst on the first dataset.

These observations support a fairly linear dataset. In order for RBFNN model 

to accurately  fit the test dataset with the current implementation of using the sample 

data points as centers for the hidden neurons, the dataset must be fairly  linear to 

observe low RMSE values and a high R2 value. Additionally, since PRS models tend 

to outperform Kriging models, this could possibly be due to the Kriging correlation 

function pulling the fit too close to each outlier data point causing additional 

oscillations in the fit of the design space. This overfitting the dataset with the 

correlation function does not occur is PRS. This could be a viable explanation for the 

results of Figure 19. On a final note, RBFNNs can also perform significantly  better 

yet by  finding the ideal radius values before constructing the metamodels. This idea 

was implemented in the following section.
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4.2.5 
Metamodel Comparisons - Sample Size - Dataset 2

Figure 20 below shows the best performance result for each metamodeling 

technique. Dataset 2 produces significantly different results than Dataset 1. The 

benefit of Kriging Approximations can easily be seen in the evaluation of this 

dataset. First-order Kriging Approximations outperform every other type of 

metamodel built upon this dataset in every model size. Kriging outperforms PRS by 

approximately  4.0% and RBFNN by approximately 10.5%. These differences are far 

greater than in Dataset 1.

Figure 20: A chart displaying the RMSE values for each metamodeling technique 
based upon sample size for Dataset 2.
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From these results it is clear Dataset 2 contains highly non-linear data points. 

The construction of the dataset parameters prior to the FEA simulations also support 

non-linear behavior. To explain exactly  what is happening here with these results, 

first off, PRS does a descent job of fitting this dataset for conceptual design with 

roughly a 10% RMSE value. Kriging then uses a similar polynomial expression to 

generalize the dataset, then implements the correlation function to pull the final 

Kriging model closer to the outlier data points encapsulating more of the dataset 

within the model. This additional piece of Kriging can be directly observed in Figure 

20. As for RBFNN, it is apparent that it is having a difficult time fitting the non-linear 

data points. The issue lies within the construction parameters of each RBFNN 

model. By fitting the input dataset almost exactly, the model is overfitting Dataset 2. 

Therefore even the more linear points within the test dataset are still producing large 

absolute error values due to the exact fitting of the outlier data points in the sample 

dataset. 

In order to produce better results for RBFNN models, two methods can be 

implemented. The first method involves calculating the ideal radius value for the 

dataset prior to constructing the metamodel. This method is implemented in the 

following section. A second method would be to implement a curve smoothing 

function into the development of the RBFNN model after determining the ideal radius 

value. RBFNN models fit the construction dataset exactly, yet on a non-linear 

dataset cannot produce the same kind of accuracy values observed in Kriging 

Approximations.
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4.2.6 
Metamodel Comparison with Ideal Values for RBFNN

Figure 21 below shows almost the same information as Figure 20 with one 

exception, the RBFNN Best models have been constructed using the ideal radius 

value for each model size. To determine the ideal radius value, 1005 metamodels 

were built for each of the five model sizes. Simulations consisting of 201 radius 

values ranging between 0.25 and 2.0 with a constant step size were generated for 

each output variable. The lowest RMSE metamodel then became the new RBFNN 

Best containing the ideal radius value for that output variable at that model size.

Figure 21: A chart displaying the RMSE values for each metamodeling technique 
based upon sample size for Dataset 2 with the ideal radius values used for RBFNN.
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The RMSE difference now between Kriging and RBFNN has dropped from 

10.5% to approximately 4.6%, almost a 6% decrease in RMSE due to building the 

RBFNN model with the ideal radius. The RBFNN models however still do not 

perform as well as the PRS metamodels. PRS models have a RMSE of 

approximately 2.2%. 

To summarize the results of finding the ideal radius value for to find RBFNN 

Best, the time required to find the ideal radius value can only be justified when the 

dataset has a fairly linear behavior. Over five thousand metamodels had to be 

generated in order to produce the data to generate Figure 21. This still took hours to 

calculate with only  five design variables and five output variables. If the dataset 

consisted of hundreds or even thousands of design variables, constructing RBFNN 

metamodels would be out of the question. Not to mention they still would not fit the 

data as well as a PRS metamodel or a Kriging Approximation.

4.3 
 Extrapolation vs. Interpolation Results

Conceptual design teams can have a number of different tasks ranging from 

designing a completely new product from scratch, designing another generation of a 

product already in production, or even sometimes taking several completely different 

products and combining them to harness new product capabilities into a single 

product. The question at hand is how well can metamodels handle these different 

types of conceptual design. If a metamodel is constructed upon legacy data in a very 

concise design space, is it capable of providing high enough accuracy at the 
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conceptual design phase to provide designers with useful information for concepts 

with parameters extremely outside the design space the metamodel was built on. 

This is referred to as extrapolation.

On the contrary, if a metamodel was constructed on a dataset comprised of a 

very  wide range of sample points throughout a design space, can the metamodel 

accurately  predict concept designs with parameters localized within a small region of 

the design space? This is referred to as interpolation. Throughout this section each 

metamodeling technique is tested on Dataset 1 to determine each techniqueʼs 

performance in terms of both extrapolation and interpolation. Additionally, the smaller 

and larger ranged datasets are evaluated against test datasets with the same range 

to test each metamodels ability to predict values within the same localized design 

space.

In order to test these cases, Dataset 1 was sampled with a standard deviation 

of both 0.5 and 1.0. Metamodels were constructed upon both ranges of datasets, 

and then tested against a test dataset of either the same range or the larger or 

smaller range. For example, PRS models were constructed upon the smaller range 

dataset—a standard deviation of 0.5—and then tested against both the smaller and 

large range test dataset. This then provides test results for a localized metamodel 

test against both a localized and interpolated dataset. Additionally, PRS models were 

constructed on the larger range dataset—a standard deviation of 1.0—and then 

tested against a test dataset of both smaller and larger ranges. Thus providing test 

results for a localized larger design space in addition to the results for interpolation 

of the large range model performance on a localized test dataset.
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4.3.1 
PRS Results - Standard Deviation - Dataset 1

Figure 22 shows the results of the PRS model performance. For interpolation, 

the second-order PRS model better captured the behavior for a localized test 

dataset. However, for extrapolation, the extra coefficients for the third-order PRS 

model created a more precise fit of the larger ranged test data. For the small ranged 

models tested against small range data, third-order PRS models perform better. 

However, for large ranged models tested against large range data, the opposite 

trend occurred where less coefficients did a better job of capturing the general trend 

of the data.

Figure 22: A chart displaying RMSE values for PRS based upon standard deviation.
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4.3.2 
Kriging Results - Standard Deviation - Dataset 1

Figure 23 shows the results of the Kriging model performance. For 

interpolation and extrapolation, the second-order Kriging model better captured the 

behavior for both the small and large range data. For the small ranged models 

tested against small range data, second-order models also more accurately  predict 

the localized design space more accurately. However, for the large ranged models 

tested against large range data, the first-order model best fit the test data. PRS and 

Kriging perform better with less coefficients in a larger less concise design space.

Figure 23: A chart displaying the RMSE values for Kriging based upon standard 
deviation.
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4.3.3 
RBFNN Results - Standard Deviation - Dataset 1

The results for RBFNN performances are shown below in Figure 24. These 

are not ideal radius values so the performance could greatly increase by finding 

these ideal radius values prior to constructing the models. RBFNN seems to work 

well with the first and second columns where the model was constructed to predict 

small localized areas. When extrapolating or predicting a large area of the design 

space, RBFNN breaks down. This shows the inability of RBFNN to handle more non-

linear approximations due to overfitting the sample dataset.

Figure 24: A chart displaying the RMSE values for RBFNN based upon standard 
deviation.
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4.3.4 
Metamodel Comparisons Based Upon Standard Deviation

The comparisons of each metamodeling techniques performance can be 

seen below in Figure 25. For interpolation, RBFNN models exhibit the best 

performance for interpolation and the worst for extrapolation. PRS showed the best 

performance in extrapolation and also in the first column with localized data due to 

the overfit caused by the correlation function for Kriging and the exact fit to the 

sample data for RBFNN. For the larger range data in the forth column, Kriging 

models outperform the other two techniques. 

Figure 25: A chart displaying the RMSE values for each metamodeling technique 
based upon standard deviation.
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The results for testing extrapolation and interpolation throughout this section 

follow the general performance trends observed throughout the entire results 

section. For the first column results where a smaller ranged model was tested 

against smaller range test data, the results show that higher order polynomials are 

better suited for small concise datasets. However, the correlation function for Kriging 

appears to hinder the methodʼs performance compared to PRS. Additionally, RBFNN 

could possibly be a better solution here if time was taken to generate the ideal radius 

values before generating the metamodels.

For interpolation, RBFNN wins hands down, even with non-ideal radius 

values. The additional oscillations for both Kriging and RBFNN allow both methods 

to capture more of design space in localized regions. Then when predicting values in 

a localized area of the design space with these models, they are better suited due to 

the additional curvature of the models. If interpolation is the main focus of 

constructing an accurate metamodel, then RBFNN appears to be the best choice.

For extrapolation the exact opposite is true. The more accurate fitting of the 

localized sample data for RBFNN causes it to breakdown significantly when 

extrapolated out to larger areas of the design space. Third-order PRS models 

performed the best when testing for extrapolation capabilities with second-order 

Kriging models not far behind. 

When large areas of the design space are sampled for both the metamodel 

and test dataset in the fourth column, Kriging Approximations appear to be the most 

robust solution. Although with RBFNN not far behind, it is difficult to conclude 

whether Kriging is the absolute best solution since non-ideal radius values were 
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used. Possibly  with ideal radius values, RBFNN performance could match or exceed 

that of Kriging Approximations.
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5 CONCLUSIONS AND FUTURE WORK

Rapid assessment capabilities need to be implemented into conceptual 

design as an alternative to high fidelity analysis. Building metamodels upon legacy 

data of previous high fidelity simulations has the potential reduce or possibly 

eliminate the need for high fidelity  analysis in conceptual design, yet provide highly 

accurate information in real-time to engineers. With this structure in place, engineers 

could quickly evaluate a multitude of concepts in real-time with factual hands on 

information about each concept. Three different metamodeling techniques, 

Polynomial Response Surfaces (PRS), Kriging Approximations, and Radial Basis 

Function Neural Networks (RBFNN), were evaluated to determine which of the three 

best fit the general trends of several conceptual design datasets.

5.1 
 Polynomial Response Surface Conclusions

When to use PRS metamodels

1. Sample sizes greater than 40 data points for linear datasets

2. Extrapolation of concise datasets to a larger area of the design space

3. Linear datasets consisting of a small concise design space

When NOT to use PRS metamodels

1. Interpolation of large datasets in small regions of the design space

2. Any highly non-linear dataset

3. Datasets with a very large design space exhibiting non-linear behavior
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Several other important notes regarding the implementation of PRS are to 

generally  always use third-order polynomials to fit the data. In almost every  situation,  

third-order polynomials outperformed second-order polynomials with the exclusion of 

highly non-linear datasets. Also, building a PRS metamodel requires very  little effort 

and can be done very quickly. If speed is the key consideration for metamodel 

construction, then PRS is the best option. The only specification in the construction 

is the order of the polynomial which should almost always be third-order unless it is 

a highly non-linear dataset. In which case a PRS metamodel is a poor option.

5.2 
 Kriging Approximation Conclusions

When to use Kriging metamodels

1. Any non-linear dataset of any sample size

2. Large design space datasets exhibiting linear or non-linear behavior

When NOT to use Kriging metamodels

1. For cases where interpolation or extrapolation are required

2. Linear datasets with sample sizes larger than 40 data points

Kriging Approximations are a very robust metamodeling technique with very 

high performance using a first-order global model on non-linear datasets. In regards 

to more linear datasets, Kriging should be avoided. However, if Kriging must be 

used, second-order global models perform much better on linear datasets than first-

order models. Always avoid using a constant global model for generating Kriging 

Approximations for the performance of these metamodels was significantly  worse in 
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every single test case. On the downside, Kriging metamodels require slightly more 

time to setup  and construct than PRS metamodels, but overall, the extra preparation 

results in a much more robust metamodel which can handle a larger number of 

different types of datasets.

5.3 
 Radial Basis Function Neural Network Conclusions

When to use RBFNN metamodels

1. Linear datasets consisting of any sample size

2. Interpolation of large area design spaces to concise localized areas

3. Linear datasets consisting of a small concise design space

When NOT to use RBFNN metamodels

1. Extrapolation of concise datasets to a larger area of the design space

2. Any highly non-linear dataset

Radial Basis Function Neural Networks require large amounts of 

preconditioning in order to reach the performance levels of either PRS or Kriging. In 

order to compete with the performance of the other techniques, the ideal radius 

value must be determined prior to constructing the final model. This process took 

hours for the datasets used. However, if the datasets consisted of hundreds of 

sample points and thousands of design variables, constructing a RBFNN would take 

days to week to generate. On another note, if construction time is not an issue, 

RBFNN metamodels outperform both PRS and Kriging techniques on datasets with 

linear behavior.
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5.4 
 Future Work

For the future development of the use of metamodels for conceptual design, 

the focus will be towards evaluating additional datasets to continue to test the 

performance of metamodels on high fidelity  analysis data. Using actual legacy 

datasets to test the performance of these metamodels is a high priority. If the same 

kind of accuracy results can be achieved using legacy data, then hopefully the 

implementation of metamodeling techniques into conceptual design can be adopted 

into conceptual design the same way CAD has been adopted into detailed design.

In addition to testing more types of conceptual design datasets, more 

research will be done to implementing additional types of both Kriging 

Approximations and Radial Basis Function Neural Networks. Kriging Approximations 

are already  the dominating performer for non-linear datasets. However, many 

different alterations exist for Kriging including Co-Kriging, Collocated Kriging, and 

even Collocated-Co-Kriging Approximations. Possibly one of these may be able to 

approximate linear datasets better than standard Kriging Approximations. 

RBFNN metamodels also have potential. With all the possible construct 

methods for neural networks, any of these could prove to perform better for non-

linear datasets or for extrapolation. There are many different possibilities when it 

comes to neural networks. First of all, the method in which to generate the neural 

network can be done several different ways. The population of neurons can come 

directly from the sample points like was done in this thesis, or a subset of the 

population can be used until the RMSE for the model drops below a certain value. 
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The population can be generated randomly  throughout the entire design space. One 

final implementation for RBFNN will be to implement a curve smoothing function with 

ideal radius values to see if this technique can better handle a highly non-linear 

dataset.
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