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INTRODUCTION 

Since analysis by Rayleigh [1] and Lamb [2], the vibration modes for 
an elastic homogeneous infinite solid thin plate are well understood. 
These so-called "Lamb modes" result from a pure compressional wave and pure 
shear wave. Similarly, excitation of "leaky Lamb modes" in elastic plates 
immersed in a fluid, caused by incident acoustic waves, has been extensively 
described theoretically [3-7] and experimentally [8,9]. Results are gen
erally presented as dispersion curves which relate the phase velocity of the 
mode to the product of frequency and plate thickness. 

The purpose of this work is to extend this formalism to the particular 
case of fluid-filled porous thin plates. These structures, first studied 
by Biot [10,11], are two-phase materials made of a solid continuous matrix 
and connected pores filled with a fluid. One fundamental aspect of acoustic 
wave propagation in fluid saturated porous solids is the existence of a 
"slow" compressional wave, in addition to the classical "fast" compressional 
wave and the shear wave. 

In the present study we direct our attention to significant modifica
tions in the dispersion curves due to the propagation of the slow wave. 
Numerical procedure is carried out to obtain the dispersive behavior of 
different Lamb modes in water-saturated porous plates. Comparison of 
theoretical data with and without the slow wave is presented. The computed 
predictions are then compared to a series of measurements. Unusual 
behavior of the transmitted and the reflected s1 mode is demonstrated. 
The main features of the dispersion curves are discussed for various values 
of the product f.d (ultrasonic frequency • thickness of the plate). 

THEORY 

The geometry of the problem is shown in Fig. 1. Lamb wave propagation 
in a water-saturated porous plate is considered. The porous plate is 
macroscopically homogeneous, isotropic, and infinitely large, so potential 
functions for fast and slow compressional waves and shear waves can be used 
to compute dispersive behavior of different Lamb modes. 
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Fig. 1. Scheme of the coordinate system for Lamb wave propagation in a 
fluid-saturated porous plate. ~+• ~-, and o/ are potential 
functions for fast, slow, and shear wave in the porous plate, 
and ~w is the potential of compressional wave in the fluid, 

Boundary conditions at upper and lower interfaces (z = ±h/2) of the 
porous plate are adopted from Ref. 12 using the same notations: 

1. Continuity of stress at the plate surfaces (two equations) 

i = x, z 

2. Conservation of the fluid volume 

~Uz + (1 - ~)Uz = U'z 

3. Proportionality between discontinuity in pressure and 
relative velocity of fluid to solid in porous medium 

( 1 ) 

(2) 

(3) 

where T is called surface flow impedance. In the following discussion we 
only consider an open pore boundary where T = 0. 

By using standard procedures described in Ref. 14, expressions for the 
Lamb modes can be calculated. The numerical procedure of computing Lamb 
waves in porous plate is briefly shown by a block diagram in Fig. 2. 

RESULTS 

Velocity dispersion curves for water-saturated porous materials 
(Sample 15) are shown in Fig. 3 as a function of frequency times plate 
thickness. The phase velocity CL, chosen as the variable, is deduced from 
the incident angle e by Snell's law: 

To emphas ize the role of the slow wave , similar plots using the same 
data but without (Fig. 3(a)) and with (Fig. 3(b)) slow wave are presented. 
The most significant and distinctive features between these two sets of 
curves are observed for the modes So and S1. Instead of having asymptotic 
behavior for decreasing phase velocity, the mode S1 on the plot in Fig. 3(b) 
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Fig. 2. Block diagram of numerical procedure. 

exhibits a change in direction. Such unusual behavior has been observed 
before by Nayfeh and Chimenti [14] for fiber reinforced composites with 
solid density close to the density of the fluid. Also, because of the 
existence of a slow wave, its asymptotic value of mode So is the slow wave 
vel ocity (800 ms-1) instead of the Rayleigh wave velocity. 

For higher modes, good agreement between the two sets of curves shows 
that the slow wave plays an important role only in the low frequency range. 

MEASUREMENTS 

Experimental Procedure 

Leaky Lamb waves in fluid-saturated porous plates are obtained by using 
two different techniques as shown in Fig. 4. The first one (Fig. 4(a)) is 
a two-transducer immersion technique. Excitation of plate modes gives 
destructive interference between the specular reflected wave and the leaky 
plate modes rad i ating i n the same direction. As a consequence, the reflec
ted spectrum exhibits minima for frequencies at which these modes are 
exci ted. The s econd arrangement (Fi g. 4(b)) is bas ed on a single trans
ducer and reflector immersion method. In this latter case, the leaky wave 
i s only present on the back face of the plate when a plate mode is propaga
ting. Hence plate modes are identified as maxima in the received spectrum. 
In order to get a higher sensitivity, a second transducer, acting as a 
receiver, can be substituted for the reflector. 

Both methods give leaky Lamb wave phase velocity dispersion data. 
They have been described and discussed in detai l by P. B. Nagy, et. al [15] 
previously. Although in the single transducer and reflector techni que 
a lignment is simpler, the t wo transducers' pitch-catch arrangement has 
better accuracy and sensitivity. 

The diagram in Fig. 5 shows mode conversion and refraction at different 
interfaces for a particular case where the shear velocity in the plate is 
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Fig. 3. Comparison of dispersion curves for leaky Lamb waves in a porous 
thin plate (a) without slow wave and (b) with slow wave. 
Material properties are listed in Table I for Sample PG15. 

lower than the bulk velocity in the fluid. Paths [1] [2] [3] correspond to 
the direct transmission of the compressional fast, shear, and compressional 
slow velocities, respectively. For clarity, the reflected waves are not 
shown but obviously have to be included in the problem (see Fig. 1). 
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Fig. 4. Experimental arrangement: (a) pitch-catch for reflection 
measurement and ( b) pulse-echo for transmission measurement. 

The equipment includes a pulser which excites a broadband transducer. 
The received signal is amplified and sent to a digital oscilloscope for 
storage and signal processing, i.e. time gating, time domain averaging, 
fast Fourier transforming, decovolving, and s moothing of the normalized 
power spectrum. 

The experimental data are obtained from different materials in order 
to outline the i nfluence of the compressional slow wave on the dispersion 
waves. Table I gives the re l evant parameters of the solid plates which 
have been investigated. The slow wave has been observed only on three of 
them (PG15, PG55, PSa1). The plexiglass (PL1) sample has also been i ncluded 
as a reference for a solid homogeneous medium with a shear velocity l ower 
than the bulk velocity in the fluid. 

As observed by Plona's first experiment [16], slow wave measurements 
are only obtained with artificial samples made of glass beads fused by 
sintering (PG15, PG55) synthetically bonded natural sand grains (PS1). 
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Fig. 5. Refraction and mode conversion in porous plate where the 
velocity of shear wave is lower than that of compressional 
wave in water. 

TABLE I. Geometric and Physical Parameters of the Porous Samples. 

MAXIMUM DENSITY FLUID SATURATED DRY 
PORE OF THE SAMPLE SAMPLE 

SAMPLE MATERIAL DIAMETER POROSITY SOLID Vfast Vshear Vslow VLong Vshear 
(1Jm) % (ms -1) (ms- 1) (ms-1) 

PG15 Glass 15 30 2 .L~8 2851 1516 822 3582 2217 

PG55 Glass 55 30 2 . 48 2926 1560 810 2960 1724 

PST3 Steel 7 26 7.90 3450 1980 2885 2060 

PSal Sand 37 1. 90 3270 1970 1010 

PLl Plexiglas 2310 1152 

The porous structure we used consisted of thousands of tiny precisely sized 
s pherical particles bonded toge ther to form a uniform three-dimensional 
shape . Saturation with water is attempted using a vacuum pump to first 
empty the air content from the pores. Then water is entered into the vacuum 
t ank to fill the open pores. An addit i onal few hours time delay is a llowed 
so the immersed sample expels the remaining gas. 

RESULTS AND DISCUSSION 

Preliminary experiment is performed to verify the basic assumption 
used in our model: the theory appl i es to materia ls wi th shear velocity 
close to the ve loci ty of the bul k wave i n water. 

To demonstrate the validity of our theoretical model for materials with 
a shear velocity close to or smaller than the velocity of bulk wave in 
water, experi mental and computed values of the velocities have been plotted 
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versus the product frequency times thickness for a plexiglass sample (see 
Table I). As shown in Fig. 6, excellent agreement between the two sets of 
data is obtained. 

Experimental measurement of generalized leaky Lamb waves in a water
saturated thin porous plate (Sample PG15) is presented in Fig. 7. The 
solid lines are the computed values and the discrete squares are the 
experimental results. The most important modification of the dispersion 
curve for the porous plate with slow waves is indicated in the low 
frequency range, so the diagram is limited to f.d < 3.2 MHz mm. 
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Fig. 6, Comparison between theory and experiment for a plexiglass plate 
with shear velocity lower than that of compressional wave in water. 
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Fig. 7. Comparison between theoretical predictions for leaky Lamb modes 
in porous plate (Sample PG15) and experimental data measured 
from reflected spectrum minima. 
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The particular behavior of the S1 is confirmed by the experimental 
data. However, the scattering of some experimental values around the 
curves of interest make their identification more difficult. Although 
there are many factors affecting the measured dispersion curve which could 
lead to the poor agreement between theory and experiment, the main reason 
is that the reflection and transmission measurements cannot be translated 
to the dispersion curve [17) for leaky Lamb modes as was earlier assumed 
[6). Calculations of reflection and transmission coefficients through 
fluid-filled porous plates will be presented at a later time. 

CONCLUSION 

Preliminary study on generalized leaky Lamb waves in water-saturated 
porous thin plates has been performed. A theoretical model has been devel
oped by including a potential function for slow wave. Numerical solutions 
have been obtained showing the modification of the velocity dispersion 
curves due to the existence of the slow wave. The validity of the theory 
has been demonstrated in the case of a non-porous solid having a shear wave 
velocity close to or below the bulk velocity in water. The existence of a 
second compressional wave in the porous materials used has been verified. 
Theoretical and experimental dispersion curves show unusual behavior for the 
S1 mode. A reverse direction instead of an asymptotic trend is observed for 
this mode. On the other hand, most other modes look rather same as for many 
usual solid homogeneous isotropic plates. Scattering of experimental data 
due to inhomogeneities, low density, and high attenuation of the porous 
medium is the main limitation to better identification of the modes. 
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