Simulation of Light Extraction from Organic Light Emitting Diodes

Yu Zhang

Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents

Part of the Electromagnetics and Photonics Commons

Recommended Citation
https://lib.dr.iastate.edu/creativecomponents/901

This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Simulation of light extraction from organic light emitting diodes

Yu Zhang
Iowa State University

Advisor: Rana Biswas
Department: ECpE

Supported by
Department of Energy EERE solid state lighting Program grants DE-EE0007621 and DE-EE0008724
National Energy Research Scientific Supercomputing Center (NERSC) which is supported by the Office of Science of the US Department of Energy, under contract no. DE-AC02-05CH11231 (Supercomputing time)
Background

• Problem:
 • Poor light extraction efficiency from organic light-emitting diodes

• How to improve it?
 • External quantum efficiency \(\eta_{\text{EQE}} \), which is defined as the ratio of the number of photons emitted to the air and the number of injected charge carriers.
 \[\eta_{\text{EQE}} = \gamma \times \eta_{s/t} \times \eta_{\rho} \times \eta_{\text{out}} \] (1)
 • The charge imbalance factor \(\gamma \) can be optimized close to 1 by electron and hole transport layers.
 • The ratio of singlet to triplet excitons, \(\eta_{s/t} \) approaches 1 for current phosphorescent materials.
 • The radiative quantum efficiency \(\eta_{\rho} \) represents the ratio of the number of the spin allowed excitons which decay through photon emission to the number of those with nonradiative decay channels through defects. A high \(\eta_{\rho} \) can be achieved by educing defect density.
 • \(\eta_{\text{out}} \)
Background

- The outcoupling factor η_{out} is defined as the ratio of photons emitted to the air side, and all photons emitted inside OLEDs.
- For most organic layers with $n \sim 1.8$, $\eta_{\text{out}} \approx 17\%$
 - Photons trapped in the substrate due to total internal reflection at the glass/air
 - Photons waveguided in the high index organic layers
 - Photons dissipated at the organic/metal by surface plasmons excitation

Figure 1. Simulations for flat OLEDs (wavelength = 530nm)
Background

• Increasing light extraction from bottom-emitting OLEDs
 • The waveguided mode in the substrate can be extracted by scattering centers within the glass substrate or by micro-lens (μLA) arrays at the air-glass side.
 • Internal periodic corrugations can diffract the WG and SP modes, to extract the light trapped in the high-index organic/ITO layers and reduce plasmonic losses
• Our objective
 • Understand the optimal range of pitch and height values for outcoupling
Corrugated OLEDs: Integrated OLED substrates with periodical corrugations. The entire OLED stack is conformally grown on the patterned substrate.

Photons are emitted isotropically by the emissive molecules, with a wave vector that lies on a sphere of radius $k = n_{org} \omega / c$.

Figure 2. Photon momentum wave vectors emitted inside the OLED
Theoretical Approach

- The parallel component of the wave vector \(k_{||} \) is conserved in a planar OLED.
- Only the small fraction of photons emitted in the narrow air cone outcoupled to air.
- The periodicity can diffract photons with a parallel wave vector \(G \).
 - A waveguided mode within the organic layer can be diffracted back to the air cone and outcoupled when \(k_{||} + G = k_{||}' \) lies within the air cone.

Figure 2. Photon momentum wave vectors emitted inside the OLED.
Scattering Matrix (SM) Approach

- The dipoles emit with amplitude a^{+}_{inc} and a^{-}_{inc} in forward and backward directions.
- Then computes amplitudes (b^{+}, b^{-}) of the total electric fields for waves propagating in the OLED in the positive and negative directions.
- The scattering matrices (F) for the substrate/ITO/HTL stack and the ETL/Ag cathode stack (B).
- The fields in the emissive layer are the sum of the incident field a_{inc} and the total reflected field b, traveling in both directions.

Figure 3. Schematic showing the three dipole polarizations in the emissive layer of a flat OLED. Transverse magnetic (TM) modes have electric field (E) in the plane of the figure. The transverse electric (TE) mode has E perpendicular to the plane.
Flat OLEDs

The emitted power within the OLED comes from the three dipole polarizations corresponding to z, x, and y orientations of the dipole:

- Transverse Magnetic Vertical (TMv) Polarization (z-Polarization).

\[
P(TMv) = \frac{3}{2} \int_0^\infty du \frac{u^3}{\sqrt{1-u^2}} \{ 1 + b_i^+ + b_i^- \} \quad (2)
\]

\(u\) is the scaled wave-vector inside the OLED \((u=k_\parallel/(n(\text{org})k_0))\).
Flat OLEDs

• Transverse electric horizontal (TEh) polarization (x-polarization)

\[P(TEh) = \frac{3}{4} \int_{0}^{\infty} du \frac{u}{\sqrt{1-u^2}} \{ 1 + b_i^+ + b_i^- \} \]

(3)

• Transverse magnetic horizontal polarization (TMh) modes (y-polarization)

\[P(TMh) = \frac{3}{4} \int_{0}^{\infty} du \frac{u(1-u^2)}{\sqrt{1-u^2}} \{ 1 + b_i^- - b_i^+ \} \]

(4)

• We utilize (2-4) for the numerical results for the 3 polarizations (Fig. 2). The total emitted power is

\[P(tot) = P(TMv) + P(TMh) + P(TEh) = \int_{0}^{\infty} du \ P(u) \]

(5)
Corrugated OLEDs

• For a periodically corrugated OLED with pitch a and height h, the two-dimensional periodic corrugation in the x,y plane is described by reciprocal lattice vectors \mathbf{G},
 - $\mathbf{G}_1 = \frac{2\pi}{a} (1, -\frac{1}{\sqrt{3}})$; $\mathbf{G}_2 = \frac{2\pi}{a} (0, \frac{2}{\sqrt{3}})$.
 \begin{equation}
 \end{equation}

• Any general reciprocal lattice vector is expressed by $\mathbf{G}(m, n) = m\mathbf{G}_1 + n\mathbf{G}_2$.

Figure 4. Schematic structure of the corrugated OLED in a two-dimensional projection. Three representative positions of the dipole with different heights: low (L), mid (M), and top (T).
Corrugated OLEDs

- The travelling waves inside the OLED have amplitudes $b^+(u,G)$, and $b^-(u,G)$ in the $+z$ and $-z$ directions:
 - $b^+(u,G) = (I - B21F21)^{-1}(B21a^+_{in} + B21F21a^+_{in}) \quad (7)$
 - $b^-(u,G) = (I - F21B12)^{-1}(F21a^+_{in} + F21B12a^-_{in}) \quad (8)$
- The emitted intensity in air is described by the amplitudes $c^+(u,G)$:
 - $c^+(u,G) = F11a^+_{in} + F11(I - F21B12)^{-1}(F21a^+_{in} + F21B12a^-_{in}) \quad (9)$

Figure 4. Schematic structure of the corrugated OLED in a two-dimensional projection. Three representative positions of the dipole with different heights: low (L), mid (M), and top (T).
Corrugated OLEDs

- $H(x)$ are the locations of the dipole in the plane, describing the circular-ring like contours. $H(x)$ has Fourier components $H(G)$:
 - $H(x) = \sum_G \exp(iG \cdot x) H(G)$ (10)

Figure 5. Positions of the dipole emittters in a planar x, y cross section of the OLED. The horizontal polarizations of the dipole (TMh, TEh) and the vertical polarization (TMv) are indicated, with the convention that xz is the emission plane.
Corrugated OLEDs

- The power in the corrugated OLED for the three polarizations is convoluted with the positions of the dipoles in the emissive layer:

 \[
 P(TM\, v) = \frac{3}{2} \int_0^\infty du \frac{u^3}{\sqrt{1-u^2}} \{ 1 + \sum_G [b_i^+ (u, G) + b_i^- (u, G)]H(G) \}
 \]
 (11)

 \[
 P(TM\, h) = \frac{3}{4} \int_0^\infty du \frac{u(1-u^2)}{\sqrt{1-u^2}} \{ 1 + \sum_G [b_i^- (u, G) + b_i^+ (u, G)]H(G) \}
 \]
 (12)

 \[
 P(TE\, h) = \frac{3}{4} \int_0^\infty du \frac{u}{\sqrt{1-u^2}} \{ 1 + \sum_G [b_i^+ (u, G) + b_i^- (u, G)]H(G) \}
 \]
 (13)
Corrugated OLEDs

• To simulate the outcoupled power we have generalized the components field $c^+(u)$ for planar OLEDs to the Fourier components $c^+(u,G)$ for corrugated OLEDs.

 $\mathbf{P}_{\text{air}} (TMv) = \frac{3}{2} \int_0^\infty du \frac{u^3}{\sqrt{1-u^2}} \{ \sum_{G}^{k_x^2>0} c_{TMv}^+(u, G) \}$
 \hspace{2cm} (14)

 $\mathbf{P}_{\text{air}} (TMh) = \frac{3}{4} \int_0^\infty du \frac{u(1-u^2)}{\sqrt{1-u^2}} \{ \sum_{G}^{k_x^2>0} c_{TMh}^+(u, G) \}$
 \hspace{2cm} (15)

 $\mathbf{P}_{\text{air}} (TEh) = \frac{3}{4} \int_0^\infty du \frac{u}{\sqrt{1-u^2}} \{ \sum_{G}^{k_x^2>0} c_{TEh}^+(u, G) \}$
 \hspace{2cm} (16)

 • The sum over Fourier components G is for propagating modes where $k_x^2 > 0$

 $k_x^2 = \left(\frac{\omega}{c}\right)^2 - (u + G_x)^2 - G_y^2$
 \hspace{2cm} (17)

 • The total emitted power is

 $\mathbf{P}_{\text{air}} (\text{tot}) = \mathbf{P}_{\text{air}} (TMv) + \mathbf{P}_{\text{air}} (TMh) + \mathbf{P}_{\text{air}} (TEh) = \int_0^\infty du \mathbf{P}_{\text{air}} (u)$
 \hspace{2cm} (18)
Results

We simulate a conformally corrugated OLED with periodic corrugations of pitch a and height h.

- The OLED stack is polycarbonate (PC; $n=1.58$)/ corrugations in PC (height h nm, pitch a)/ HTL (d(HTL) nm)/ emissive region/ ETL d nm /Ag cathode.
- The optimum ETL thickness is a near a quarter wavelength $\lambda/4n$(org), we calculate the average η_{out} for a range of ~20 nm ETL thickness around this value.
- Simulate η_{out} as a function of the corrugation pitch a and height h, for three representative wavelengths: 630 nm (red), 550 nm (green), and 480 nm (blue).
Results: Pitch vs Outcoupling for 630 nm

Figure 6. Simulated corrugated OLED outcoupling as a function of corrugation pitch a, for a fixed corrugation height h of 200 nm and a red wavelength of 630 nm. The parallel wave vector $k_{||}$ is along x, y, and 45° to x or y axes.
Results: Pitch vs Outcoupling for 550 nm

Figure 7. Simulated corrugated OLED outcoupling as a function of corrugation pitch a, for a fixed corrugation height h of 200 nm and a green wavelength of 550 nm. The parallel wave vector $k_{||}$ is along x, y, and 45° to x or y axes.
Results: Pitch vs Outcoupling for 480 nm

Figure 8. Simulated corrugated OLED outcoupling as a function of corrugation pitch a, for a fixed corrugation height h of 200 nm and a blue wavelength of 480 nm. The parallel wave vector $k \parallel$ is along x, y, and 45° to x or y axes.
Results: Height vs Outcoupling for 630 nm

Figure 9. Simulated corrugated OLED outcoupling as a function of corrugation height h, for a fixed corrugation patch a of 1000 nm and a red wavelength of 630 nm. The parallel wave vector k∥ is along x, y, and 45° to x or y axes.
Results: Height vs Outcoupling for 550 nm

Figure 10. Simulated corrugated OLED outcoupling as a function of corrugation height h, for a fixed corrugation patch a of 1000 nm and a green wavelength of 550 nm. The parallel wave vector $k||$ is along x, y, and 45° to x or y axes.
Results: Height vs Outcoupling for 480 nm

Figure 11. Simulated corrugated OLED outcoupling as a function of corrugation height \(h \), for a fixed corrugation patch \(a \) of 1000 nm and a blue wavelength of 480 nm. The parallel wave vector \(k\parallel \) is along \(x \), \(y \), and 45° to \(x \) or \(y \) axes.
Results: Height vs Outcoupling for 480 nm

Figure 11. Simulated corrugated OLED outcoupling as a function of corrugation height \(h \), for a fixed corrugation patch \(a \) of 1000 nm and a blue wavelength of 480 nm. The parallel wave vector \(k || \) is along \(x \), \(y \), and \(45^\circ \) to \(x \) or \(y \) axes.
SEMLA

- The dipole emitter has 3 polarizations x (TEh), y (TMh), z (TMv);
- There are inequivalent positions of the dipole emitter:
 - Top position (T) directly above top if pyramid
 - Low (L) position above trough of structure
 - There are positions between T & L
- Mixed layer has polycarbonate/glass index n_1 with higher index planarizing material index n_2.
- n_2 is matched to index of organic layer
- Divide mixed layer d_2 into 5 slices with radius R, 0.8R, 0.6R, 0.4R, 0.2R

Figure 12. Schematic structure of SEMLA in a two-dimensional projection.
SEMLA Results: Outcoupling vs Pitch

<table>
<thead>
<tr>
<th>Material</th>
<th>Index n</th>
<th>Thickness d (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycarbonate n1</td>
<td>1.58</td>
<td>1000</td>
</tr>
<tr>
<td>SEMLA n2</td>
<td>1.8</td>
<td>1500</td>
</tr>
<tr>
<td>Planar layer n2</td>
<td>1.8</td>
<td>400</td>
</tr>
<tr>
<td>ITO from table</td>
<td>1.937</td>
<td>81.4</td>
</tr>
<tr>
<td>Org HTL n(org)</td>
<td>1.7877</td>
<td>60</td>
</tr>
<tr>
<td>Org ETL</td>
<td>1.7877</td>
<td>64</td>
</tr>
<tr>
<td>Ag cathode</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Table 1. Parameters of simulations for SEMLA
SEMLA Results: Outcoupling vs Pitch

Figure 11. Simulated SEMLA outcoupling as a function of corrugation pitch a, for a fixed corrugation height h of 1500 nm and a green wavelength of 530 nm. The parallel wave vector $k_{||}$ is along x, y, and 45° to x or y axes.
Conclusion

- We find periodically corrugated conformal OLEDs exhibit optimal light-outcoupling η_{out} as high as 60-65% over optical wavelengths.
- Optimal pitch values are between 1000-2500 nm, and η_{out} is insensitive to corrugation heights ($h > 100 \text{ nm}$).
- There is a gradual roll-off in η_{out} for larger pitch, and a sharper decrease in η_{out} for pitch values smaller than light wavelengths.
- Near optimal pitch values, periodic corrugations strongly diffract trapped waveguided and plasmonic modes to the air cone, through first-order diffraction.
References:

