Enhanced oxidation resistance of (Mo95W5)85Ta10(TiZr)5 refractory multi-principal element alloy up to 1300°C

Thumbnail Image
Date
2021-06-24
Authors
Su, Ranran
Zhang, Hongliang
Ouyang, Gaoyuan
Liu, Longfei
Nachlas, Will
Cui, Jun
Johnson, Duane
Perepezko, John
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Johnson, Duane
Distinguished Professor
Person
Ouyang, Gaoyuan
Ames Laboratory Scientist II
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMaterials Science and EngineeringPhysics and Astronomy
Abstract

Refractory-metal-based alloys are a potential replacement of current nickel-based superalloys due to their excellent mechanical strength at extremely high temperatures. However, severe oxidation in a high-temperature working environment limits their application. To address this challenge, a two-step coating process (including a Mo precoat and a Si-B pack cementation) was applied to an innovative refractory multi-principal element alloy (RMPEA) (Mo95W5)85Ta10(TiZr)5. The coating is composed of an aluminoborosilica glass layer on top of a RMPEA-Si-B multilayered structure. The coating effectively protects the RMPEA from oxidation in high-temperature environments, as demonstrated by phase-stable operation at 10–20% higher temperatures over state-of-the-art systems without any forced-cooling system. Following an isothermal exposure at 1300 °C, the weight change of the coated sample follows a paralinear kinetics with a minor weight loss of 4.2 mg/cm2 after 50 h. Thermal cycling tests between 1300 °C and room temperature in air resulted in the total weight gain of only 2.6 mg/cm2 after 450 cycles. The coating shows an excellent adherence to the substrate with a boride layer acting as a barrier that maintains the coating integrity. This two-step Mo-Si-B coating method can be adapted to provide environmental resistance to a wide range of RMPEA.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections