Infection of Pigs with Avian Hepatitis E Virus (HEV)

C. Kasorndorkbua
Iowa State University

P. J. Thomas
Iowa State University

Patrick G. Halbur
Iowa State University, pghalbur@iastate.edu

D. K. Guenette
Virginia Polytechnic Institute and State University

F. F. Huang
Virginia Polytechnic Institute and State University

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ans_air

Part of the Agriculture Commons, Animal Sciences Commons, Large or Food Animal and Equine Medicine Commons, and the Veterinary Infectious Diseases Commons

Recommended Citation
DOI: https://doi.org/10.31274/ans_air-180814-1096
Available at: https://lib.dr.iastate.edu/ans_air/vol651/iss1/42

This Animal Health is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Infection of Pigs with Avian Hepatitis E Virus (HEV)

Authors

This animal health is available in Animal Industry Report: https://lib.dr.iastate.edu/ans_air/vol651/iss1/42
Infection of Pigs with Avian Hepatitis E Virus (HEV)

A.S. Leaflet R1982

C. Kasormdorkbua, graduate student,
P. J. Thomas, graduate student,
P. G. Halbur, professor,
College of Veterinary Medicine, Iowa State University;
D. K. Guenette, technician; F. F. Huang, graduate
student;
X.-J. Meng, associate professor,
College of Veterinary Medicine,
Virginia Polytechnic Institute and State University,
Blacksburg, VA;

Summary and Implications

It is now known that HEV can cross-species barriers. In the present study, we used a pig model to determine if HEV from chickens (avian HEV) or rats (rat HEV) was infectious to pigs. Thirty six, SPF pigs were randomly separated into 4 groups of 9 pigs each. Group 1 served as the sham-inoculated group. Group 2 was inoculated with rat HEV. Group 3 was inoculated with avian HEV. In the rat and avian HEV groups, 6 pigs were inoculated with the corresponding virus and 3 pigs remained uninoculated and served as contact controls. Group 4 was inoculated with the prototype swine HEV. Necropsy of 3 pigs from each group was performed on 7, 21, and 35 days postinoculation (dpi). In the rat and avian HEV groups, 2 inoculated and 1 contact control pigs were necropsied at each time point. Liver and bile from sham-inoculated pigs were negative for HEV throughout the study. Pigs in the sham and rat HEV group remained noninfected. Pigs inoculated with avian HEV and those inoculated with the swine HEV became viremic and shed HEV in feces. Both the avian and swine HEV infected pigs had mild-to-moderate lymphoplasmacytic hepatitis. The findings indicate that avian HEV is transmissible to pigs. This may open new areas of study in the epidemiology of HEV. Pigs may be an excellent model for comparative molecular and pathogenetic studies of different HEV strains.

Introduction

Hepatitis E virus (HEV) is the primary causative agent of acute, non-A, non-B hepatitis in humans. HEV is a recently discovered virus and the relatively large and diverse species prone to infection with HEV suggest that the virus may readily adapt to new hosts. Avian and swine HEV have certain similarities (24). Avian HEV recovered from chickens also has the ability to cross species barriers and infect turkeys; however, avian HEV was not transmissible to rhesus monkeys.

Materials and Methods

Thirty-six, 6-week-old, SPF pigs were used in this study. All pigs were free of swine HEV in feces and seronegative to anti-HEV antibodies prior to inoculation. The experimental design consisted of 4 groups, including negative-control, rat HEV-, avian HEV-, and swine HEV-inoculated groups. Each group contained nine randomly selected pigs. The nine pigs in each of the rat and avian HEV group were randomly assigned to 2 sub-groups. Six pigs were inoculated with rat or avian HEV and the three remaining pigs served as uninoculated contact-controls. The inoculation route was intravenous for all groups. All pigs were monitored for clinical signs throughout the study. Rectal temperature was recorded every other day through 14 days postinoculation (dpi). Liver and bile samples were also collected from all pigs at necropsy. HEV infection was confirmed by the presence of HEV in feces, serum, liver, or bile by RT-PCR and anti-HEV seroconversion by ELISA. Necropsy was performed on 3 randomly selected pigs at one of 3 time points; 7, 21, and 35 dpi. In the rat and avian HEV groups, the three pigs for each necropsy comprised two inoculated and one contact-control pig.

Results and Discussion

There was no evidence of clinical disease in pigs in any of the inoculated groups. No remarkable gross lesions were observed in any of the sham-inoculated or HEV-inoculated groups. Microscopic lesions were confined to the liver. Mild-to-moderate, multifocal, lymphoplasmacytic hepatitis was present in 5 of 9 sham-inoculated, 7 of 9 rat HEV-inoculated, 7 of 9 avian HEV-inoculated, and 9 of 9 swine HEV-inoculated pigs. Swine HEV inoculated pigs had significantly more severe hepatitis lesion scores.

Results of the nested RT-PCR assays for HEV RNA in feces, serum, liver, and bile samples tested are summarized in Table 1. None of the liver and bile samples collected from the sham inoculated pigs contained HEV. HEV was not detected in fecal samples obtained from pigs inoculated with rat HEV. All nine pigs
inoculated with avian HEV shed HEV in feces and were
viremic. HEV was detected in liver and bile in the avian
HEV group which was viremic and shed HEV in feces
and developed anti-HEV antibodies by 35 dpi. Pigs in the
swine HEV group also became infected and shed HEV in
feces from 7 to 28 dpi. Two pigs inoculated with swine
HEV developed anti-HEV antibodies on 21 and 35 dpi.
All pigs in the sham- or rat HEV-inoculated group
remained seronegative throughout the study.

In summary, avian HEV was readily transmissible to
pigs by intravenous inoculation. Direct contact appears to
be the route that avian HEV was transmitted to
uninoculated contact-control pigs. Rat HEV did not
infect pigs. Infection of pigs with avian or swine HEV
induced subclinical hepatitis.

Pigs and chickens are often raised in close proximity.
Both swine and avian HEV are ubiquitous in their
respective host populations. It is likely that natural
exposure of pigs to avian HEV and likewise chickens to
swine HEV occurs frequently in the field. Such conditions
would provide opportunities for avian HEV to adapt for
replication in pigs and vice versa. It currently remains
unknown if swine HEV is transmissible to chickens.

Acknowledgments
The authors thank Drs. Suzanne U. Emerson and
Robert H. Purcell of the National Institutes of Health for
providing the rat and swine HEV inocula.

Table 1. HEV RNA in feces, serum, liver, and bile of sham- and HEV-inoculated pigs

<table>
<thead>
<tr>
<th>Inocula</th>
<th>Sample</th>
<th>0</th>
<th>7<sup>a</sup></th>
<th>14</th>
<th>21<sup>a</sup></th>
<th>28</th>
<th>35<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>Feces</td>
<td>0/9</td>
<td>0/9</td>
<td>NT<sup>b</sup></td>
<td>NT</td>
<td>NT</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>Serum</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>NT</td>
<td>0/3</td>
<td>NT</td>
<td>0/3</td>
<td>NT</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>Bile</td>
<td>NT</td>
<td>0/3</td>
<td>NT</td>
<td>0/3</td>
<td>NT</td>
<td>0/3</td>
</tr>
<tr>
<td>Rat HEV</td>
<td>Feces</td>
<td>0/9</td>
<td>0/9</td>
<td>0/6</td>
<td>NT</td>
<td>NT</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>Serum</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Bile</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Avian HEV</td>
<td>Feces</td>
<td>0/9</td>
<td>6(3)/9</td>
<td>4(2)/6</td>
<td>4(2)/6</td>
<td>2(1)/3</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>Serum</td>
<td>NT</td>
<td>5(3)/9</td>
<td>1(1)/6</td>
<td>1(1)/6</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>NT</td>
<td>1(0)/3</td>
<td>NT</td>
<td>1(0)/3</td>
<td>NT</td>
<td>1(0)/3</td>
</tr>
<tr>
<td></td>
<td>Bile</td>
<td>NT</td>
<td>2(1)/3</td>
<td>NT</td>
<td>1(0)/3</td>
<td>NT</td>
<td>1(1)/3</td>
</tr>
<tr>
<td>Swine HEV</td>
<td>Feces</td>
<td>0/9</td>
<td>4/9</td>
<td>5/6</td>
<td>5/6</td>
<td>1/3</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>Serum</td>
<td>NT</td>
<td>0/9</td>
<td>0/6</td>
<td>0/6</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>NT</td>
<td>0/3</td>
<td>NT</td>
<td>1/3</td>
<td>NT</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>Bile</td>
<td>NT</td>
<td>2/3</td>
<td>NT</td>
<td>1/3</td>
<td>NT</td>
<td>0/3</td>
</tr>
</tbody>
</table>

^a dpi on which necropsy was performed.
^b Not tested, samples not collected or tested on this dpi.