The Effect of pH on µ-calpain Activity and Implications in Meat Tenderness

K. R. Maddock
Iowa State University

Elisabeth J. Huff-Lonergan
Iowa State University, elonerga@iastate.edu

Steven M. Lonergan
Iowa State University, slonerga@iastate.edu

Recommended Citation
DOI: https://doi.org/10.31274/ans_air-180814-1109
Available at: https://lib.dr.iastate.edu/ans_air/vol651/iss1/58

This Animal Products is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
The Effect of pH on μ-calpain Activity and Implications in Meat Tenderness

A.S. Leaflet R1988

K. R. Maddock, graduate research assistant, E. Huff-Lonergan, associate professor of animal science, S. M. Lonergan, associate professor of animal science

Summary and Implications
In early postmortem muscle, μ-calpain inactivation due to either a rapid pH decline or by rapid autolysis has the potential to decrease proteolysis of myofibrillar proteins and subsequent postmortem tenderization. An intermediate pH decline that allows for proteolytic activity of μ-calpain, but a slower rate of autolysis could explain a portion of the variation in meat tenderness.

Introduction
The significant changes in muscle intracellular environment that occur early postmortem are known to influence meat quality. One of the most pronounced changes is the pH decline from 7.5 in living muscle to approximately 5.6 in meat. μ-calpain, a Ca²⁺-activated protease, is thought to be responsible for much of the postmortem proteolysis that occurs of myofibrillar and cytoskeletal proteins. The increase in tenderness observed in meat during postmortem storage is associated with proteolysis of these proteins. The objective of this study was to determine the effect of pH on μ-calpain activity and μ-calpain autolysis (self-proteolysis and inactivation).

Materials and Methods
μ-Calpain was purified from at-death porcine semimembranosus muscle. μ-Calpain proteolytic activity was determined using a fluorescence assay. The following pH and ionic strength conditions were used to determine the influence of pH and ionic strength on calpain activity: pH 7.5 and 165 mM NaCl; pH 6.5 and 165 mM NaCl; and pH 6.0 and 165 mM NaCl. Calpain activity was recorded at 30 and 60 min. Calpain autolysis in the same samples was determined using immunoblotting analysis.

Results and Discussion
μ-Calpain activity was greater at pH 6.5 compared to pH 7.5 and 6.0 (Table 1). In order to understand the mechanism underlying the greater activity of μ-calpain at pH 6.5, μ-calpain autolysis was examined using western blots. Autolysis, or self-degradation, is often used as an indicator of activation and inactivation of μ-calpain. The intact 80 kDa subunit of μ-calpain will autolyze to a 78 kDa subunit and further to a 76 kDa subunit. Early in the incubation, autolysis was fastest at pH 7.5 as indicated by disappearance of the intact 80 kDa band and the accumulation of the 76 kDa band, which most likely resulted in inactivation of μ-calpain. In contrast, at pH 6.5, autolysis occurred more slowly, thereby inactivation did not occur as quickly and likely contributed to the greater μ-calpain activity at 30 and 60 min. Autolysis observed at pH 6.0 shows greater intensity of the 78 kDa autolysis product and little accumulation of the 76 kDa band indicating less activation of μ-calpain. Very little 78 kDa autolysis product was detected at pH 7.5 or 6.5 at all time points. This contrast indicates that pH affects the accumulation of the 78 kDa autolysis product.

Table 1. Effect of pH on μ-calpain activity

<table>
<thead>
<tr>
<th>pH</th>
<th>30 min</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 7.5</td>
<td>94.21 c</td>
<td>152.53 c</td>
</tr>
<tr>
<td>(2.50)</td>
<td>(1.54)</td>
<td></td>
</tr>
<tr>
<td>pH 6.5</td>
<td>131.65 b</td>
<td>208.18 b</td>
</tr>
<tr>
<td>(6.79)</td>
<td>(8.87)</td>
<td></td>
</tr>
<tr>
<td>pH 6.0</td>
<td>46.47 d</td>
<td>68.12 d</td>
</tr>
<tr>
<td>(3.20)</td>
<td>(4.48)</td>
<td></td>
</tr>
</tbody>
</table>

aActivity= fluorescence units with CaCl₂- fluorescence units with EDTA (n = 3).
b,c,d Within a column, means without a common superscript differ (P<0.01).
Value in parentheses = standard error of the mean.