Protein-protein interface: database, analysis and prediction

Thumbnail Image
Date
2009-01-01
Authors
Wu, Feihong
Major Professor
Advisor
Vasant Honavar
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

History
The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence
1969-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Computer Science
Abstract

Protein-protein interaction plays a pivotal role in biological metabolism. It directs many cellular processes like signal transduction, DNA replication and RNA splicing, etc. Identification of protein-protein interaction sites is important to identification of protein functions, improvement of protein-protein docking and rational drug design. Experimental methods to identify protein-protein interaction sites are always time-consuming and costly, which calls for computational methods to be applied in this area.

The research work focuses on three parts:

We have built a Protein-Protein Interface Database (PPIDB) which extracted 71, 486 protein-protein interfaces from experimentally determined protein complex structures in the current version of Protein Data Bank. It facilitates construction of well-characterized datasets of protein-protein interface residues for computational analyses. The database is accessible through the Web Interface http://ppidb.cs.iastate.edu and a set of Web services.

We have made a comprehensive analysis of protein-protein dimeric interfaces, which consists of thirteen physic-chemical properties. The results disclose that interface residues have side chains pointing inward; interfaces are rougher, tend to be flat, moderately convex or concave and protrude more relative to non-interface surface residues; interface residues tend to be surrounded by hydrophobic neighbors.

We have developed NB PPIPS, a Naive Bayes method to predict protein-protein interaction sites on protein surfaces. Trained over a non-redundant data set consisting of 2, 383 proteins and fed with sequence, evolutionary and structural properties, NB PPIPS achieves 60.7% recall and 34.6% precision in 10 fold cross-validation, which greatly improves over the baseline classifier that only utilizes protein sequence information. Attempts are made to apply the NB PPIPS in a two stage prediction of protein-protein interfaces when only protein sequence is known. Modeled protein structures are generated via homologue modeling and fed as inputs into NB PPIPS. The results show that good predictions are obtained only for well modeled structures. NB PPIPS is implemented as an online server to facilitate its usage. It is accessible at http://watson.cs.iastate.edu/nb_ppips .

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2009