Optimization-based domain decomposition methods for multidisciplinary simulation

Jeehyun Lee
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Mathematics Commons

Recommended Citation
https://lib.dr.iastate.edu/rtd/1056

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI®
Optimization-based domain decomposition methods for multidisciplinary simulation

by

Jeehyun Lee

A dissertation submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Applied Mathematics

Major Professor: Max D. Gunzburger

Iowa State University
Ames, Iowa

2001

Copyright © Jeehyun Lee, 2001. All rights reserved.
This is to certify that the Doctoral dissertation of

Jeehyun Lee

has met the dissertation requirements of Iowa State University

Signature was redacted for privacy.

Committee Member

Signature was redacted for privacy.

Major Professor

Signature was redacted for privacy.

For the Major Program

Signature was redacted for privacy.

For the Graduate College
TABLE OF CONTENTS

ACKNOWLEDGMENTS .. iv

ABSTRACT .. v

1 INTRODUCTION ... 1

2 FLUID-STRUCTURE INTERACTION PROBLEMS 5
 2.1 The model problems 5
 2.2 Notation .. 5
 2.3 A weak formulation 7
 2.4 The existence of a weak solution 9
 2.5 Finite element approximations 14
 2.6 Error estimates 16

3 OPTIMIZATION-BASED DOMAIN DECOMPOSITION 20
 3.1 The model problems 20
 3.2 The existence of an optimal solution 21
 3.3 Convergence with vanishing penalty parameter 27
 3.4 Optimality system 28
 3.5 Sensitivity derivatives 33
 3.6 Gradient method 34

BIBLIOGRAPHY .. 45
ACKNOWLEDGMENTS

I first would like to thank Dr. Max D. Gunzburger for the expert guidance, almost interminable patience that he has provided throughout this research and the writing of this thesis. I am also grateful to my committee members for their efforts and contributions to this work: Dr. Qiang Du, Dr. L. Steven Hou, Dr. Justin Peters, Dr. Janet S. Peterson and Dr. Monlay Tidriri. Special thanks to Dr. Xioaming Wang who was generous to share his knowledge and to answer any questions about partial differential equations. Not a day of my life passes by without thoughts and fond memories of my family. A big thank to my parents, parents-in-law and my sister, Jeena for their encouragement and for believing in me. I want to express my deepest thanks to my husband, Wook for his love, friendship and unfailing support throughout my career in graduate school and to my lovely boy, Daniel who is the joy of my life.
We consider a domain decomposition method for a fluid-structure interaction problem. The fluid-structure interaction problem involves two mathematical models, each posed on a different domain, so that domain decomposition occurs naturally. Our approach to a domain decomposition method is based on a strategy in which unknown data at the interface is determined through an optimization process. We prove that the solution of the optimization problem exists. And we show that the Lagrange multiplier rule may be used to transform the constrained optimization problem into an unconstrained one and that rule is applied to derive an optimality system from which optimal solutions may be obtained. We then study a gradient method for solving optimization problem.
1 INTRODUCTION

Multidisciplinary simulation problems arise in a variety of settings in which more than one media, or more than one mathematical model, or more than one dominant effect are present. The direct solution of such problems presents a formidable challenge, since they usually involve large, coupled system of partial differential equations. For this reason, methods which uncouple the different disciplines are of interest. Here, we discuss uncoupling procedures which are based on using an optimization strategy.

A main virtue of our approach is that it allows for the user to use existing codes for each discipline as black boxes and only requires that the user write a simple code that effects the coupling between the disciplines. One reason we are able to do this is that our methodology allows for complete flexibility with regards to the boundary conditions imposed on each discipline. Another virtue of the optimization-based decoupling is that it allows for the use of efficient iterative strategies, e.g., quickly converging iterative processes by which solutions of the coupled, multidisciplinary problem are determined. Our methodology has other important virtues as well as allowing for the use of mismatched grids and different discretization methods for each discipline.

Here, for the sake of concreteness, we will describe the optimization-based domain decomposition method for a fluid-structure interaction problem. The subjects of fluid-structure interaction problem have been extensively studied in the past and continue to be the focus of much attention today. There are number of different types of mathematical models for fluid-structure interactions. We classify these models into three categories.
Elementary fluid. The fluid motion is governed by potential equations, e.g., Laplace equations or wave equations. In [34], a coupled system of a potential equation and a wave equation is considered. Elementary fluids coupled with rigid cavity or moving wall has been studied in [19] and with an elastic solid in [4].

Inviscid fluid. A few mathematical papers have appeared for fluid-structure interactions modeled using inviscid fluid models, e.g., the Euler equations. Interactions between linearized inviscid fluids and elastic solids have been analyzed in [2],[35]. An algorithm for an inviscid nonlinear fluid coupled with rigid walls was given in [3].

Viscous fluid. There is an extensive literature on linearized viscous fluids coupled with solids. Solids modeled using plate equations or shell equations are treated in [15],[16],[17],[32]. The Stokes equations coupled with a beam equation has been analyzed in [21]. In [11],[31], interactions between linearized viscous fluid and elastic solids are studied. See [7] interaction with rigid walls.

Also, there is a vast literature on fluid-structure interactions for which the fluid is modeled using nonlinear viscous fluid models, e.g., the Navier-Stokes equations. Rigid body motions of solids in a nonlinear viscous fluid have been studied in [8],[12],[22],[23]. In [18], a coupled problem of Navier-Stokes equations and a plate equation is studied. Some works have treated interactions between nonlinear viscous fluids and elastic solids. See, e.g., [8],[13],[14],[36],[37].

MODEL PROBLEM

In this paper, we consider elastic body motions in a fluid flow. Let Ω_f and Ω_s denote the regions occupied by the fluid and solid, respectively. Let Γ_0 denote the interface between the fluid and solid and let Γ_f and Γ_s denote the boundaries of the fluid and solid regions (other than the interface Γ_0). In the fluid region, we apply the Stokes System.
\[
\begin{aligned}
\rho_f v_t + \nabla p - \mu_f \Delta v &= \rho_f f \quad \text{in } \Omega_f \\
\nabla \cdot v &= 0 \quad \text{in } \Omega_f \\
v &= 0 \quad \text{on } \Gamma_f \\
v|_{t=0} &= v^0 \quad \text{in } \Omega_f
\end{aligned}
\] (1.1)

Here, \(\rho_f\) and \(\mu_f\) denote the (constant) fluid density and viscosity, \(v\) the fluid velocity, \(p\) the fluid pressure, and \(v_0\) the initial velocity.

In the solid, we apply the equation of the linear elasticity.

\[
\begin{aligned}
\rho_s u_{tt} - \mu_s \Delta u - (\lambda_s + \mu_s) \nabla (\nabla \cdot u) &= \rho_s b \quad \text{in } \Omega_s \\
u &= 0 \quad \text{on } \Gamma_s \\
u|_{t=0} &= u^0 \quad \text{in } \Omega_s \\
u_t|_{t=0} &= u^1 \quad \text{in } \Omega_s
\end{aligned}
\] (1.2)

Here, \(\mu_f\) and \(\lambda_f\) are the Lame constants and \(\rho_s\) the constant density of solid, \(b\) denotes a given loading force per unit mass, \(u\) the displacement of the solid, and \(u_0\) and \(u_1\) are given initial data.

Along the fixed interface \(\Gamma_0\) between the fluid and solid, the velocity of the fluid and solid are equal, as are the stress vector in the fluid and solid. Thus, we have

\[
u_t = v \quad \text{on } \Gamma_0
\] (1.3)

and

\[
\mu_s \nabla u \cdot n + (\lambda_s + \mu_s)(\nabla \cdot u)n = pn - \mu_f \nabla v \cdot n \quad \text{on } \Gamma_0
\] (1.4)

Solving (1.1)-(1.4) is a formidable challenge. Fluid-structure interaction problems involve two different mathematical models, each posed on a different domain, so that domain decomposition occurs naturally. Our approach to domain decomposition is based
on a strategy in which unknown data at the interface is determined through an optimization process. We consider the following interface conditions.

\[v = g \quad \text{on} \; \Gamma_0 \]

(1.5)

and

\[\mu_s \nabla u \cdot n + (\lambda_s + \mu_s)(\nabla \cdot u)n = h \quad \text{on} \; \Gamma_0 \]

(1.6)

Then we may solve (1.1) and (1.5) for \(v \) and \(p \) and solve (1.2) and (1.6) for \(u \). For an arbitrary choice of \(g \) and \(h \), (1.1) and (1.2) are satisfied. However, (1.3) and (1.4) will not be satisfied. On the other hand, we know that \(g \) and \(h \) exist such that solutions of (1.1),(1.5) and (1.2),(1.6) are solutions of (1.1)-(1.4). We merely have to choose

\[g = \hat{v}|_{\Gamma_0} = \hat{u}_t|_{\Gamma_0} \quad \text{and} \quad h = \mu_s \nabla \hat{u} \cdot n + (\lambda_s + \mu_s)(\nabla \cdot \hat{u})n = \hat{p}n - \mu_f \nabla \hat{v} \cdot n \quad \text{on} \; \Gamma_0, \]

where \((\hat{v}, \hat{p}, \hat{u})\) is a solution of (1.1)-(1.4).

The optimization-based domain decomposition algorithm finds such \(g \) and \(h \) by minimizing the functional

\[J(v, p, g, u, h) = \frac{1}{2} \int_0^T \int_{\Gamma_0} (u_t - g)^2 \; d\Gamma \; dt \]

\[+ \frac{1}{2} \int_0^T \int_{\Gamma_0} (pn - \mu_f \nabla v \cdot n - h)^2 \; d\Gamma \; dt \]

In the remainder of this chapter, we discuss the derivation of the model (1.1)-(1.4).

This thesis is organized as follows. In chapter 2, a coupled system of fluid-structure interaction problem is studied. The existence of a weak solution is proved and finite element approximations are discussed. In chapter 3, we introduce an optimization problem to uncouple the system. We prove that the optimization problem has a solution and the solution converges to the solution of the coupled system. The Lagrange multiplier rule is used to derive an optimality system from which optimal solutions may be determined. Finally, we define a gradient method for the solution of the optimality system and show the convergence for the gradient method.
2 FLUID-STRUCTURE INTERACTION PROBLEMS

2.1 The model problems

We consider a coupled system of Stokes and elasticity problem that was introduced in the previous chapter.

\[
\begin{align*}
\rho_f \dot{v}_t + \nabla p - \mu_f \Delta \mathbf{v} &= \rho_f \mathbf{f} \quad \text{in } \Omega_f \\
\nabla \cdot \mathbf{v} &= 0 \quad \text{in } \Omega_f \\
\mathbf{v} &= 0 \quad \text{on } \Gamma_f \\
\rho_s \mathbf{u}_{tt} - \mu_s \Delta \mathbf{u} - (\lambda_s + \mu_s) \nabla (\nabla \cdot \mathbf{u}) &= \rho_s \mathbf{b} \quad \text{in } \Omega_s \\
\mathbf{u} &= 0 \quad \text{on } \Gamma_s \\
\mathbf{u}_t &= \mathbf{v} \quad \text{on } \Gamma_0 \\
\mu_s \nabla \mathbf{u} \cdot \mathbf{n} + (\lambda_s + \mu_s) (\nabla \cdot \mathbf{u}) \mathbf{n} &= \rho_s \mathbf{b} \quad \text{in } \Gamma_0 \\
\mathbf{v}|_{t=0} &= \mathbf{v}^0 \quad \text{in } \Omega_f \\
\mathbf{u}|_{t=0} &= \mathbf{u}^0 \quad \text{in } \Omega_s \\
\mathbf{u}_t|_{t=0} &= \mathbf{u}^1 \quad \text{in } \Omega_s
\end{align*}
\]

(2.1.1)

2.2 Notation

Throughout this paper, \(C \) will denote a positive constant whose meaning and value changes with context. \(H^s(D), s \in \mathbb{R} \), denotes the standard sobolev space of order \(s \).
with respect to the set \(D \), equipped with the standard norm \(\| \cdot \|_{s,D} \). Corresponding sobolev spaces of vector-valued functions will be denoted by \(H^s(D) \). Dual spaces will be denoted by \((\cdot)^*\). We then define the subspaces

\[
H^1_f(\Gamma_f) = \{ v \in H^1(\Omega_f) : v = 0 \text{ on } \Gamma_f \}
\]

\[
J = \{ v \in D(\Omega_f) : \nabla \cdot v = 0 \text{ on } \Omega_f \}
\]

where \(D(\Omega_f) \) be the space of \(C^\infty \) functions with compact support contained in \(\Omega_f \).

\[
V = \text{the closure of } J \text{ in } H^1_f(\Omega_f)
\]

\[
H = \text{the closure of } J \text{ in } L^2(\Omega_f)
\]

and

\[
H^1_s(\Gamma_s) = \{ u \in H^1(\Omega_s) : u = 0 \text{ on } \Gamma_s \}
\]

We define, for \((pq) \in L^1(D)\) and \((u \cdot v) \in L^1(D)\),

\[
(p, q)_D = \int_D pq \, dD \quad \text{and} \quad (u, v)_D = \int_D u \cdot v \, dD
\]

respectively.

We define the bilinear forms

\[
a_f(u, v) = \int_{\Omega_f} \mu_f \nabla u : \nabla v \, d\Omega \quad \forall u, v \in H^1(\Omega_f)
\]

\[
a_s(u, v) = \int_{\Omega_s} \{ \mu_s \nabla u : \nabla v + (\lambda_s + \mu_s)(\nabla \cdot u)(\nabla \cdot v) \} \, d\Omega \quad \forall u, v \in H^1(\Omega_s)
\]

\[
a(u, v) = \int_{\Omega_s} \mu_s \nabla u : \nabla v \, d\Omega \quad \forall u, v \in H^1(\Omega_s)
\]

and

\[
b(v, q) = -\int_{\Omega_f} q \, \text{div} v \, d\Omega \quad \forall v \in H^1(\Omega_f), \quad \forall q \in L^2(\Omega_f)
\]

It is well known that the forms \(a_f(\cdot, \cdot) \), \(a_s(\cdot, \cdot) \), \(a(\cdot, \cdot) \) and \(b(\cdot, \cdot) \) are continuous, i.e. there exist positive constants \(k_a \) and \(k_b \) such that

\[
|a_f(u, v)| \leq k_a \| u \|_{1,\Omega_f} \| v \|_{1,\Omega_f} \quad \forall u, v \in H^1(\Omega_f)
\]
\[|a_s(u,v)| \leq k_a \|u\|_{1,\Omega_s} \|v\|_{1,\Omega_s} \quad \forall u, v \in H^1(\Omega_s) \]

\[|a(u,v)| \leq k_a \|u\|_{1,\Omega_s} \|v\|_{1,\Omega_s} \quad \forall u, v \in H^1(\Omega_s) \]

and

\[|b(v,q)| \leq k_b \|v\|_{1,\Omega_f} \|q\|_{0,\Omega_f} \quad \forall v \in H^1(\Omega_f), \quad \forall q \in L^2(\Omega_f) \]

Also, \(a_f(\cdot, \cdot) \), \(a_s(\cdot, \cdot) \) and \(a(\cdot, \cdot) \) satisfy the coercivity property and \(b(\cdot, \cdot) \) satisfies the inf-sup condition, which means there exist positive constants \(K_a \) and \(K_b \) such that

\[|a_f(u, u)| \geq K_a \|u\|^2_{1,\Omega_f} \quad \forall u \in H^1(\Omega_f) \]

\[|a_s(u, u)| \geq K_a \|u\|^2_{1,\Omega_s} \quad \forall u \in H^1(\Omega_s) \]

\[|a(u, u)| \geq K_a \|u\|^2_{1,\Omega_s} \quad \forall u \in H^1(\Omega_s) \]

and

\[\inf_{0 \neq q \in L^2(\Omega_f)} \sup_{0 \neq v \in H^1(\Omega_f)} \frac{b(v,q)}{\|v\|_{1,\Omega_f} \|q\|_{0,\Omega_f}} \geq K_b \]

2.3 A weak formulation

We define a space of trial functions and test functions as

\[U = \{(v, u) : v \in L^2(0,T;H^1_f(\Omega_f)), u \in L^2(0,T;H^1_s(\Omega_s)), \]

\[u_t \in L^2(0,T;L^2(\Omega_s)), \text{ such that } v = u_t \text{ on } \Gamma_0 \} \]

A weak formulation corresponding to (2.1.1) is given by

For \(f, v^0, b, u^0 \) and \(u^1 \) given,

\[f \in L^2(0,T;H^1_f(\Omega_f)^*) \quad (2.3.2) \]

\[v^0 \in L^2(\Omega_f) \quad (2.3.3) \]

\[b \in L^2(0,T;L^2(\Omega_s)) \quad (2.3.4) \]

\[u^0 \in H^1_s(\Omega_s) \quad (2.3.5) \]

\[u^1 \in L^2(\Omega_s) \quad (2.3.6) \]
to find \((v, u) \in U\) satisfying

\[
\rho_f(v_t, w)_{\Omega_f} + b(w, p) + a_f(v, w) + \rho_s(u_{tt}, \theta_t)_{\Omega_s} + a_s(u, \theta_t) = 0
\]

\(\forall (w, \theta) \in U\) \hspace{1cm} (2.3.7)

\[
b(v, q) = 0 \hspace{1cm} \forall q \in L^2(\Omega_f)
\]

\(v|_{t=0} = v^0\) \hspace{1cm} (2.3.8)

\(u|_{t=0} = u^0\) \hspace{1cm} (2.3.9)

\(u_t|_{t=0} = u^1\) \hspace{1cm} (2.3.10)

\((2.3.11)\)

We recall the definition of the spaces \(J, V\) and \(H\), introduced in the previous section and which will be the basic spaces for \(W\).

\[
J = \{v \in \mathcal{D}(\Omega_f) : \nabla \cdot v = 0 \text{ on } \Omega_f\}
\]

\[
V = \text{the closure of } J \text{ in } H^1_f(\Omega_f)
\]

\[
H = \text{the closure of } J \text{ in } L^2(\Omega_f)
\]

Now, we define a space of trial functions and test functions as

\[
W = \{(v, u) : v \in L^2(0, T; V), u \in L^2(0, T; H^1_s(\Omega_s)), u_t \in L^2(0, T; L^2(\Omega_s)), \text{ such that } v = u_t \text{ on } \Gamma_0\}
\]

Then a weak formulation (2.3.7)-(2.3.11) is equivalent to the following:

To find \((v, u) \in W\) satisfying

\[
\rho_f(v_t, w)_{\Omega_f} + b(w, p) + a_f(v, w) + \rho_s(u_{tt}, \theta_t)_{\Omega_s} + a_s(u, \theta_t) = 0
\]

\(\forall (w, \theta) \in W\) \hspace{1cm} (2.3.12)

\(v|_{t=0} = v^0\) \hspace{1cm} (2.3.13)

\(u|_{t=0} = u^0\) \hspace{1cm} (2.3.14)

\(u_t|_{t=0} = u^1\) \hspace{1cm} (2.3.15)
2.4 The existence of a weak solution

To show the existence of weak solutions for the coupled system, we introduce an auxiliary problem involving an 'artificial viscosity' term. The auxiliary problem is defined as follows.

\[
\begin{align*}
\rho_f v_t + \nabla p - \mu_f \Delta v &= \rho_f f \quad \text{in } \Omega_f \\
\nabla \cdot v &= 0 \quad \text{in } \Omega_f \\
v &= 0 \quad \text{on } \Gamma_f \\
\rho_s u_{tt} - \epsilon \mu_s \Delta u_t - \mu_s \Delta u - (\lambda_s + \mu_s) \nabla (\nabla \cdot u) &= \rho_s b \quad \text{in } \Omega_s \\
u &= 0 \quad \text{on } \Gamma_s \\
u_t &= v \quad \text{on } \Gamma_0 \\
\epsilon \mu_s \nabla u_t \cdot n + \mu_s \nabla u \cdot n + (\lambda_s + \mu_s) (\nabla \cdot u)n &= pn - \mu_f \nabla v \cdot n \quad \text{on } \Gamma_0 \\
v\mid_{t=0} &= v^0 \quad \text{in } \Omega_f \\
u\mid_{t=0} &= u^0 \quad \text{in } \Omega_s \\
u_t\mid_{t=0} &= u^1 \quad \text{in } \Omega_s
\end{align*}
\]

We define a space of trial functions and test functions for the auxiliary problem as

\[\tilde{U} = \{(v, u) : v \in L^2(0, T; H^1_f(\Omega_f)), u \in L^2(0, T; H^1_s(\Omega_s)), u_t \in L^2(0, T; H^1_s(\Omega_s)), \text{ such that } v = u_t \text{ on } \Gamma_0\}\]

A weak formulation corresponding to (2.4.16) is given by

For \(f, v^0, b, u^0\) and \(u^1\) given,

\[f \in L^2(0, T; H^1_f(\Omega_f)^*) \quad (2.4.17)\]

\[v^0 \in L^2(\Omega_f) \quad (2.4.18)\]
\(b \in L^2(0,T;L^2(\Omega_s)) \)
(2.4.19)

\(u^0 \in H^1_s(\Omega_s) \)
(2.4.20)

\(u^1 \in L^2(\Omega_s) \)
(2.4.21)

to find \((v,u) \in \hat{U}\) satisfying

\[
\rho_f(v_t,w)\Omega_f + b(w,p) + a_f(v,w) + \rho_s(u_{tt},\theta_t)\Omega_s + \epsilon a(u_t, \theta_t) \\
+ a_s(u, \theta_t) = \rho_f(f,w)\Omega_f + \rho_s(b, \theta_t)\Omega_s, \quad \forall (w, \theta) \in \hat{U}
\]
(2.4.22)

\(b(v,q) = 0 \quad \forall q \in L^2(\Omega_f) \)
(2.4.23)

\(v|_{t=0} = v^0 \)
(2.4.24)

\(u|_{t=0} = u^0 \)
(2.4.25)

\(u_t|_{t=0} = u^1 \)
(2.4.26)

Now, we define a space of trial functions and test functions as

\[
\hat{W} = \{(v,u) : v \in L^2(0,T;V), \quad u \in L^2(0,T;H^1_s(\Omega_s)), \quad u_t \in L^2(0,T;H^1_s(\Omega_s)), \text{ such that } v = u_t \text{ on } \Gamma_0\}
\]

Then a weak formulation (2.4.22)-(2.4.26) is equivalent to the following:

To find \((v,u) \in \hat{W}\) satisfying

\[
\rho_f(v_t,w)\Omega_f + a_f(v,w) + \rho_s(u_{tt},\theta_t)\Omega_s + \epsilon a(u_t, \theta_t) \\
+ a_s(u, \theta_t) = \rho_f(f,w)\Omega_f + \rho_s(b, \theta_t)\Omega_s, \quad \forall (w, \theta) \in \hat{W}
\]
(2.4.27)

\(v|_{t=0} = v^0 \)
(2.4.28)

\(u|_{t=0} = u^0 \)
(2.4.29)

\(u_t|_{t=0} = u^1 \)
(2.4.30)

We show the existence of solutions of the auxiliary problem in the next theorem.
Theorem 2.4.1 For given \(f, v^0, b, u^0 \) and \(u^1 \) which satisfy (2.4.17)-(2.4.21), there exists a unique solution \((v, u) \in W\) which satisfy (2.4.27)-(2.4.30). Moreover \(v \in L^\infty(0, T; H) \), \(u \in L^\infty(0, T; H^1(\Omega_s)) \) and \(u_t \in L^\infty(0, T; L^2(\Omega_s)) \)

proof: We use the Galerkin method. Let \((\phi_n)_{n \in \mathbb{N}}\) be a basis of \(V \) and \((\theta_n)_{n \in \mathbb{N}}\) be a basis of \(H^1_s(\Omega_s) \) such that \(\phi_n = \theta_n \) on \(\Gamma_0 \). We define discrete spaces \(M_n = \text{span}\{\phi_m, 1 \leq m \leq n\} \) and \(N_n = \text{span}\{\theta_m, 1 \leq m \leq n\} \). Also define a discrete space of trial and test functions by

\[
V_n = \{(v, u) \in V_{n,f} \times V_{n,s}, \; u_t = v \text{ on } \Gamma_0\}
\]

with

\[
V_{n,f} = \{v = \sum_{i=1}^{n} a_i(t) \phi_i, \; a_i(t) \in H^1(0, T)\}
\]

\[
V_{n,s} = \{u = \sum_{i=1}^{n} b_i(t) \theta_i, \; b_i(t) \in H^1(0, T)\}
\]

The discrete problem is: Find \((v_n, u_n) \in V_n\) such that \(v_n(0) \in M_n, u(0) \in N_n \) and \(u_{nt}(0) \in N_n \) with \(v_n(0) \to v^0 \) in \(L^2(\Omega_f) \), \(u_n(0) \to u^0 \) in \(H^1(\Omega_s) \) and \(u_{nt}(0) \to u^1 \) in \(L^2(\Omega_s) \) and

\[
\rho_f(v_{nt}, w_n)_{\Omega_f} + a_f(v_n, w_n) + \rho_s(u_{ntt}, z_{nt})_{\Omega_s} + ea(u_{nt}, z_{nt}) + a_s(u_n, z_{nt}) = \rho_f(f, v_n)_{\Omega_f} + \rho_s(b, z_{nt})_{\Omega_s} \quad \forall (w_n, z_n) \in V_n
\]
(2.4.31)

Since this is a linear system of ordinary differential equations, there is a unique solution.

We will obtain a priori estimates independent of \(n \) for the functions \(v_n, u_n \) and then pass to the limit. Set \(w_n = v_n \) and \(z_n = u_n \) in (2.4.31). We get

\[
\rho_f(v_{nt}, v_n)_{\Omega_f} + a_f(v_n, v_n) + \rho_s(u_{ntt}, u_{nt})_{\Omega_s} + ea(u_{nt}, u_{nt}) + a_s(u_n, u_{nt}) = \rho_f(f, v_n)_{\Omega_f} + \rho_s(b, u_{nt})_{\Omega_s}
\]
(2.4.32)

and this gives

\[
\frac{\rho_f}{2} \frac{d}{dt} \|v_n\|_{0, \Omega_f}^2 + K_a^s \|v_n\|_{1, \Omega_f}^2 + \frac{\rho_s}{2} \frac{d}{dt} \|u_{ntt}\|_{0, \Omega_s}^2 + \epsilon K_a \|u_{nt}\|_{1, \Omega_s}^2 + \frac{\rho_f}{2} \frac{d}{dt} \|u_n\|_{1, \Omega_s}^2 \leq \rho_f \|f\|_{-1, \Omega_f} \|v_n\|_{1, \Omega_f} + \rho_s \|b\|_{0, \Omega_s} \|u_{nt}\|_{0, \Omega_s}
\]
Integrating this from 0 to t, we obtain

\[
\frac{\rho_f}{2}(\|v_n\|_{0,\Omega}^2 - \|v_n(0)\|_{0,\Omega}^2) + K_a \int_0^t \|v_n\|_{1,\Omega}^2 + \frac{\rho_s}{2}(\|u_{nt}\|_{0,\Omega}^2 - \|u_{nt}(0)\|_{0,\Omega}^2) \\
+ \epsilon K_a \int_0^t \|u_{nt}\|_{1,\Omega}^2 + \frac{K_a}{2}(\|u_n\|_{2,\Omega}^2 - \|u_n(0)\|_{1,\Omega}^2) \\
\leq \frac{\rho_f^2}{2K_a} \int_0^t \|f\|_{1,\Omega}^2 + \frac{K_a}{2} \int_0^t \|v_n\|_{1,\Omega}^2 + T \rho_s \int_0^t \|b\|_{0,\Omega}^2 + \frac{\rho_s}{2T} \int_0^t \|u_{nt}\|_{0,\Omega}^2
\]

Gronwall's inequality may be used to conclude

\[
\sup_t \rho_f \|v_n\|_{0,\Omega}^2 + K_a \int_0^T \|v_n\|_{1,\Omega}^2 + \sup_t \rho_s \|u_{nt}\|_{0,\Omega}^2 + \epsilon K_a \int_0^T \|u_{nt}\|_{1,\Omega}^2 \\
+ \sup_t K_a \|u_n\|_{1,\Omega}^2 \leq C \int_0^T \|f\|_{1,\Omega}^2 + \rho_s C \int_0^T \|b\|_{0,\Omega}^2 \\
+ \rho_f \|v^0\|_{0,\Omega}^2 + \rho_s \|u^1\|_{0,\Omega}^2 + K_a \|u^0\|_{1,\Omega}^2
\]

Hence \{v_n\} is uniformly bounded in $L^\infty(0,T;H)$ and $L^2(0,T;V)$; \{u_n\} is uniformly bounded in $L^\infty(0,T;\mathbf{H}^1_s(\Omega_s))$; \{u_{nt}\} is uniformly bounded in $L^\infty(0,T;\mathbf{L}^2(\Omega_s))$ and $L^2(0,T;\mathbf{H}^1_s(\Omega_s))$; Thus, there exist weakly convergent subsequences and by passing to the limit, a solution of (2.4.27)-(2.4.30) exists.

Uniqueness. Let (v_1, u_1) and (v_2, u_2) be two solutions of (2.4.27)-(2.4.30). Then energy estimates may be used to get

\[
\sup_t \rho_f \|v_1 - v_2\|_{0,\Omega}^2 + K_a \int_0^T \|v_1 - v_2\|_{1,\Omega}^2 + \sup_t \rho_s \|u_{1t} - u_{2t}\|_{0,\Omega}^2 \\
+ \epsilon K_a \int_0^T \|u_{1t} - u_{2t}\|_{1,\Omega}^2 + \sup_t K_a \|u_1 - u_2\|_{1,\Omega}^2 \leq 0
\]

and hence $v_1 = v_2$ and $u_1 = u_2$.

Now we show the existence of the coupled system by taking the limit of solutions of the auxiliary problem as $\epsilon \to 0$.

Theorem 2.4.2 For given f, v^0, b, u^0 and u^1 which satisfy (2.3.2)-(2.3.6), there exists a unique solution $(v, u) \in W$ which satisfy (2.3.12)-(2.3.15). Moreover $v \in L^\infty(0,T;H)$, $u \in L^\infty(0,T;\mathbf{H}^1_s(\Omega_s))$ and $u_t \in L^\infty(0,T;\mathbf{L}^2(\Omega_s))$
proof: \(\forall \varepsilon \), there exists \(\mathbf{v}_\varepsilon, \mathbf{u}_\varepsilon \) which are solutions of (2.4.27)-(2.4.30). Using a priori estimate obtained in the proof of Theorem 2.4.1,

\[
\sup_t \rho_f(\mathbf{v}_\varepsilon) + K_2 \int_0^T ||\mathbf{v}_\varepsilon||_{1, \Omega_t}^2 + \sup_t \rho_s(\mathbf{u}_\varepsilon) ||\mathbf{u}_\varepsilon||_{1, \Omega_t}^3 \\
+ \varepsilon K_2 \int_0^t \| (\mathbf{u}_\varepsilon)_t \|_{1, \Omega_t}^3 + \sup_t K_\varepsilon \| \mathbf{u}_\varepsilon \|_{1, \Omega_t}^3 \leq C(\mathbf{v}_0, \mathbf{u}_0, \mathbf{u}^1, f, \mathbf{b})
\]

From which we deduce

\(\mathbf{v}_\varepsilon \) is uniformly bounded in \(L^2(0, T; \mathcal{V}) \cap L^\infty(0, T; H) \)

\(\mathbf{u}_\varepsilon \) is uniformly bounded in \(L^\infty(0, T; \mathbf{H}_s^1(\Omega_s)) \)

\(\mathbf{(u}_\varepsilon)_t \) is uniformly bounded in \(L^\infty(0, T; \mathbf{L}^2(\Omega_s)) \)

\(\sqrt{\varepsilon}(\mathbf{u}_\varepsilon)_t \) is uniformly bounded in \(L^2(0, T; \mathbf{H}_s^1(\Omega_s)) \)

Therefore, we can extract a subsequence such that

\(\mathbf{v}_\varepsilon \rightharpoonup \mathbf{v} \) in \(L^2(0, T; \mathcal{V}) \cap L^\infty(0, T; H) \)

\(\mathbf{u}_\varepsilon \rightharpoonup \mathbf{u} \) in \(L^\infty(0, T; \mathbf{H}_s^1(\Omega_s)) \)

\(\mathbf{(u}_\varepsilon)_t \rightharpoonup \mathbf{u}_t \) in \(L^\infty(0, T; \mathbf{L}^2(\Omega_s)) \)

Since \(\sqrt{\varepsilon}(\mathbf{u}_\varepsilon)_t \) is uniformly bounded in \(L^2(0, T; \mathbf{H}_s^1(\Omega_s)) \) then \(\sqrt{\varepsilon}(\Delta \mathbf{u}_\varepsilon)_t \) is uniformly bounded in \(L^2(0, T; \mathbf{H}_s^1(\Omega_s)^*) \) and

\[
\lim_{\varepsilon \to 0} \varepsilon a_s((\mathbf{u}_\varepsilon)_t, \mathbf{w}) = 0 \quad \forall \mathbf{w} \in L^2(0, T; \mathbf{H}_s^1(\Omega_s))
\]

From (2.4.27),

\[
\rho_f((\mathbf{v}_\varepsilon)_t, \mathbf{w})_{\Omega_t} + \rho_s((\mathbf{u}_\varepsilon)_tt, \theta_t)_{\Omega_s} \\
= -a_f(\mathbf{v}_\varepsilon, \mathbf{w}) - \varepsilon a((\mathbf{u}_\varepsilon)_t, \theta_t) - a_s(\mathbf{u}_\varepsilon, \theta_t) + \rho_f(\mathbf{f}, \mathbf{w})_{\Omega_t} + \rho_s(\mathbf{b}, \theta_t)_{\Omega_s} \\
\rightharpoonup -a_f(\mathbf{v}, \mathbf{w}) - a_s(\mathbf{u}, \theta_t) + \rho_f(\mathbf{f}, \mathbf{w})_{\Omega_t} + \rho_s(\mathbf{b}, \theta_t)_{\Omega_s} \quad \forall (\mathbf{w}, \theta) \in \hat{W}
\]

Moreover, since \(\mathbf{v}_\varepsilon \rightharpoonup \mathbf{v} \) in \(L^\infty(0, T; H) \) and \(\mathbf{(u}_\varepsilon)_t \rightharpoonup \mathbf{u}_t \) in \(L^\infty(0, T; \mathbf{L}^2(\Omega_s)) \) we have

\[
\rho_f(\mathbf{v}_t, \mathbf{w})_{\Omega_t} + \rho_s(\mathbf{u}_{tt}, \theta_t)_{\Omega_s} \\
= -a_f(\mathbf{v}, \mathbf{w}) - a_s(\mathbf{u}, \theta_t) + \rho_f(\mathbf{f}, \mathbf{w})_{\Omega_t} + \rho_s(\mathbf{b}, \theta_t)_{\Omega_s} \quad \forall (\mathbf{w}, \theta) \in \hat{W}
\]
Further,

\[v_{t|t=0} \rightarrow v_{t=0} \text{ in } H \]
\[u_{t|t=0} \rightarrow u_{t=0} \text{ in } H^1_s(\Omega_s) \]
\[u_{x|t=0} \rightarrow u_{x|t=0} \text{ in } L^2(\Omega_s) \]

Thus the existence theorem is proved. The proof of uniqueness is exactly the same as before.

2.5 Finite element approximations

Let \(h \) denote a discretization parameter tending to zero and, for each \(h \), let \(X^h_f \), \(S^h \) and \(X^h_s \) be finite dimensional spaces such that \(X^h_f \subset H^1_f(\Omega_f) \), \(S^h \subset L^2(\Omega_f) \) and \(X^h_s \subset H^1_s(\Omega_s) \). And

\[U^h = \{ (v^h, u^h) : v^h \in L^2(0, T; X^h_f), \ u^h \in H^1(0, T; X^h_s), \]
\[\text{such that } v^h = u^h \text{ on } \Gamma_0 \} \]

We assume that the finite element spaces satisfy the standard approximation properties, i.e.,

\[\inf_{v \in X^h_f} ||v - v^h||_{1,\Omega_f} \leq ||v||_{m+1,\Omega_f} \quad \forall v \in H^{m+1}(\Omega_f) \]
\[\inf_{p \in S^h} ||p - p^h||_{0,\Omega_f} \leq ||p||_{m,\Omega_f} \quad \forall p \in H^m(\Omega_f) \]

and

\[\inf_{u \in X^h_s} ||u - u^h||_{1,\Omega_s} \leq ||u||_{m+1,\Omega_s} \quad \forall u \in H^{m+1}(\Omega_s) \]

We also assume the inf-sup condition (or LBB) condition,

\[\inf_{0 \neq q^h \in S^h} \sup_{0 \neq v^h \in X^h_f} \frac{b(v^h, q^h)}{||v^h||_{1,\Omega_f} ||q^h||_{0,\Omega_f}} \geq K_b \]

where \(K_b \) is a positive constant independent of \(h \).
Finite element approximations of solutions of the coupled system (2.3.7)-(2.3.11) are defined as follows: Seek \((v^h, u^h, p^h) \in U^h \times L^2(0, T; S^h)\) such that

\[
\begin{align*}
\rho_f(v_t^h, w^h)_{\Omega_t} + b(w^h, p^h) + a_f(v^h, w^h) + \rho_s(u_{tt}^h, \theta_t^h)_{\Omega_t} + a_s(u^h, \theta_t^h) \\
&= \rho_f(f, w^h)_{\Omega_t} + \rho_s(b, \theta_t^h)_{\Omega_t} \quad \forall (w^h, \theta^h) \in U^h \\
b(v^h, q^h) = 0 \quad \forall q^h \in L^2(0, T; S^h) \\
v^h|_{t=0} = v^0h \\
u^h|_{t=0} = u^0h \\
u_{tt}^h|_{t=0} = u_{tt}^0h
\end{align*}
\]

(2.5.33)

(2.5.34)

(2.5.35)

(2.5.36)

(2.5.37)

First, we show the convergence of finite element approximations. To show the convergence, we consider finite element approximations of the auxiliary problem (2.4.22)-(2.4.26): Seek \((v^{ch}, u^{ch}, p^{ch}) \in U^{ch} \times L^2(0, T; S^h)\) such that

\[
\begin{align*}
\rho_f(v_{tt}^{ch}, w^h)_{\Omega_t} + b(w^h, p^{ch}) + a_f(v^{ch}, w^h) + \rho_s(u_{tt}^{ch}, \theta_t^{ch})_{\Omega_t} + a_s(u^{ch}, \theta_t^{ch}) \\
&= \rho_f(f, w^h)_{\Omega_t} + \rho_s(b, \theta_t^{ch})_{\Omega_t} \quad \forall (w^h, \theta^h) \in U^h \\
b(v^{ch}, q^h) = 0 \quad \forall q^h \in L^2(0, T; S^h) \\
v^{ch}|_{t=0} = v^0h \\
u^{ch}|_{t=0} = u^0h \\
u_{tt}^{ch}|_{t=0} = u_{tt}^0h
\end{align*}
\]

(2.5.38)

(2.5.39)

(2.5.40)

(2.5.41)

(2.5.42)

Lemma 2.5.1 For each \(\epsilon \geq 0\), let \((v^\epsilon, u^\epsilon, p^\epsilon)\) denote solutions of auxiliary problem (2.4.22)-(2.4.26) and \((v^{ch}, u^{ch}, p^{ch})\) denote finite element approximations of solutions of auxiliary problem. Then \((v^{ch}, u^{ch}, p^{ch}) \rightarrow (v^\epsilon, u^\epsilon, p^\epsilon)\) in \(L^2(0, T; H^1(\Omega_f)) \times H^1(0, T; H^1(\Omega_s)) \times H^{-1}(0, T; L^2(\Omega_f))\) as \(h \rightarrow 0\).

proof: Set \(w^h = v^{ch}\) and \(\theta^h = u^{ch}\) in (2.5.38) and combine with (2.5.39), we obtain

\[
\begin{align*}
\sup_t \rho_f \|v^{ch}\|_{0, \Omega_t}^2 + K_a \int_0^T \|v^{ch}\|^2_{1, \Omega_t} + \sup_t \rho_s \|u_{tt}^{ch}\|_{0, \Omega_t}^2
\end{align*}
\]
The same argument as in the proof of the Theorem 2.4.1 yields \((v^{ch}, u^{ch}) \to (v^e, u^e)\) in \(L^2(0, T; H^1(\Omega_f)) \times H^1(0, T; H^1(\Omega_s))\) as \(h \to 0\). If we take \(p^h\) satisfying (2.5.38) and \(p^e\) satisfying (2.4.22) then \(p^{ch} \to p^e\) in \(H^{-1}(0, T; L^2(\Omega_f))\) as \(h \to 0\). Thus lemma is proved.

It was proved in Theorem 2.4.2 that \((v^e, u^e, p^e) \to (v, u, p)\) as \(\epsilon \to 0\) and it can be shown \((v^{ch}, u^{ch}, p^{ch}) \to (v^h, u^h, p^h)\) as \(\epsilon \to 0\) in the same manner. Combining this with Lemma 2.5.1 gives the following theorem.

Theorem 2.5.2 Let \((v, u, p)\) denote solutions of the coupled system (2.3.7)-(2.3.11) and \((v^h, u^h, p^h)\) denote solutions of (2.5.33)-(2.5.37). Then \((v^h, u^h, p^h) \to (v, u, p)\) in \(L^2(0, T; H^1(\Omega_f)) \times (L^2(0, T; H^1(\Omega_s)) \cap H^1(0, T; L^2(\Omega_s)) \times H^{-1}(0, T; L^2(\Omega_f))\) as \(h \to 0\).

2.6 Error estimates

For the purpose of the proof of next theorem, we introduce some spaces and a projection. Let \(\Omega\) denote \(\Omega_f \cap \Omega_s\) and \(X^h\) denote a finite dimensional space such that \(X^h \in H^1(\Omega)\). We define a continous space \(G\) and a discrete space \(G^h\) by

\[
G = \{ z \in H^1(\Omega) : z_f \equiv z|_{\Omega_f} \in V, z_s \equiv z|_{\Omega_s} \in H^1(\Omega_s), \text{ and } z_f|_{\Gamma_0} = z_s|_{\Gamma_0} \}
\]

\[
G^h = \{ z \in X^h : \psi^h_f \equiv \psi^h|_{\Omega_f} \in X^h_f, \psi^h_s \equiv \psi^h|_{\Omega_s} \in X^h_s, \quad b(\psi^h_f, q^h) = 0 \quad \forall q^h \in S^h, \quad \text{and } \psi^h_f|_{\Gamma_0} = \psi^h_s|_{\Gamma_0} \}
\]

We define \(P^h : G \to G^h\) to be the projection with respect to the \(L^2(\Omega)\) inner product, i.e. \(P^h z = \hat{z}\) if

\[
(\hat{z}, \psi^h) = (z, \psi^h) \quad \forall \psi \in G^h, \quad \forall z \in G
\]
Then

\[\|z - \tilde{z}\|_{1, \Omega} \leq C h^m \|z\|_{m+1, \Omega} \quad (2.6.43) \]

\[\|z - \tilde{z}\|_{0, \Omega} \leq C h^{m+1} \|z\|_{m+1, \Omega} \quad (2.6.44) \]

Now we prove the following estimate for the error between the solutions of the semi-discrete and continuous problems.

Let

\[\zeta = \begin{cases}
 v & \text{on } \Omega_f \\
 u_t & \text{on } \Omega_s
\end{cases} \]

And define \(v = P^h \zeta|_{\Omega_f}, \ u_t = P^h \zeta|_{\Omega_s} \).

Theorem 2.6.1

\[
\rho_f \|v - v^h\|_{0, \Omega_f}^2 + K_a \int_0^t \|v - v^h\|_{1, \Omega_f}^2 \, dt \\
+ \rho_s \|u_t - u_t^h\|_{0, \Omega_s}^2 + K_a \|u - u^h\|_{1, \Omega_s}^2 \\
\leq \ C h^{2m+2} \|v\|_{m+1, \Omega_f}^2 + C h^{2m} \int_0^t \|v\|_{m+1, \Omega_f}^2 \, dt \\
+ Ch^{2m} \|u\|_{m+1, \Omega_s}^2 + C h^{2m+2} \|u_t\|_{m+1, \Omega_s}^2 \\
+ Ch^{2m} \int_0^t \|u_t\|_{m+1, \Omega_s}^2 \, dt + Ch^{2m} \int_0^t \|p\|_{m, \Omega_f}^2 \, dt \quad (2.6.45)
\]

proof: By subtracting (2.5.33)-(2.5.34) from the corresponding equations of (2.3.7)-(2.3.8) we obtain the "orthogonality conditions".

\[
\rho_f (v_t - v_t^h, w^h)_{\Omega_f} + b(w^h, p - p^h) + a_f (v - v^h, w^h) \\
+ \rho_s (u_{tt} - u_{tt}^h, \theta_t^h)_{\Omega_s} + a_s (u - u^h, \theta_t^h) = 0 \quad \forall (w^h, \theta_t^h) \in U^h \quad (2.6.46)
\]

\[
b(v - v^h, q^h) = 0 \quad \forall q^h \in L^2(0, T; S^h) \quad (2.6.47)
\]

Using (2.6.46)-(2.6.47) we deduce that

\[
\rho_f (v_t - v_t^h, v - v^h)_{\Omega_f} + a_f (v - v^h, v - v^h)
\]
\[+ \rho_s(u_{tt} - u^h_t, u_t - u^h_t) \Omega_s + a_s(u - u^h, u_t - u^h_t) \]
\[= \rho_f(v_t - v^h_t, v - \tilde{v})\Omega_f + a_f(v - v^h, v - \tilde{v}) + \rho_s(u_{tt} - u^h_t, u_t - \tilde{u}_t) \Omega_s \]
\[+ a_s(u - u^h, u_t - \tilde{u}_t) - b(\tilde{v} - v^h, p - p^h) \]
\[+ \rho_f(v_t - v^h_t, \tilde{v} - v^h)\Omega_f + a_f(v - v^h, \tilde{v} - v^h) + \rho_s(u_{tt} - u^h_t, \tilde{u}_t - u^h_t) \Omega_s \]
\[+ a_s(u - u^h, \tilde{u}_t - u^h_t) + b(\tilde{v} - v^h, p - p^h) \]
\[= \rho_f(v_t - v^h_t, v - \tilde{v})\Omega_f + a_f(v - v^h, v - \tilde{v}) + \rho_s(u_{tt} - u^h_t, u_t - \tilde{u}_t) \Omega_s \]
\[+ a_s(u - u^h, u_t - \tilde{u}_t) - b(\tilde{v} - v^h, p - p^h) \quad (2.6.48) \]

Then using the facts that \((\psi^h, v - \tilde{v}) = 0 \quad \forall \psi^h \in X^h_f\) and that
\[b(\tilde{v}, q^h) = 0 = b(v^h, q^h) \quad \forall q^h \in S^h \]

We obtain (by also noting that (2.6.49) implies \(\tilde{v} \in X^h_f\) and \(v^h \in X^h_f\))
\[\rho_f(v_t - v^h_t, v - \tilde{v})\Omega_f = \rho_f(v_t, v - \tilde{v})\Omega_f = \rho_f(v_t - \tilde{v}_t, v - \tilde{v})\Omega_f \quad (2.6.50) \]

Similarly,
\[\rho_s(u_{tt} - u^h_t, u_t - \tilde{u}_t)\Omega_s = \rho_s(u_{tt} - \tilde{u}_{tt}, u_t - \tilde{u}_t)\Omega_s \quad (2.6.51) \]

Combining (2.6.48)-(2.6.51) we deduce that for all \(q^h \in L^2(0, T; S^h)\)
\[\frac{\rho_f}{2} \frac{d}{dt} ||v - v^h||^2_{0, \Omega_f} + K_a ||v - v^h||^2_{1, \Omega_f} \]
\[+ \frac{\rho_s}{2} \frac{d}{dt} ||u_t - u^h_t||^2_{0, \Omega_s} + K_a \frac{d}{dt} ||u - u^h||^2_{0, \Omega_s} \]
\[\leq \frac{\rho_f}{2} \frac{d}{dt} ||v - \tilde{v}||^2_{0, \Omega_f} + k_a ||v - v^h||_{1, \Omega_f} ||v - \tilde{v}||_{1, \Omega_f} \]
\[+ \frac{\rho_s}{2} ||u_t - \tilde{u}_t||^2_{0, \Omega_s} + k_a ||u - u^h||_{1, \Omega_s} ||u_t - \tilde{u}_t||_{1, \Omega_s} \]
\[+ k_b ||v - \tilde{v}||_{1, \Omega_f} ||p - q^h||_{0, \Omega_f} + k_b ||v - v^h||_{1, \Omega_f} ||p - q^h||_{0, \Omega_f} \]

Therefore,
\[\rho_f ||v - v^h||^2_{0, \Omega_f} + K_a \int_0^t ||v - v^h||^2_{1, \Omega_f} dt + \rho_s ||u_t - u^h_t||^2_{0, \Omega_s} + K_a ||u - u^h||^2_{1, \Omega_s} \]
\[\leq C(||v - \tilde{v}||^2_{0, \Omega_f} + \int_0^t ||v - \tilde{v}||^2_{1, \Omega_f} dt + ||u(t_1) - \tilde{u}(t_1)||^2_{1, \Omega_s} \]
\[+ ||u_t - \tilde{u}_t||^2_{0, \Omega_s} + \int_0^t ||u_t - \tilde{u}_t||^2_{1, \Omega_s} dt + \int_0^t ||p - q^h||^2_{0, \Omega_s} dt \quad (2.6.52) \]
for all $q^h \in L^2(0, T; S^h)$, where $\|u(t_1) - \bar{u}(t_1)\| = \max_{t \in [0, T]} \|u(t) - \bar{u}(t)\|$. Hence (2.6.45) follows from (2.6.52), (2.6.43) and (2.6.44).
3 OPTIMIZATION-BASED DOMAIN DECOMPOSITION

In this chapter, we present an optimization-based domain decomposition method to uncouple the computations.

3.1 The model problems

Let \(v, p, g, u \) and \(h \) satisfy the coupled system (2.1.1). Instead of constraints (2.1.1), we consider the uncoupled system

\[
\begin{align*}
\rho_f v_t + \nabla p - \mu_f \Delta v &= \rho_f f & \text{in } \Omega_f \\
\nabla \cdot v &= 0 & \text{in } \Omega_f \\
v &= 0 & \text{on } \Gamma_f \\
v &= g & \text{on } \Gamma_0 \\
\rho_s u_{tt} - \mu_s \Delta u - (\lambda_s + \mu_s) \nabla (\nabla \cdot u) &= \rho_s b & \text{in } \Omega_s \\
u &= 0 & \text{on } \Gamma_s \\
\mu_s \nabla u \cdot n + (\lambda_s + \mu_s) (\nabla \cdot u) n &= h & \text{on } \Gamma_0 \\
v |_{t=0} &= v^0 & \text{in } \Omega_f \\
u |_{t=0} &= u^0 & \text{in } \Omega_s \\
u_t |_{t=0} &= u^1 & \text{in } \Omega_s
\end{align*}
\]

In this paper, we refer to \(g \) and \(h \) as controls. Our goal is to find \(g \) and \(h \) such
that the solutions of (3.1.1) coincide with solutions of (2.1.1). The optimization-based
domain decomposition algorithm finds such \(g \) and \(h \) by minimizing the functional

\[
\mathcal{J}(v, p, g, u, h) = \frac{1}{2} \int_0^T \int_{\Gamma_0} (u_t - g)^2 \, d\Gamma \, dt + \frac{1}{2} \int_0^T \int_{\Gamma_0} (pn - \mu_f \nabla v \cdot n - h)^2 \, d\Gamma \, dt
\]

In order to regularize the optimization problem, we instead minimize the penalized functional

\[
\mathcal{J}_\delta(v, p, g, u, h) = \frac{1}{2} \int_0^T \int_{\Gamma_0} (u_t - g)^2 \, d\Gamma \, dt + \frac{1}{2} \int_0^T \int_{\Gamma_0} (pn - \mu_f \nabla v \cdot n - h)^2 \, d\Gamma \, dt + \frac{\delta}{2} \int_0^T \int_{\Gamma_0} g^2 \, d\Gamma \, dt + \frac{\delta}{2} \int_0^T \int_{\Gamma_0} h^2 \, d\Gamma \, dt
\]

where the penalty parameter \(\delta \) is a positive constant that can be chosen to change the
relative importance of penalty terms in \(\mathcal{J}_\delta \) and \(\nabla \Gamma \) denotes tangential gradient. Thus
the optimization problem we propose to solve is given by

Problem 1

Find \((v, p, g, u, h)\) such that the functional \(\mathcal{J}_\delta \) is minimized subject to (3.1.1).

3.2 The existence of an optimal solution

We recall the definition of the spaces

\[
\mathbf{H}^1_j(\Omega_f) = \{ v \in \mathbf{H}^1(\Omega_f) : v = 0 \text{ on } \Gamma_f \}
\]

\[
J = \{ v \in \mathcal{D}(\Omega_f) : \nabla \cdot v = 0 \text{ on } \Omega_f \}
\]

\[
V = \text{the closure of } J \text{ in } \mathbf{H}^1_j(\Omega_f)
\]

\[
H = \text{the closure of } J \text{ in } \mathbf{L}^2(\Omega_f)
\]

and

\[
\mathbf{H}^1_s(\Omega_s) = \{ u \in \mathbf{H}^1(\Omega_s) : u = 0 \text{ on } \Gamma_s \}
\]
For functions defined on Γ_0, we will use the subspaces

$$Y = \{ g \in L^2(0, T; H^1(\Gamma_0)) \cap H^1(0, T; L^2(\Gamma_0)) : g = 0 \text{ on } \partial \Gamma_0 \}$$

$$Z = L^2(0, T; L^2(\Gamma_0))$$

with norms

$$\|g\|_Y^2 = \int_0^T \int_{\Gamma_0} g^2 \, d\Gamma \, dt + \int_0^T \int_{\Gamma_0} (\nabla g)^2 \, d\Gamma \, dt + \int_0^T \int_{\Gamma_0} g^2 \, d\Gamma \, dt$$

$$\|h\|_Z^2 = \int_0^T \int_{\Gamma_0} h^2 \, d\Gamma \, dt$$

A weak formulation corresponding to (3.1.1) is given by: Seek $v \in L^2(0, T; H^1(\Omega_f))$, $p \in L^2(0, T; L^2(\Omega_f))$, $g \in Y$, $u \in L^2(0, T; H^1_s(\Omega_s)) \cap H^1(0, T; L^2(\Omega_s))$ and $h \in Z$ satisfying

$$\rho_f(v, w)_{\Omega_f} + b(w, p) + a_f(v, w) + (w, pn - \mu_f \nabla v \cdot n)_{\Gamma_0}$$

$$= \rho_f(f, w)_{\Omega_f} \quad \forall w \in H^1(\Omega_f) \quad (3.2.2)$$

$$b(v, q) = 0 \quad \forall q \in L^2(\Omega_f) \quad (3.2.3)$$

$$(v, s)_{\Gamma_0} - (g, s)_{\Gamma_0} = 0 \quad \forall s \in H^{-1/2}(\Gamma_0) \quad (3.2.4)$$

$$\rho_s(u, \theta)_{\Omega_s} + a_s(u, \theta) = \rho_s(b, \theta)_{\Omega_s} + (h, \theta)_{\Gamma_0}$$

$$\quad \forall \theta \in H^1_s(\Omega_s) \quad (3.2.5)$$

$$v|_{t=0} = v^0 \quad \text{in } \Omega_f \quad (3.2.6)$$

$$u|_{t=0} = u^0 \quad \text{in } \Omega_s \quad (3.2.7)$$

$$u_t|_{t=0} = u^1 \quad \text{in } \Omega_s \quad (3.2.8)$$

Next, we give a precise definition of an optimal solution. Let the admissibility set is defined by

$$\mathcal{U}_{ad} = \{(v, p, g, u, h) \in L^2(0, T; H^1(\Omega_f)) \times L^2(0, T; L^2(\Omega_f)) \times Y \times L^2(0, T; H^1(\Omega_s)) \cap H^1(0, T; L^2(\Omega_s)) \times Z :$$

$$\mathcal{J}_\delta(v, p, g, u, h) < \infty \text{ and (3.2.2)-(3.2.8) is satisfied } \} \quad (3.2.9)$$
Then \((\tilde{v}, \tilde{p}, \tilde{g}, \tilde{u}, \tilde{h})\) is called an optimal solution if there exists \(\alpha \geq 0\) such that

\[
J_\delta(\tilde{v}, \tilde{p}, \tilde{g}, \tilde{u}, \tilde{h}) \leq J_\delta(v, p, g, u, h)
\]

for all \((v, p, g, u, h) \in \mathcal{U}_{ad}\) satisfying

\[
\|\tilde{g} - g\|_Y + \|\tilde{h} - h\|_Z \leq \alpha
\]

To show the existence of optimal solutions, we introduce an auxiliary problem again.

\[
\left\{
\begin{array}{ll}
\rho_f v_t + \nabla p - \mu_f \Delta v = \rho_f f & \text{in } \Omega_f \\
\nabla \cdot v = 0 & \text{in } \Omega_f \\
v = 0 & \text{on } \Gamma_f \\
v = g & \text{on } \Gamma_0 \\
\rho_s u_{tt} - \epsilon \mu_s \Delta u_t - \mu_s \Delta u - (\lambda_s + \mu_s) \nabla (\nabla \cdot u) = \rho_s b & \text{in } \Omega_s \\
u = 0 & \text{on } \Gamma_s \\
\epsilon \mu_s \nabla u_t \cdot n + \mu_s \nabla u \cdot n + (\lambda_s + \mu_s) (\nabla \cdot u) n = h & \text{on } \Gamma_0 \\
v|_{t=0} = v^0 & \text{in } \Omega_f \\
u|_{t=0} = u^0 & \text{in } \Omega_s \\
u_t|_{t=0} = u^1 & \text{in } \Omega_s
\end{array}
ight.
\]

(3.2.10)

Problem 2

Find \((v, p, g, u, h)\) such that the functional \(J_\delta\) is minimized subject to (3.2.10).

A weak formulation corresponding to (3.2.10) is given by: Seek \(v \in L^2(0, T; H^1_f(\Omega_f))\), \(p \in L^2(0, T; L^2(\Omega_f))\), \(g \in Y\), \(u \in H^1(0, T; H^1_s(\Omega_s))\) and \(h \in Z\) satisfying

\[
\rho_f(v_t, w)_{\Omega_f} + b(w, p) + a_f(v, w) + (w, p n - \mu_f \nabla v \cdot n)_{\Gamma_0} = \rho_f(f, w)_{\Omega_f} \forall w \in H^1_f(\Omega_f)
\]

(3.2.11)
\[b(v, q) = 0 \quad \forall q \in L^2(\Omega_f) \quad (3.2.12) \]

\[(v, s)_{\Gamma_0} - (g, s)_{\Gamma_0} = 0 \quad \forall s \in H^{-1/2}(\Gamma_0) \quad (3.2.13) \]

\[\rho_s(u_{tt}, \theta)_{\Omega_s} + \epsilon a(u_t, \theta) + a_s(u, \theta) \]

\[= \rho_s(b, \theta)_{\Omega_s} + (h, \theta)_{\Gamma_0} \quad \forall \theta \in H^1_s(\Omega_s) \quad (3.2.14) \]

\[v|_{t=0} = v^0 \quad \text{in } \Omega_f \quad (3.2.15) \]

\[u|_{t=0} = u^0 \quad \text{in } \Omega_s \quad (3.2.16) \]

\[u_t|_{t=0} = u^1 \quad \text{in } \Omega_s \quad (3.2.17) \]

And admissibility set be defined by

\[\mathcal{U}^a_{ad} = \{(v, p, g, u, h) \in L^2(0, T; H^1_f(\Omega_f)) \times L^2(0, T; L^2(\Omega_f)) \times \]

\[Y \times H^1(0, T; H^1_s(\Omega_s)) \times Z : J_s(v, p, g, u, h) < \infty \]

and (3.2.11)-(3.2.17) is satisfied \}

(3.2.18)

Using the properties of the bilinear forms we can obtain an a priori bounds for solutions of the weak formulation (3.2.11)-(3.2.17). Let \((v, p, g, u, h)\) satisfy (3.2.11)-(3.2.17). From (3.2.11) and (3.2.14), we obtain

\[\rho_f(u_t, w)_{\Omega_f} + b(w, p) + a_f(v, w) \]

\[+ \rho_s(u_{tt}, \theta)_{\Omega_s} + \epsilon a(u_t, \theta) + a_s(u, \theta) \]

\[= \rho_f(f, w)_{\Omega_f} + \rho_s(b, \theta)_{\Omega_s} - (w, pn - \mu_f \nabla v \cdot n)_{\Gamma_0} + (h, \theta)_{\Gamma_0} \]

\[\forall w \in H^1_f(\Omega_f), \forall \theta \in H^1_s(\Omega_s) \]

or

\[\rho_f(v_t, w)_{\Omega_f} + b(w, p) + a_f(v, w) \]

\[+ \rho_s(u_{tt}, \theta)_{\Omega_s} + \epsilon a(u_t, \theta) + a_s(u, \theta) \]

\[= \rho_f(f, w)_{\Omega_f} + \rho_s(b, \theta)_{\Omega_s} - (w, pn - \mu_f \nabla v \cdot n)_{\Gamma_0} \]

\[+ (w, h)_{\Gamma_0} + (h, \theta)_{\Gamma_0} - (w, h)_{\Gamma_0} \]
\[\forall \mathbf{w} \in \mathbf{H}_f^1(\Omega_f), \forall \theta \in \mathbf{H}_s^1(\Omega_s) \]

(3.2.19)

Taking \(\mathbf{w} = \mathbf{v} \) and \(\theta = \mathbf{u}_t \) in (3.2.19). Then because of (3.2.12)-(3.2.13) we have

\[
\rho_f(\mathbf{v}_t, \mathbf{v})_{\Omega_f} + a_f(\mathbf{v}, \mathbf{v}) + \rho_s(\mathbf{u}_t, \mathbf{u}_t)_{\Omega_s} + \epsilon a(\mathbf{u}_t, \mathbf{u}_t) + a_s(\mathbf{u}, \mathbf{u}_t) \\
= \rho_f(\mathbf{f}, \mathbf{v})_{\Omega_f} + \rho_s(\mathbf{b}, \mathbf{u}_t)_{\Omega_s} - (\mathbf{g}, pn - \mu_f \nabla \cdot \mathbf{n})_{\Gamma_0} + (\mathbf{g}, \mathbf{h})_{\Gamma_0} \\
+ (\mathbf{h}, \mathbf{u}_t)_{\Gamma_0} - (\mathbf{g}, \mathbf{h})_{\Gamma_0}
\]

This may be reduced to

\[
\frac{\rho_f}{2} \frac{d}{dt} \| \mathbf{v} \|^2_{0, \Omega_f} + K_s \| \mathbf{v} \|^2_{1, \Omega_f} + \rho_s \frac{d}{dt} \| \mathbf{u}_t \|^2_{1, \Omega_s} + \epsilon \frac{K_s}{2} \| \mathbf{u}_t \|^2_{1, \Omega_s} + K_s \frac{d}{dt} \| \mathbf{u} \|^2_{1, \Omega_s} \\
= - (g, pn - \mu_f \nabla \cdot \mathbf{n})_{\Gamma_0} + (h, \mathbf{u}_t - \mathbf{g})_{\Gamma_0} + \rho_f(\mathbf{f}, \mathbf{v})_{\Omega_f} + \rho_s(\mathbf{b}, \mathbf{u}_t)_{\Omega_s} \\
\leq \| \mathbf{g} \|_{0, \Gamma_0} \| pn - \mu_f \nabla \cdot \mathbf{n} - \mathbf{h} \|_{0, \Gamma_0} + \| h \|_{0, \Gamma_0} \| \mathbf{u}_t - \mathbf{g} \|_{0, \Gamma_0} \\
+ \rho_f \| \mathbf{f} \|_{-1, \Omega_f} \| \mathbf{v} \|_{1, \Omega_f} + \rho_s \| \mathbf{b} \|_{0, \Omega_s} \| \mathbf{u}_t \|_{0, \Omega_s}.
\]

Integrating from 0 to \(t \) yields

\[
\rho_f \sup_t \| \mathbf{v} \|^2_{0, \Omega_f} + K_s \int_0^T \| \mathbf{v} \|^2_{1, \Omega_f} dt + \rho_s \sup_t \| \mathbf{u}_t \|^2_{1, \Omega_s} \\
+ \epsilon K_s \int_0^T \| \mathbf{u}_t \|^2_{1, \Omega_s} dt + K_s \sup_t \| \mathbf{u} \|^2_{1, \Omega_s} \\
\leq \int_0^T \| \mathbf{g} \|^2_{0, \Gamma_0} dt + \int_0^T \| pn - \mu_f \nabla \cdot \mathbf{n} - \mathbf{h} \|^2_{0, \Gamma_0} dt + \int_0^T \| \mathbf{h} \|^2_{0, \Gamma_0} dt \\
+ \int_0^T \| \mathbf{u}_t - \mathbf{g} \|^2_{0, \Gamma_0} dt + \rho_f C \int_0^T \| \mathbf{f} \|^2_{-1, \Omega_f} dt + \rho_s C \int_0^T \| \mathbf{b} \|^2_{0, \Omega_s} dt \\
+ \rho_f \| \mathbf{v} \|^2_{0, \Omega_f} + \rho_s \| \mathbf{u}_t \|^2_{1, \Omega_s} + K_s \| \mathbf{u} \|^2_{1, \Omega_s}.
\]

(3.2.20)

We take test functions \(\mathbf{w} \) with \(\nabla \cdot \mathbf{w} = 0 \) in equation (3.2.11), we get

\[
\rho_f(\mathbf{v}_t, \mathbf{w})_{\Omega_f} = -a_f(\mathbf{v}, \mathbf{w}) - (\mathbf{w}, pn - \mu_f \nabla \cdot \mathbf{n})_{\Gamma_0} + \rho_f(\mathbf{f}, \mathbf{w})_{\Omega_f} \quad \forall \mathbf{w} \in \mathbf{V}
\]

and this gives

\[
| \rho_f(\mathbf{v}_t, \mathbf{w})_{\Omega_f} | \leq k_a \| \mathbf{v} \|_{1, \Omega_f} \| \mathbf{w} \|_{1, \Omega_f} \\
+ \| \mathbf{w} \|_{1, \Omega_f} \| pn - \mu_f \nabla \cdot \mathbf{n} \|_{0, \Gamma_0} + \rho_f \| \mathbf{f} \|_{-1, \Omega_f} \| \mathbf{w} \|_{1, \Omega_f}.
\]
Therefore,
\[
\rho_f \int_0^T \|v_t\|^2 \, dt \leq k_a \int_0^T \|v\|^2 \, dt + \int_0^T \|p n - \mu_f \nabla v \cdot n - h\|^2 \, dt \\
+ \int_0^T \|h\|_{0,\Gamma_0}^2 \, dt + \rho_f \int_0^T \|f\|^2 \, dt
\] (3.2.21)

From (3.2.11),
\[
b(w, p) = -\rho_f (v_t, w)_{\Omega_f} - a_f (v, w) \\
- (w, p n - \mu_f \nabla v \cdot n)_{\Gamma_0} + \rho_f (f, w)_{\Omega_f} \quad \forall w \in H^1_f (\Omega_f)
\]

Inf-sup condition may be used to get,
\[
K_b \int_0^T \|p\|_{0,\Gamma_f}^2 \, dt \leq \rho_f \int_0^T \|v_t\|^2 \, dt + k_a \int_0^T \|v\|^2 \, dt \\
+ \int_0^T \|p n - \mu_f \nabla v \cdot n\|^2 \, dt + \rho_f \int_0^T \|f\|^2 \, dt
\] (3.2.22)

Theorem 3.2.1 There exists an optimal solution \((\hat{v}, \hat{p}, \hat{g}, \hat{u}, \hat{h}) \in U_{ad}^c\) for Problem 2.

proof: It is clear that \(U_{ad}^c\) is not empty. Let \((v^n, p^n, g^n, u^n, h^n)\) be a minimizing sequence in \(U_{ad}\), i.e.
\[
\lim_{n \to \infty} J_\delta(v^n, p^n, g^n, u^n, h^n) = \inf_{(v, p, g, u, h) \in U_{ad}} J_\delta(v, p, g, u, h)
\]

Thus from (3.2.18), we have that \(\|g^n\|\) and \(\|h^n\|\) are uniformly bounded in \(Y \times Z\). Then since by (3.2.20) and (3.2.22) \((v^n, p^n, u^n) \in L^2(0, T; H^1_f (\Omega_f)) \times L^2(0, T; L^2(\Omega_f)) \times H^1(0, T; H^1_s(\Omega_s))\) is uniformly bounded. Thus, there exist subsequences, denoted by \((v^n, p^n, g^n, u^n, h^n)\) for simplicity, such that

\[
v_n \rightharpoonup v \text{ in } L^2(0, T; H^1_f (\Omega_f)) \\
p_n \rightharpoonup p \text{ in } L^2(0, T; L^2(\Omega_f)) \\
g_n \rightharpoonup g \text{ in } Y \\
u_n \rightharpoonup u \text{ in } H^1(0, T; H^1_s(\Omega_s)) \\
h_n \rightharpoonup h \text{ in } Z
\]
for some \((\tilde{v}, \tilde{p}, \tilde{g}, \tilde{u}, \tilde{h}) \in \mathcal{U}_{ad}^c\).

Now, by passing to the limit, we have that \((\tilde{v}, \tilde{p}, \tilde{g}, \tilde{u}, \tilde{h}) \in \mathcal{U}_{ad}^c\) satisfies (3.2.11)-(3.2.17). Then by the fact that functional \(J_\epsilon(\cdot, \cdot, \cdot, \cdot, \cdot)\) is lower semi-continuous, we conclude that

\[
J_\epsilon(\tilde{v}, \tilde{p}, \tilde{g}, \tilde{u}, \tilde{h}) = \inf_{(v, p, g, u, h) \in \mathcal{U}_{ad}^c} J_\epsilon(v, p, g, u, h)
\]
i.e. \((\tilde{v}, \tilde{p}, \tilde{g}, \tilde{u}, \tilde{h})\) is an optimal solution.

Now we take the limit as \(\epsilon \to 0\) of optimal solutions of Problem 2 to get optimal solutions of Problem 1.

Theorem 3.2.2 There exists an optimal solution \((\tilde{v}, \tilde{p}, \tilde{g}, \tilde{u}, \tilde{h}) \in \mathcal{U}_{ad}\) for Problem 1.

The proof is the same as in the Theorem 2.2.

3.3 Convergence with vanishing penalty parameter

In the next theorem we show that optimal solutions of Problem 2 converges to the weak solution of (2.4.16) as \(\delta \to 0\).

Theorem 3.3.1 For each \(\delta\), let \((v^\delta, p^\delta, g^\delta, u^\delta, h^\delta)\) denote an optimal solution of Problem 2 and \((\tilde{v}, \tilde{p}, \tilde{u})\) denote a solution of (2.4.22)-(2.4.26). Then \(\|v - v^\delta\|_{1,\Omega_1} \to 0\), \(\|\tilde{p} - p^\delta\|_{0,\Omega_1} \to 0\), \(\|\tilde{u} - u^\delta\|_{1,\Omega_2} \to 0\), \(\|\tilde{u}_t - u_t^\delta\|_{1,\Omega_2} \to 0\) as \(\delta \to 0\).

proof: Let \(\tilde{g} = \tilde{v}|_{\Gamma_0}\) and \(\tilde{h} = \epsilon \mu_s \nabla \tilde{u}_1 \cdot n + \mu_s \nabla \tilde{u} \cdot n + (\lambda_s + \mu_s)(\nabla \cdot \tilde{u}) n\) on \(\Gamma_0\). For any solution \((\tilde{v}, \tilde{p}, \tilde{u})\) of (2.4.16), we have

\[
J_\delta(v^\delta, p^\delta, g^\delta, u^\delta, h^\delta) \leq J_\delta(\tilde{v}, \tilde{p}, \tilde{g}, \tilde{u}, \tilde{h})
\]
i.e.

\[
\frac{1}{2} \int_0^T \int_{\Gamma_0} (\tilde{u}_t^\delta - g^\delta)^2 d\Gamma dt + \frac{1}{2} \int_0^T \int_{\Gamma_0} (p^\delta n - \mu_f \nabla v^\delta \cdot n - h^\delta)^2 d\Gamma dt + \frac{\delta}{2} \int_0^T \int_{\Gamma_0} \|\tilde{g}\|_{1,\Omega_1}^2 d\Gamma dt + \frac{\delta}{2} \int_0^T \int_{\Gamma_0} \|\tilde{h}\|_{1,\Omega_2}^2 d\Gamma dt
\]

\[
\leq J(\tilde{v}, \tilde{p}, \tilde{g}, \tilde{u}, \tilde{h}) + \frac{\delta}{2} \int_0^T \int_{\Gamma_0} \|\tilde{g}\|_{1,\Omega_1}^2 d\Gamma dt + \frac{\delta}{2} \int_0^T \int_{\Gamma_0} \|\tilde{h}\|_{1,\Omega_2}^2 d\Gamma dt \quad \forall \delta
\]
Then \(\|g^\delta\|_Y \) and \(\|h^\delta\|_Z \) are uniformly bounded, \(\|u^\delta - g\|_{0,\Omega_0} \to 0 \) and \(\|p^\delta n - \mu_f \nabla v^\delta \cdot n - h^\delta\|_{0,\Omega_0} \to 0 \) as \(\delta \to 0 \). We then obtain \(\|v^\delta\|_{1,\Omega_f}, \|p^\delta\|_{0,\Omega_f}, \|u^\delta\|_{1,\Omega_s} \) and \(\|u^\delta_t\|_{1,\Omega_s} \) are uniformly bounded by (3.2.20) and (3.2.22). Hence, as \(\delta \to 0 \), there exists a subsequence of \(\{(v^\delta, p^\delta, g^\delta, u^\delta, h^\delta)\} \) that converges to some \((\tilde{v}, \tilde{p}, \tilde{g}, \tilde{u}, \tilde{h}) \in L^2(0,T; H^1_f(\Omega_f)) \times L^2(0,T; L^2(\Omega_f)) \times Y \times H^1(0,T; H^1_s(\Omega_s)) \times Z \). The fact that \(\|u^\delta_t - g\|_{0,\Omega_0} \to 0 \) yields \(\tilde{v} = \tilde{u}_t \) on \(\Gamma_0 \), also \(\|p^\delta n - \mu_f \nabla v^\delta \cdot n - h^\delta\|_{0,\Omega_0} \to 0 \) as \(\delta \to 0 \) implies that \(\epsilon \mu_s \nabla \tilde{u}_t \cdot n + \mu_s \nabla \tilde{u} \cdot n + (\lambda_s + \mu_s)(\nabla \cdot \tilde{u})n = \tilde{p}n - \mu_f \nabla \tilde{v} \cdot n \) on \(\Gamma_0 \).

By passing to the limit, we have that \((\tilde{v}, \tilde{p}, \tilde{u}) \) satisfy (2.4.22)-(2.4.26). By the uniqueness of solutions of (2.4.22)-(2.4.26), \((\tilde{v}, \tilde{p}, \tilde{u}) = (\check{v}, \check{p}, \check{u}) \) and hence theorem is proved.

The following theorem is achieved due to Theorem 2.4.2, Theorem 3.2.2 and Theorem 3.3.2.

Theorem 3.3.2 For each \(\delta \), let \((v^\delta, p^\delta, g^\delta, u^\delta, h^\delta) \) denote an optimal solution of Problem 1 and \((\check{v}, \check{p}, \check{u}) \) denote a solution of (2.3.7)-(2.3.11). Then \(\|\check{v} - v^\delta\|_{1,\Omega_f} \to 0, \|\check{p} - p^\delta\|_{0,\Omega_f} \to 0, \|\check{u} - u^\delta\|_{1,\Omega_s} \to 0, \|\check{u}_t - u^\delta_t\|_{1,\Omega_s} \to 0 \) as \(\delta \to 0 \).

3.4 Optimality system

We use the Lagrange multiplier rule to derive the first order necessary conditions that optimal solutions must satisfy.

Let \(B_1 = L^2(0,T; H^1_f(\Omega_f)) \times L^2(0,T; L^2(\Omega_f)) \times Y \times H^1(0,T; H^1_s(\Omega_s)) \times Z \) and \(B_2 = L^2(0,T; H^1_f(\Omega_f))^* \times L^2(0,T; H^1_f(\Omega_f))^* \times Y \times H^1(0,T; H^1_s(\Omega_s))^* \).

where, \((-)\) denotes the dual space. Suppose the linear operator \(M : B_1 \to B_2 \) denotes the constraint operator, i.e., \(M : B_1 \to B_2 \) is defined by \(M(v, p, g, u, h) = (f, z, d, b) \) if and only if

\[
\int_0^T \left[\rho_f(v_t, w)_{\Omega_f} + b(w, p) + a_f(v, w) + (w, pn - \mu_f \nabla v \cdot n)_{\Gamma_0} \right] dt = \int_0^T \rho_f(f, w)_{\Omega_f} dt \quad \forall \ w \in H^1_f(\Omega_f)
\]
\[
\int_0^T b(v, q) \, dt = \int_0^T b(z, q) \, dt \quad \forall \, q \in L^2(\Omega_f)
\]
\[
\int_0^T [(v, s)_{\Gamma_0} - (g, s)_{\Gamma_0}] \, dt = \int_0^T (d, s)_{\Gamma_0} \, dt \quad \forall \, s \in H^{-1/2}(\Gamma_0)
\]

and
\[
\int_0^T \left[\rho_s(u_{tt}, \theta)_{\Omega_s} + \epsilon a(u_t, \theta) + a_s(u, \theta) - (h, \theta)_{\Gamma_0} \right] \, dt
\]
\[
= \int_0^T \rho_s(b, \theta)_{\Omega_s} \, dt \quad \forall \, \theta \in H^1_s(\Omega_s)
\]

Note that the constraint equations (3.2.11)-(3.2.14) can simply be expressed as
\[
M(v, p, g, u, h) = (f, 0, 0, b)
\]

The operator \(M'(v, p, g, u, h) \in \mathcal{L}(B_1, B_2)\) may be defined as follows:
\[
M'(v, p, g, u, h) \cdot (\Lambda, y, k, \chi, l) = (\tilde{f}, \tilde{z}, \tilde{d}, \tilde{b}) \text{ if and only if }
\]
\[
\int_0^T \left[\rho_f(\Lambda_t, w)_{\Omega_f} + b(w, y) + a_f(\Lambda, w) + (w, yn - \mu_f \nabla \Lambda \cdot n)_{\Gamma_0} \right] \, dt
\]
\[
= \int_0^T \rho_f(\tilde{f}, w)_{\Omega_f} \, dt \quad \forall \, w \in H^1_f(\Omega_f)
\]
\[
\int_0^T b(\Lambda, q) \, dt = \int_0^T b(\tilde{z}, q) \, dt \quad \forall \, q \in L^2(\Omega_f)
\]
\[
\int_0^T [(\Lambda, s)_{\Gamma_0} - (k, s)_{\Gamma_0}] \, dt = \int_0^T (\tilde{d}, s)_{\Gamma_0} \, dt \quad \forall \, s \in H^{-1/2}(\Gamma_0)
\]

and
\[
\int_0^T \left[\rho_s(\chi_{tt}, \theta)_{\Omega_s} + \epsilon a(\chi_t, \theta) + a_s(\chi, \theta) - (l, \theta)_{\Gamma_0} \right] \, dt
\]
\[
= \int_0^T \rho_s(b, \theta)_{\Omega_s} \, dt \quad \forall \, \theta \in H^1_s(\Omega_s)
\]

We also have that the operator \(\mathcal{J}_\delta \in \mathcal{L}(B_1, B_2)\) may be defined by
\[
\mathcal{J}_\delta'(v, p, g, u, h) \cdot (\Lambda, y, k, \chi, l) = \tilde{a} \text{ for } (\Lambda, y, k, \chi, l) \in B_1
\]
if and only if
\[
\int_0^T (u_t - g, \chi_t - k)_{\Gamma_0} \, dt
\]
\[
+ \int_0^T (pn - \mu_f \nabla v \cdot n - h, yn - \mu_f \nabla \Lambda \cdot n - l)_{\Gamma_0} \, dt
\]
\[
+ \delta \int_0^T (g, k)_{\Gamma_0} \, dt + \delta \int_0^T (\nabla g, \nabla k)_{\Gamma_0} \, dt + \delta \int_0^T (g_t, k_t)_{\Gamma_0} \, dt
\]
\[
+ \delta \int_0^T (h, l)_{\Gamma_0} \, dt = \tilde{a}
\]
Suppose \((v, p, g, u, h) \in B_1\) is an optimal solution of Problem 1. Then there exists a nonzero Lagrange multiplier \((\mu, \phi, \tau, \eta) \in B_2^*\) satisfying the Euler equation.

\[
-\mathcal{J}'(v, p, g, u, h) \cdot (\Lambda, y, k, \chi, l)
+ <(\mu, \phi, \tau, \eta), M'(v, p, g, t, u, h) \cdot (\Lambda, y, k, \chi, l) >= 0
\]

\[\forall (\Lambda, y, k, \chi, l) \in B_1\] (3.4.23)

where, \(<\cdot, \cdot>\) denotes the duality pairing between \(B_2\) and the dual space \(B_2^*\).

\[
\int_0^T \left[\rho_f(\Lambda_t, \mu)\alpha_t + b(\mu, y) + a_f(\Lambda, \mu) + (\mu, y n - \mu_f \nabla \Lambda \cdot n)\gamma_0 + b(\Lambda, \phi) \\
+ (\Lambda, \tau)\gamma_0 - (k, \tau)\gamma_0 + \rho_s(\chi_t, \eta)\alpha_s + \epsilon a(\chi, \eta) + a_s(\chi, \eta) - (l, \eta)\gamma_0 \right] dt
\]

\[= \int_0^T [(u_t - g, x_t - k)\gamma_0 \\
+ (p n - \mu_f \nabla v \cdot n - h, y n - \mu_f \nabla \Lambda \cdot n - l)\gamma_0] dt
\]

\[+ \delta \int_0^T (g, k)\gamma_0 dt + \delta \int_0^T (\nabla g, \nabla k)\gamma_0 dt + \delta \int_0^T (g_t, k_t)\gamma_0 dt
\]

\[+ \delta \int_0^T (h, l)\gamma_0 dt \quad \forall (\Lambda, y, k, \chi, l) \in B_1\] (3.4.24)

We may rewrite (3.4.24) in the form

\[
-\rho_f(\mu_t, \Lambda)\alpha_t + a_f(\Lambda, \mu) + b(\Lambda, \phi)
+ (\Lambda, \tau)\gamma_0 - (\mu_f \nabla \Lambda \cdot n, \mu)
\]

\[= -(p n - \mu_f \nabla v \cdot n - h, \mu_f \nabla \Lambda \cdot n) \quad \forall \Lambda \in H^1_f(\Omega_f)\]

\[b(\mu, y) = 0 \quad \forall y \in L^2(\Omega_f)\] (3.4.26)

\[(\mu, y n)\gamma_0 = (p n - \mu_f \nabla v \cdot n - h, y n)\gamma_0 \quad \forall y \in L^2_0(\Omega_f)\] (3.4.27)

\[\mu_{t=T} = 0\] (3.4.28)

\[\rho_s(\eta_t, \chi)\alpha_s + \epsilon a(\chi_t, \eta) + a_s(\chi, \eta)\]

\[= -(u_t - g, \chi)\gamma_0 \quad \forall \chi \in H^1_s(\Omega_s)\] (3.4.29)

\[\eta_{t=T} = 0\] (3.4.30)

\[\eta_{t=T} = 0\] (3.4.31)
Thus, solutions of the optimal problem are determined by solving the system (3.2.11)-(3.2.17) and (3.4.25)-(3.4.33). This system of equations is called the optimality system. We may replace (3.4.25) and (3.4.32) by

\[-\delta(\Delta g, \Delta k) \mathbf{r}_0 + \delta(\mathbf{g}, k) \mathbf{r}_0 \quad \forall k \in Y \]

\[(l, \eta) \mathbf{r}_0 = (p n - \mu_f \nabla \cdot n - h, l) \mathbf{r}_0 - \delta(h, l) \mathbf{r}_0 \quad \forall l \in \mathbb{Z} \]
The optimality system is a weak formulation corresponding to

\[
\begin{align*}
\rho_f v_t + \nabla p - \mu_f \Delta v &= \rho_f \mathbf{f} \quad \text{in } \Omega_f \\
\nabla \cdot v &= 0 \quad \text{in } \Omega_f \\
v &= 0 \quad \text{on } \Gamma_f \\
v &= g \quad \text{on } \Gamma_0 \\
\rho_s u_{tt} - \mu_s \Delta u_t - \mu_s \Delta u - (\lambda_s + \mu_s) \nabla (\nabla \cdot u) &= \rho_s \mathbf{b} \quad \text{in } \Omega_s \\
u &= 0 \quad \text{on } \Gamma_s \\
\epsilon \mu_s \nabla u_t \cdot \mathbf{n} + \mu_s \nabla u \cdot \mathbf{n} + (\lambda_s + \mu_s) (\nabla \cdot u) \mathbf{n} &= \mathbf{h} \quad \text{on } \Gamma_0 \\
v|_{t=0} &= v_0 \quad \text{in } \Omega_f \\
u|_{t=0} &= u_0 \quad \text{in } \Omega_s \\
u_t|_{t=0} &= u^1 \quad \text{in } \Omega_s \\
-\rho_f \mu_t + \nabla \phi - \mu_f \Delta \mu &= 0 \quad \text{in } \Omega_f \\
\nabla \cdot \mu &= 0 \quad \text{in } \Omega_f \\
\mu &= 0 \quad \text{on } \Gamma_f \\
\mu = pn - \mu_f \nabla \cdot \mathbf{n} - \mathbf{h} \quad \text{on } \Gamma_0 \\
\rho_s \eta_{tt} - \epsilon \mu_s \Delta \eta_t - \mu_s \Delta \eta - (\lambda_s + \mu_s) \nabla (\nabla \cdot \eta) &= 0 \quad \text{in } \Omega_s \\
\eta &= 0 \quad \text{on } \Gamma_s \\
\epsilon \mu_s \nabla \eta_t \cdot \mathbf{n} + \mu_s \nabla \eta \cdot \mathbf{n} + (\lambda_s + \mu_s) (\nabla \cdot \eta) \mathbf{n} &= -(u_{tt} - g_t) \quad \text{on } \Gamma_0 \\
\mu|_{t=T} &= 0 \quad \text{in } \Omega_f \\
\eta|_{t=T} &= 0 \quad \text{in } \Omega_s \\
\eta_t|_{t=T} &= 0 \quad \text{in } \Omega_s \\
(1 + \delta) \mathbf{g} - \delta \Delta \mathbf{g} - \delta g_{tt} &= -\phi \mathbf{n} + \mu_f \nabla \mu \cdot \mathbf{n} + u_t \quad \text{on } \Gamma_0 \\
(1 + \delta) \mathbf{h} &= (pn - \mu_f \nabla \mathbf{v} \cdot \mathbf{n} - \eta) \quad \text{on } \Gamma_0
\end{align*}
\]

3.5 Sensitivity derivatives

The optimality system (3.2.11)-(3.2.17) and (3.4.25)-(3.4.33) may also be derived using sensitivity derivatives instead of the Lagrange multiplier rule. The first derivatives \(\frac{\partial J_\delta}{\partial g}, \frac{\partial J_\delta}{\partial h} \) of \(J_\delta \) are defined through their actions on variations \(\tilde{g} \) and \(\tilde{h} \) as follows:

\[
< \frac{\partial J_\delta}{\partial g}, \tilde{g} > = \int_0^T (u_t - g, -\tilde{g}) r_0 dt
+ \int_0^T (p_n - \mu_f \nabla v \cdot n - h, \tilde{p}_n - \mu_f \nabla \tilde{v} \cdot n) r_0 dt
+ \delta \int_0^T (g, \tilde{g}) r_0 dt + \delta \int_0^T (\nabla r_g, \nabla \tilde{r}_g) r_0 dt
+ \delta \int_0^T (g_t, \tilde{g}_t) r_0 dt
\tag{3.5.37}
\]

where \(\tilde{p}, \tilde{v} \) are solutions of

\[
\rho_f(\tilde{v}_t, w)_{\Omega_f} + b(w, \tilde{p}) + a_f(\tilde{v}, w)
+ (w, \tilde{p}_n - \mu_f \nabla \tilde{v} \cdot n) r_0 = 0 \quad \forall w \in H^1_f(\Omega_f)
\tag{3.5.39}
\]

\[
b(\tilde{v}, q) = 0 \quad \forall q \in H(\Omega_f)
\tag{3.5.40}
\]

\[
(\tilde{v}, s) r_0 - (\tilde{g}, s) r_0 = 0 \quad \forall s \in H^{-1/2}(\Gamma_0)
\tag{3.5.41}
\]

\[
\tilde{v} \big|_{t=0} = 0
\tag{3.5.42}
\]

Setting \(\Lambda = \tilde{v} \), \(y_n = \tilde{p}_n - \mu_f \nabla \tilde{v} \cdot n \) in (3.4.34),(3.4.27) and \(w = \mu \) in (3.5.39) and from (3.5.37)

\[
< \frac{\partial J_\delta}{\partial g}, \tilde{g} > = \int_0^T (u_t - g, -\tilde{g}) r_0 dt
+ \int_0^T (\tilde{g}, \phi n - \mu_f \nabla \mu \cdot n) r_0 dt + \delta \int_0^T (g, \tilde{g}) r_0 dt
- \delta \int_0^T (\Delta r_g, \tilde{g}) r_0 dt - \delta \int_0^T (g_t, \tilde{g}) r_0 dt
\tag{3.5.43}
\]

\[
< \frac{\partial J_\delta}{\partial h}, \tilde{h} > = \int_0^T (u_t - g, \tilde{u}_t) r_0 dt
+ \int_0^T (p n - \mu_f \nabla v \cdot n - h, -\tilde{h}) r_0 dt + \delta \int_0^T (h, \tilde{h}) r_0 dt
\tag{3.5.44}
\]
where \bar{u} is a solution of

$$\rho_s(\bar{u}_{tt}, \theta)\Omega_s + \varepsilon a(\bar{u}_t, \theta) + a_s(\bar{u}, \theta) = (\bar{h}, \theta)_{\Gamma_0} \quad \forall \theta \in H^1_s(\Omega_s) \quad (3.5.45)$$

$$\bar{u}|_{t=0} = 0 \quad (3.5.46)$$

$$\bar{u}_t|_{t=0} = 0 \quad (3.5.47)$$

Setting $\chi = \bar{u}$ in (3.4.29) and $\theta = \eta$ in (3.5.45) and from (3.5.44)

$$< \frac{\partial J_\delta}{\partial h}, \bar{h} > = \int_0^T (\bar{h}, \eta)_{\Gamma_0} dt$$

$$+ \int_0^T (p n - \mu_f \nabla \cdot n - h, -\bar{h})_{\Gamma_0} dt + \delta \int_0^T (h, \bar{h})_{\Gamma_0} dt \quad (3.5.48)$$

Thus the first order necessary conditions $\frac{\partial J_\delta}{\partial g} = 0$ and $\frac{\partial J_\delta}{\partial h} = 0$ yield that

$$(1 + \delta) g - \delta \Delta g - \delta g_{tt} = -\phi n + \mu_f \nabla \mu \cdot n + u_t \quad \text{on } \Gamma_0$$

$$(1 + \delta) h = p n - \mu_f \nabla v \cdot n - \eta \quad \text{on } \Gamma_0$$

which are the same as in (3.4.36).

Note that equations (3.5.43) and (3.5.48) give an explicit formula for the gradient of J_δ, i.e.,

$$\frac{\partial J_\delta}{\partial g} = \int_0^T [(1 + \delta) g - \delta \Delta g - \delta g_{tt} + \phi n - \mu_f \nabla \mu \cdot n - u_t] dt \quad (3.5.49)$$

$$\frac{\partial J_\delta}{\partial h} = \int_0^T [(1 + \delta) h - p n - \mu_f \nabla v \cdot n + \eta] dt \quad (3.5.50)$$

3.6 Gradient method

In this section, we study a gradient method to solve the optimization system (3.2.11)-(3.2.17) and (3.4.25)-(3.4.33). The simple gradient method we consider is defined as follows.
Given a starting guess $g^{(0)}$ and $h^{(0)}$

\[
\begin{pmatrix}
g^{(n+1)} \\
h^{(n+1)}
\end{pmatrix} =
\begin{pmatrix}
g^{(n)} \\
h^{(n)}
\end{pmatrix} - \alpha \begin{pmatrix}
\frac{\partial J_\delta}{\partial g} \\
\frac{\partial J_\delta}{\partial h}
\end{pmatrix} \quad \text{for} \quad n = 1, 2, \cdots,
\]

where α is a step size. Combining with (3.5.49) and (3.5.50) yields, for $n = 1, 2, \cdots$

\[
\begin{pmatrix}
g^{(n+1)} \\
h^{(n+1)}
\end{pmatrix} =
\begin{pmatrix}
g^{(n)} \\
h^{(n)}
\end{pmatrix} - \alpha \begin{pmatrix}
f_0^T [(1 + \delta)g - \delta \Delta \tau g - \delta g_\mu + \phi n - \mu_f \nabla \mu \cdot n - u_i] dt \\
(f_0^T [(1 + \delta)h - pn + \mu_f \nabla v \cdot n + \eta] dt)
\end{pmatrix}
\]

Algorithm 3.6.1

1. Choose $g^{(0)}$ and $h^{(0)}$.

2. For $n=0,1,2,\cdots$,

(a) determine $v^{(n)}$, $p^{(n)}$ and $u^{(n)}$ from

\[
\begin{align*}
\rho_f(v^{(n)}_t, w)\Omega_f + b(w, p^{(n)}) + a_f(v^{(n)}, w) \\
+ (w, p^{(n)} n) - \mu_f \nabla v^{(n)} \cdot n) r_0 &= \rho_f(f, w)\Omega_f \quad \forall w \in H^1_f(\Omega_f) \\
b(v^{(n)}, q) &= 0 \quad \forall q \in H^2(\Omega_f) \\
(v^{(n)}, s) r_0 - (g^{(n)}, s) r_0 &= 0 \quad \forall s \in H^{-1/2}(\Gamma_0) \\
v^{(n)}|_{t=0} &= v^0 \text{ in } \Omega_f \\
\rho_s(u^{(n)}_t, \theta)\Omega_s + e_s(u^{(n)}_t, \theta) + a_s(u^{(n)}, \theta) + (h^{(n)}, \theta) r_0 &= \rho_s(b, \theta)\Omega_s + (h^{(n)}, \theta) r_0 \quad \forall \theta \in H^1(\Omega_s) \\
u^{(n)}|_{t=0} &= u^0 \text{ in } \Omega_s \\
u^{(n)}_t|_{t=0} &= u^1 \text{ in } \Omega_s
\end{align*}
\]
(b) determine $\mu^{(n)}, \phi^{(n)}$ and $\eta^{(n)}$ from

\[-\rho_f(\mu^{(n)}, \Lambda) \eta + a_f(\Lambda, \mu^{(n)}) + b(\Lambda, \phi^{(n)})
+ (\Lambda, \phi^{(n)} n - \mu_f \nabla \mu^{(n)} \cdot n) \eta_0 = 0 \quad \forall \Lambda \in H^1_f(\Omega_f)\]

\[b(\mu^{(n)}, q) = 0 \quad \forall q \in L^2(\Omega_f)\]

\[(\mu^{(n)}, s) \eta_0 = (p^{(n)} n - \mu_f \nabla v^{(n)} \cdot n - h^{(n)}, s) \eta_0 \quad \forall s \in H^{-1/2}(\Gamma_0)\]

\[\mu^{(n)}|_{t=T} = 0\]

\[\rho_s(\eta^{(n)}_t, \chi) \Omega_s + e\alpha(\chi_t, \eta^{(n)}) + a_s(\chi, \eta^{(n)}) = -(u_t^{(n)} - g_t^{(n)} \cdot \chi^{(n)}) \eta_0\]

\[\forall \chi \in H^1_s(\Omega_s)\]

\[\eta^{(n)}|_{t=T} = 0\]

\[\eta^{(n)}_t|_{t=T} = 0\]

(c) determine $g^{(n+1)}$ and $h^{(n+1)}$ from

\[g^{(n+1)} = g^{(n)}\]

\[-\alpha \int_0^T [(1 + \delta) g^{(n)} - \delta \Delta r g^{(n)} - \delta g_t^{(n)} + \phi^{(n)} n - \mu_f \nabla \mu^{(n)} \cdot n - u_t^{(n)}] dt\]

\[h^{(n+1)} = h^{(n)} - \alpha \int_0^T [(1 + \delta) h^{(n)} - p^{(n)} n + \mu_f \nabla v^{(n)} \cdot n + \eta^{(n)}] dt\]

The following result is useful to determining sufficient conditions for the convergence of the gradient method.

Theorem 3.6.1 Let X be a Hilbert space equipped with the inner product $\langle \cdot, \cdot \rangle_X$ and norm $\|\cdot\|_X$. Suppose M is a functional on x such that

1. M has a local minimum at \hat{x} and is twice differentiable in an open ball B centered at \hat{x};

2. $| \langle M''(u), (x, y) \rangle | \leq M \|x\|_X \|y\|_Y$, $\forall u \in B, x \in X, y \in Y$;

3. $| \langle M''(u), (x, x) \rangle | \geq m \|x\|^2_X$, $\forall u \in B, x \in X$,
where M and m are positive constants. Let R denote the Riesz map. Choose $x^{(0)}$ sufficiently close to \hat{x} and choose a sequence ρ_n such that $0 < \rho_* \leq \rho_n \leq \rho^* < 2m/M^2$. Then the sequence $x^{(n)}$ defined by

$$x^{(n)} = x^{(n-1)} - \rho_n RM'(x^{(n-1)}), \quad \text{for } n = 1, 2, \ldots,$$

converges to \hat{x}.

We examine the second derivatives of \mathcal{J} to determine the constants M and m.

$$< \frac{\partial^2 \mathcal{J}}{\partial g^2}, (\tilde{g}, g) > = \int_0^T (g, \tilde{g}) \gamma_0 dt$$

$$+ \int_0^T (\tilde{p}n - \mu_f \nabla \cdot n, \hat{p}n - \mu_f \nabla \cdot n) \gamma_0 dt$$

$$+ \delta \int_0^T (g, \tilde{g}) \gamma_0 dt + \delta \int_0^T (\nabla g, \nabla \tilde{g}) \gamma_0 dt + \delta \int_0^T (\gamma_0, \gamma_0) \gamma_0 dt$$

$$< \frac{\partial^2 \mathcal{J}}{\partial g \partial h}, (\tilde{g}, h) > = \int_0^T (-\tilde{g}, u_t) \gamma_0 dt$$

$$+ \int_0^T (\tilde{p}n - \mu_f \nabla \cdot n, -h) \gamma_0 dt$$

$$< \frac{\partial^2 \mathcal{J}}{\partial h \partial g}, (\tilde{h}, g) > = \int_0^T (\tilde{u}_t, -g) \gamma_0 dt$$

$$+ \int_0^T (-\tilde{h}, pn - \mu_f \nabla \cdot n) \gamma_0 dt$$

$$< \frac{\partial^2 \mathcal{J}}{\partial h^2}, (\tilde{h}, h) > = \int_0^T (u_t, \tilde{u}_t) \gamma_0 dt + (1 + \delta) \int_0^T (h, \tilde{h}) \gamma_0 dt$$

where, $v, p, u, \tilde{v}, \tilde{p}$ and \tilde{u} are solutions of

$$\begin{cases}
\rho_f (v_t, w) \Omega_f + b(w, p) + a_f (v, w) \\
+(w, pn - \mu_f \nabla \cdot n) \gamma_0 = 0 \quad \forall \ w \in H^1_f (\Omega_f) \\
b(v, q) = 0 \quad \forall \ q \in L^2 (\Omega_f) \\
(v, s) \gamma_0 - (g, s) \gamma_0 = 0 \quad \forall \ s \in H^{-1/2} (\Gamma_0) \\
v|_t=0 = 0
\end{cases} \quad (3.6.51)$$
\[
\begin{aligned}
\rho_f(\tilde{v}_t, w)\alpha_f + b(w, \tilde{p}) + a_f(\tilde{v}, w) \\
+ (w, \tilde{p}n - \mu_f \nabla \tilde{v} \cdot n)\gamma_0 = 0 \quad \forall \, w \in H^1_f(\Omega_f)
\end{aligned}
\]
- \[
\begin{aligned}
b(\tilde{v}, q) = 0 \quad \forall \, q \in L^2(\Omega_f)
\end{aligned}
\]
(\tilde{v}, s)_\gamma_0 - (\tilde{g}, s)_\gamma_0 = 0 \quad \forall \, s \in H^{-1/2}(\Gamma_0)
\]
\[
\tilde{v}|_{t=0} = 0
\]
\[
\begin{aligned}
\rho_s(u_{tt}, \theta)\alpha_s + \epsilon a(u_t, \theta) + a_s(u, \theta) &= (h, \theta)\gamma_0 \quad \forall \, \theta \in H^1_s(\Omega_s) \\
\end{aligned}
\]
\[
\begin{aligned}
u|_{t=0} = 0 \\
\end{aligned}
\]
\[
\begin{aligned}
u_t|_{t=0} = 0 \\
\end{aligned}
\]
\[
\begin{aligned}
\rho_s(\tilde{u}_{tt}, \theta)\alpha_s + \epsilon a(\tilde{u}_t, \theta) + a_s(\tilde{u}, \theta) &= (\tilde{h}, \theta)\gamma_0 \quad \forall \, \theta \in H^1_s(\Omega_s) \\
\end{aligned}
\]
\[
\begin{aligned}
\tilde{u}|_{t=0} = 0 \\
\end{aligned}
\]
\[
\begin{aligned}
\tilde{u}_t|_{t=0} = 0 \\
\end{aligned}
\]
Then,
\[
\begin{aligned}
(g, \tilde{h})
\begin{pmatrix}
\frac{\partial^2 J}{\partial g^2} & \frac{\partial^2 J}{\partial g \partial h} \\
\frac{\partial^2 J}{\partial h \partial g} & \frac{\partial^2 J}{\partial h^2}
\end{pmatrix}
\begin{pmatrix}
g \\
h
\end{pmatrix}
= <\frac{\partial^2 J}{\partial g^2}, (\tilde{g}, g)> + <\frac{\partial^2 J}{\partial g \partial h}, (\tilde{g}, h)> + <\frac{\partial^2 J}{\partial h \partial g}, (\tilde{h}, g)> + <\frac{\partial^2 J}{\partial h^2}, (\tilde{h}, h)>
\end{aligned}
\]
\[
\begin{aligned}
= \int_0^T (g, \tilde{g})\gamma_0 dt + \int_0^T (pn - \mu_f \nabla v \cdot n, \tilde{p}n - \mu_f \nabla \tilde{v} \cdot n)\gamma_0 dt \\
+ \delta \int_0^T (g, \tilde{g})\gamma_0 dt + \delta \int_0^T (\nabla r g, \nabla r \tilde{g})\gamma_0 dt + \delta \int_0^T (g, \tilde{g})\gamma_0 dt \\
+ \int_0^T (-\tilde{g}, u_t)\gamma_0 dt + \int_0^T (\tilde{p}n - \mu_f \nabla \tilde{v} \cdot n, -h)\gamma_0 dt \\
+ \int_0^T (-\tilde{g}, u_t)\gamma_0 dt + \int_0^T (-\tilde{h}, pn - \mu_f \nabla v \cdot n)\gamma_0 dt \\
+ \int_0^T (u_t, \tilde{u}_t)\gamma_0 dt + \int_0^T (h, \tilde{h})\gamma_0 dt \\
+ \int_0^T (u_t, \tilde{u}_t)\gamma_0 dt + (1 + \delta) \int_0^T (h, \tilde{h})\gamma_0 dt \\
= \int_0^T (u_t - g, \tilde{u}_t - \tilde{g})\gamma_0 dt
\end{aligned}
\]
\[
+ \int_0^T (p \nu - \mu \nabla \nu \cdot h, \tilde{p} \nu - \mu \nabla \tilde{\nu} \cdot \tilde{h}) \tau_0 dt \\
+ \delta \int_0^T (\nu g, \nabla g) \tau_0 dt + \delta \int_0^T (\nabla g, \nabla \tilde{g}) \tau_0 dt + \delta \int_0^T (g, \tilde{g}) \tau_0 dt \\
+ \delta \int_0^T (h, \tilde{h}) \tau_0 dt
\]

We show that
\[
\left| (\tilde{g}, \tilde{h}) \begin{pmatrix} \frac{\partial^2 f}{\partial g^2} & \frac{\partial^2 f}{\partial g \partial h} \\ \frac{\partial^2 f}{\partial h \partial g} & \frac{\partial^2 f}{\partial h^2} \end{pmatrix} \begin{pmatrix} g \\ h \end{pmatrix} \right| \leq M \|x\| \|y\|
\]
where \(x = (\tilde{g}, \tilde{h})^T, y = (g, h)^T, \|x\| = \sqrt{\|\tilde{g}\|^2 + \|\tilde{h}\|^2} \) and \(\|y\| = \sqrt{\|g\|^2 + \|h\|^2}\).

First, we obtain bounds for \(v\) and \(p\). Let \(v, p\) satisfy (3.6.51), which is a weak formulation of
\[
\begin{cases}
\rho_f \nu_t + \nabla p - \mu \nabla \nu = 0 & \text{in } \Omega_f \\
\nabla \cdot \nu = 0 & \text{in } \Omega_f \\
v = \tilde{g} & \text{on } \Gamma \\
v|_{t=0} = 0 & \text{in } \Omega_f
\end{cases}
\]
(3.6.55)
where, \(\Gamma = \Gamma_f \cup \Gamma_0\) and
\[
\tilde{g} = \begin{cases}
g & \text{on } \Gamma_0 \\
0 & \text{on } \Gamma_f
\end{cases}
\]

We introduce a space
\[
H^s_\Delta(\Omega_f) = \{v \in H^s(\Omega_f) : \Delta v \in L^2(\Omega_f)\}
\]
with a norm
\[
\|v\|_{s, \Delta, \Omega_f} = \|v\|_{s, \Omega_f} + \|\Delta v\|_{0, \Omega_f}
\]

Then, for \(\tilde{g} \in L^2(0, T; H^1(\Gamma)) \cap H^1(0, T; L^2(\Gamma)), \) there is an extension \(R_0 \tilde{g} \in L^2(0, T; H^{3/2}_\Delta(\Omega_f)) \cap H^1(0, T; H^{1/2}_\Delta(\Omega_f))\) such that \(\nabla \cdot (R_0 \tilde{g}) = 0\) in \(\Omega_f\) and \(R_0 \tilde{g} = \tilde{g}\) on \(\Gamma\).
And

\[\| R_0 \hat{g} \|_{3/2, \Omega_f} + \| R_0 \hat{g}_t \|_{1/2, \Omega_f} \leq \| \hat{g} \|_{1, \Gamma} + \| \hat{g}_t \|_{0, \Gamma}. \] \hspace{1cm} (3.6.56)

Write \(v = \tilde{v} + R_0 \hat{g} \), then we have

\[
\begin{aligned}
\rho_f \tilde{v}_t + \nabla p - \mu_f \Delta \tilde{v} &= -\rho_f R_0 \hat{g}_t + \mu_f \Delta R_0 \hat{g} & \text{in } \Omega_f \\
\nabla \cdot \tilde{v} &= 0 & \text{in } \Omega_f \\
\tilde{v} &= 0 & \text{on } \Gamma \\
\tilde{v} \big|_{t=0} &= -\rho_f R_0 \hat{g} \big|_{t=0} & \text{in } \Omega_f
\end{aligned}
\] \hspace{1cm} (3.6.57)

Notice that \(-\rho_f R_0 \hat{g}_t + \mu_f \Delta R_0 \hat{g} \in L^2(\Omega_f) \) and we show that \(R_0 \hat{g} \big|_{t=0} \in H^1(\Omega_f) \).

\([X, Y]_\theta\) denotes the interpolation space equipped with a norm

\[\| u \|_{[X, Y]_\theta} = \| \Lambda^{1-\theta} u \|_Y \]

where \(\Lambda : Y \to Y \) is an operator such that \(\| u \|_X = \| \Lambda u \|_Y \). And define a space \(W^1(0, T) \) as

\[W^1(0, T) = \{ u \in L^2(0, T; X), u_t \in L^2(0, T; Y) \} \]

Theorem 3.6.2 (Trace theorem) There exists a bounded operator \(\gamma_0 : W^1(0, T) \to [X, Y]_{1/2} \) such that \(\gamma_0 u = u \big|_{t=0} \) and \(\| \gamma_0 u \|_{[X, Y]_{1/2}} \leq C \| u \|_{W^1(0, T)} \)

proof: See Vovsik, Fursikov [40].

Lemma 3.6.3 If \(X = H^{3/2}(\Omega_f) \) and \(Y = H^{1/2}(\Omega_f) \) then \([X, Y]_{1/2} = H^1(\Omega_f) \)

proof:

\[(Su_1, u_2)_{1/2, \Omega_f} = \int_{\Omega_f} (1 + |\xi|^2)^{1/2} S u_1 \tilde{u}_2 d\xi \]

\[(u_1, u_2)_{3/2, \Omega_f} = \int_{\Omega_f} (1 + |\xi|^2)^{3/2} u_1 \tilde{u}_2 d\xi \]
\((Su_1, u_2)_{1/2, \Omega_f} = (u_1, u_2)_{3/2, \Omega_f}\) implies \(S = 1 + |\xi|^2\) and hence \(\Lambda = (1 + |\xi|^2)^{1/2}\) i.e. \(\|\Lambda u\|_{1/2, \Omega_f} = \|u\|_{3/2, \Omega_f}\). By the definition of the interpolation space,

\[
\|u\|^2_{[X, Y]_{1/2}} = \|\Lambda^{1/2}u\|^2_{1/2, \Omega_f} = \|u\|^2_{1, \Omega_f}
\]

Therefore, \([X, Y]_{1/2} = H^1(\Omega_f)\)

If \(X = H^{3/2}(\Omega_f)\) and \(Y = H^{1/2}(\Omega_f)\) then we may rewrite the Trace Theorem as follows:

There exists a bounded operator \(\gamma_0 : W^1(0, T) \to H^1(\Omega_f)\) such that \(\gamma_0 u = u|_{t=0}\) and \(\|\gamma_0 u\|^2_{1, \Omega_f} \leq C(\int_0^T \|u\|^2_{3/2, \Omega_f}dt + \int_0^T \|u_t\|^2_{1/2, \Omega_f}dt)\)

Since \(R_0\dot{\hat{g}} \in L^2(0, T; H^{3/2}_{\lambda}(\Omega_f)) \cap H^1(0, T; H^{1/2}_{\lambda}(\Omega_f))\), we have \(R_0\dot{\hat{g}}|_{t=0} \in H^1(\Omega_f)\) and

\[
\|R_0\dot{\hat{g}}|_{t=0}\|^2_{1, \Omega} \leq C(\int_0^T \|R_0\dot{\hat{g}}\|^2_{3/2, \Omega_f}dt + \int_0^T \|R_0\dot{\hat{g}}_t\|^2_{1/2, \Omega_f}dt) \quad (3.6.58)
\]

Then (3.6.57) is an evolution Stokes equation and hence we obtain

\[
\dot{v} \in L^2(0, T; H^2(\Omega_f))
\]

\[
\dot{v}_t \in L^2(0, T; L^2(\Omega_f))
\]

\[
\dot{p} \in L^2(0, T; H^1(\Omega_f))
\]

Moreover,

\[
\int_0^T \|\ddot{v}_t\|^2_{\Omega_f}dt \leq \rho_j^2 \int_0^T \|R_0\dot{\hat{g}}_t\|^2_{\Omega_f}dt
\]

\[
\mu_j^2 \int_0^T \|\Delta R_0\dot{\hat{g}}\|^2_{\Omega_f}dt + \|R_0\dot{\hat{g}}|_{t=0}\|^2_{1, \Omega}
\]

\[
\leq C(\|\dot{\hat{g}}\|^2_{1, \Omega} + \|\dot{\hat{g}}\|^2_{3, \Omega})
\]

by (3.6.56) and (3.6.58).

We then come back to (3.6.57) and we apply the regularity theorem of stationary
case. For almost every t in $[0, T],$
\[
\begin{align*}
\nabla p - \mu f \Delta \bar{v} &= -\rho f \nabla t - \rho f R_0 \dot{g}_t + \mu f \Delta R_0 \dot{g} \quad \text{in } \Omega_f \\
\nabla \cdot \bar{v} &= 0 \quad \text{in } \Omega_f \\
\bar{v} &= 0 \quad \text{on } \Gamma
\end{align*}
\]
so that $\bar{v}(t) \in H^2(\Omega)$ and $p(t) \in H^1(\Omega).$ Moreover,
\[
\int_0^T \| \bar{v} \|_{2, \Omega_f}^2 dt + \int_0^T \| p \|_{1, \Omega_f}^2 dt
\leq C(\rho_f^2 \int_0^T \| \bar{v} \|_{2, \Omega_f}^2 dt + \rho_f^2 \int_0^T \| R_0 \dot{g}_t \|_{2, \Omega_f}^2 dt + \mu_f^2 \int_0^T \| \Delta R_0 \dot{g} \|_{2, \Omega_f}^2 dt)
\leq C(\| \dot{g} \|_{1, \Gamma}^2 + \| \dot{g}_t \|_{2, \Gamma}^2)
\]

Now we get bound for $\bar{v}.$
\[
\int_0^T \| \bar{v} \|_{3/2, \Omega_f}^2 dt \leq \int_0^T \| \bar{v} \|_{3/2, \Omega_f}^2 dt + \int_0^T \| R_0 \dot{g} \|_{3/2, \Omega_f}^2 dt
\leq 2(\| \bar{v} \|_{3/2, \Omega_f}^2 dt + \| \Delta \bar{v} \|_{0, \Omega_f}^2 dt) + \int_0^T \| R_0 \dot{g} \|_{3/2, \Omega_f}^2 dt
\leq C(\| \dot{g} \|_{1, \Gamma}^2 + \| \dot{g}_t \|_{2, \Gamma}^2)
\]

Then
\[
\int_0^T \| \n \|_{0, \Omega_0}^2 dt \leq \int_0^T \| \n \|_{1, \Omega_f}^2 dt
\leq C(\| \dot{g} \|_{1, \Gamma}^2 + \| \dot{g}_t \|_{2, \Gamma}^2) = C\| g \|_V^2
\]
and
\[
\int_0^T \| \n \cdot \n \|_{0, \Omega_0}^2 dt \leq \int_0^T \| \n \|_{3/2, \Omega_f}^2 dt
\leq C(\| \dot{g} \|_{1, \Gamma}^2 + \| \dot{g}_t \|_{2, \Gamma}^2) = C\| g \|_V^2
\]

Now, we obtain a bound for $\bar{u}.$ Suppose \bar{u} is a solution of (3.6.53). Then
\[
\rho_s(\bar{u}_t, \theta) \bar{n}_s + \varepsilon a(\bar{u}, \theta) + a_s(\bar{u}, \theta) = (\bar{h}, \theta)_{\Gamma_0} \quad \forall \theta \in H^1_s(\Omega_s)
\]
(3.6.59)
Setting \(\theta = u_t \) in (3.6.59) to get

\[
\sup_t \rho_s \|u_t\|_{H, \Omega}^2 + \epsilon K_a \int_0^T \|u_t\|_{H, \Omega}^2 dt + \sup_t K_a \|u\|_{H, \Omega}^2 \\
\leq C \int_0^T \|h\|_{H, \Omega}^2 dt = C \|h\|_2^2
\]

We determine the constants \(M \) using bounds we have obtained.

\[
\left| \begin{pmatrix} \tilde{g}, \tilde{h} \end{pmatrix} \right| = \int_0^T (u_t - g, \tilde{u}_t - \tilde{g}) r_0 dt \\
+ \int_0^T (p_n - \mu_f \nabla v \cdot n - h, \tilde{p}_n - \mu_f \nabla \tilde{v} \cdot n - \tilde{h}) r_0 dt \\
+ \delta \int_0^T (g, \tilde{g}) r_0 dt + \delta \int_0^T (\nabla r g, \nabla r \tilde{g}) r_0 dt + \delta \int_0^T (g_l, \tilde{g}_l) r_0 dt \\
+ \delta \int_0^T (h, \tilde{h}) r_0 dt |
\]

\[
\leq 2 \left(\int_0^T \|u_t\|_{H, \Omega}^2 dt + \int_0^T \|g\|_{H, \Omega}^2 dt \right)^{1/2} \left(\int_0^T \|\tilde{u}_t\|_{H, \Omega}^2 dt + \int_0^T \|\tilde{g}\|_{H, \Omega}^2 dt \right)^{1/2} \\
+ 2 \left(\int_0^T \|p_n\|_{H, \Omega}^2 dt + \mu_f^2 \int_0^T \|\nabla v \cdot n\|_{H, \Omega}^2 dt + \int_0^T \|h\|_{H, \Omega}^2 dt \right)^{1/2} \\
+ \delta \left(\int_0^T \|g\|_{H, \Omega}^2 dt \right)^{1/2} \left(\int_0^T \|\tilde{g}\|_{H, \Omega}^2 dt \right)^{1/2} \\
+ \delta \left(\int_0^T \|\nabla r g\|_{H, \Omega}^2 dt \right)^{1/2} \left(\int_0^T \|\nabla r \tilde{g}\|_{H, \Omega}^2 dt \right)^{1/2} \\
+ \delta \left(\int_0^T \|g_l\|_{H, \Omega}^2 dt \right)^{1/2} \left(\int_0^T \|\tilde{g}_l\|_{H, \Omega}^2 dt \right)^{1/2} \\
+ \delta \left(\int_0^T \|h\|_{H, \Omega}^2 dt \right)^{1/2} \left(\int_0^T \|\tilde{h}\|_{H, \Omega}^2 dt \right)^{1/2} \\
\leq 2 \left(C \|h\|_2^2 + \|g\|_2^2 \right)^{1/2} \left(C \|\tilde{h}\|_2 + \|\tilde{g}\|_2 \right)^{1/2} \\
+ 2 \left(C \|g\|_2^2 + \mu_f^2 C \|g\|_2^2 + \|h\|_2^2 \right)^{1/2} \left(C \|\tilde{g}\|_2^2 + \mu_f^2 C \|\tilde{g}\|_2^2 + \|\tilde{h}\|_2 \right)^{1/2} \\
+ \delta \|g\|_2 \|\tilde{g}\|_2 + \delta \|h\|_2 \|\tilde{h}\|_2 \\
\leq M \|x\| \|y\|
\]

where, \(M = 2C + 2(1 + \mu_f^2)C + \delta \).
Setting $\tilde{g} = g$ and $\tilde{h} = h$ to determine the constant m.

$$(g, h) \begin{pmatrix} \frac{\partial^2 J}{\partial g^2} & \frac{\partial^2 J}{\partial g \partial h} \\ \frac{\partial^2 J}{\partial h \partial g} & \frac{\partial^2 J}{\partial h^2} \end{pmatrix} \begin{pmatrix} g \\ h \end{pmatrix}$$

$$= \int_0^T \int_{\Gamma_0} (u_t - g)^2 d\Gamma dt + \int_0^T \int_{\Gamma_0} (pn - \mu f \nabla v \cdot n - h)^2 d\Gamma dt$$

$$+ \delta \int_0^T \int_{\Gamma_0} g^2 d\Gamma dt + \delta \int_0^T \int_{\Gamma_0} (\nabla \cdot g)^2 d\Gamma dt$$

$$+ \delta \int_0^T \int_{\Gamma_0} g_t^2 d\Gamma dt + \delta \int_0^T \int_{\Gamma_0} h^2 d\Gamma dt$$

$$= J(v, p, g, u, h) + \delta \|g\|_\Gamma^2 + \delta \|h\|_\Gamma^2 \geq \delta \|x\|^2$$

where $m = \delta$.

This proves the convergence of the Gradient method.
BIBLIOGRAPHY

