A direct synthesis of atractylodinol, a potent inhibitor of PRRSV, and its biological evaluation

George A. Kraus
Iowa State University, gakraus@iastate.edu

Pengfei Dong
Iowa State University

Yang Qu
Iowa State University, yqu1115@iastate.edu

Alyssa Evans
Iowa State University

Susan Carpenter
Iowa State University, scarp@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/chem_pubs

Part of the Animal Sciences Commons, Large or Food Animal and Equine Medicine Commons, Organic Chemistry Commons, and the Veterinary Preventive Medicine, Epidemiology, and Public Health Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/chem_pubs/1078. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
A direct synthesis of atractylodinol, a potent inhibitor of PRRSV, and its biological evaluation

Abstract
A direct synthesis of atractylodinol from 2-furylbutenyne and bromoacetylene 6 is reported. Both compounds 1 and 8 showed greater than 99% virus inhibition.

Keywords
Total synthesis, Atractylodinol, PRRSV, Antiviral activity, In vitro

Disciplines
Animal Sciences | Large or Food Animal and Equine Medicine | Organic Chemistry | Veterinary Preventive Medicine, Epidemiology, and Public Health

Comments

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Graphical Abstract

A direct synthesis of Atractyloandinol, a potent inhibitor of PRRSV, and its biological evaluation

George A. Kraus*, Pengfei Dong, Yang Qu, Alyssa Evans and Susan Carpenter

Leave this area blank for abstract info.
A direct synthesis of Atractylodinol, a potent inhibitor of PRRSV, and its biological evaluation

George A. Krausa *, Pengfei Donga, Alyssa Evansb and Susan Carpenterb

a Department of Chemistry Iowa State University, Ames IA 50011
b Department of Animal Science, Iowa State University, Ames, IA 50011

\begin{table}[h]
\centering
\begin{tabular}{ll}
\hline
\textbf{ARTICLE INFO} & \textbf{ABSTRACT} \\
\hline
\textit{Article history:} & A direct synthesis of atractylodinol from 2-furylbutyne and and bromoacetylene 6 is reported. \\
Received & Both compounds 1 and 8 showed greater than 99\% virus inhibition. \\
Received in revised form & \textcopyright 2009 Elsevier Ltd. All rights reserved. \\
Accepted & \\
Available online & \\
\hline
\textbf{Keywords:} & Total synthesis; \\
& Atractylodinol; \\
& PRRSV; \\
& Antiviral activity; \\
& In vitro \\
\end{tabular}
\end{table}

* Corresponding author. Tel.: +1 515 294 7794; fax: +1 515 294 0105; E-mail address: gakraus@iastate.edu (G.A. Kraus)
Porcine reproductive and respiratory syndrome (PRRS) is caused by porcine reproductive and respiratory syndrome virus (PRRSV). PRRS is a widespread disease affecting domestic pigs, and is considered one of the most economically significant diseases in the global swine industry. In 2005, the annual costs of PRRS for the American swine industry were approximately 560 million dollars. 2, 3 Although vaccines are used to treat PRRSV, genetic diversity of PRRSV reduces the effectiveness of vaccines and contributes to PRRSV persistence in the field. There is an urgent need for alternate strategies to reduce the economic burden of PRRS. An alternative strategy is the development of potent antiviral drugs. Unlike vaccines, antiviral drugs can provide almost immediate treatment for animals. The antiviral drugs can also be used in periods of increased susceptibility. A few natural products have been reported to significantly inactivate the PRRS virus. Their structures are depicted in Figure 1.

Atractylodinol (1) and Ethoxysanguinarine (2) were reported as anti-PRRSV drugs by Li with IC50 values of 7.9 and 39.4 μmol/L, respectively. 4 Atractylodinol was isolated from rhizomes of Atractylodes lancea. A. lancea and is widely used in traditional Chinese and Japanese medicines against rheumatic diseases, digestive disorders, night blindness, and influenza. 5 The reported isolation procedure gives 9.6 mg of impure 1 from 570 g of dried and powered A. lancea rhizomes. 5 The low natural abundance inhibits future biological activity tests in animals. A patent using cobalt-complexed acetylenes to prepare dienediynes was reported in 2016. 6 The related hydrocarbon analog atractyloidin was synthesized using a bis-silylated diacetylene. 7

![Figure 1. Natural product inhibitors of PRRSV](image-url)

In our synthetic plan, compound 1 could be synthesized by coupling reaction of furyl enyne 4 and bromo alcohol 6. Enyne 4 could be converted to a Corey-Fuchs reaction 8 from commercially available 3-(2-furyl)acrolein (3). Compound 6 is accessible through unsaturated aldehyde 5.

Commercially available 3-(2-furyl)acrolein 3 was subjected to the Corey-Fuchs protocol as shown in Scheme 1 to obtain the terminal alkyne 4 in 67% overall yield. Treatment of unsaturated aldehyde 5 (generated from cis-butenedio) in two steps 9 with carbon tetrabromide and triphenylphosphine afforded a 1,1-dibromoalkene. Treatment of the 1,1-dibromoalkene with tetra-n-butylammonium fluoride in THF at 45 °C resulted in both deprotection of the TBS group and the elimination of bromide to make alcohol 6 in 66% yield. 10

With the two coupling components in hand, we focused on finding the most suitable coupling condition. After several modifications, utilizing a copper (I) catalyst with ethylamine and hydroxylamine hydrochloride in methanol, the Cadiot-Chodkiewicz coupling reaction of compounds 4 and 6 furnished the desired natural product 1 in 25% isolated yield. 10 Although the yield was modest for the final step, it was the only effective conditions that we found for this two-component coupling. With the possible exception of the recent patent, no total synthesis route of atractylodinol had been reported in the literature. Despite the modest yield of the coupling reaction, the overall yield from commercially available materials was 11%.

To improve the synthetic route for natural product 1, as well as to make analog 8, we designed an alternate route as shown in Scheme 2. Oxidation with manganese dioxide followed in situ by a Wittig reaction with (carbethoxymethylene)triphenylphosphorane converted propargyl alcohol to the terminal acetylene in one pot in 45% yield after flash column chromatography purification. The iodoacetylene 7 was made from the terminal alkyne using morpholine hydroiodide salt and a catalytic amount of copper iodide. 11, 12 The copper catalyzed coupling reaction between 4 and 7 gave the target molecule ester 8 in 35% yield.

It only took five steps to prepare compound 8 from commercially available materials. Compound 8 could be converted to natural product 1 by reduction.

The antiviral activity of compounds 1, 4, and 8 was evaluated in vitro using 10 μg of each compound and 10^5 focus forming units (FFU) of PRRSV strain NVSL97-7895. DMSO was used as a control. The compound plus virus mixtures were incubated at 37°C for one hour, and then inoculated in triplicate onto MARC-145 cells. At 24 hours post infection, cells were fixed and immunocytochemistry performed to detect foci of PRRSV-infected cells. Virus inhibition was calculated as the percent reduction in FFU in compound-treated wells compared to virus-only control wells. The percent virus inhibition (PVI) for compound 1 was 100.0±0.7%, which demonstrates that our synthetic compound 1 is effective towards PRRSV as was reported. The PVI of compounds 4 and 8 were 93.4±4.0% and 99.3±0.7%, respectively. The DMSO had little to no inhibitory effect on PRRSV, with PVI of 0.78±14.3%, indicating the inhibitory activity is due to the compounds, and not DMSO.
Atractylodinol (1) was successfully synthesized in seven steps and all the characterization spectra (NMR and MS) of final product were identical to the literature spectra. One more efficient synthetic route has been reported.

To the best of our knowledge, neither of these two efficient compounds against 10^5 FFU PRRSV were tested using 10 ug of each compound. Antiviral activity was tested using 10 ug of each compound against 10^5 FFU PRRSV. Percent virus inhibition is reported as the mean percent reduction in compound-treated wells compared to virus-only control wells. Error bars represent ± one standard deviation of the mean of triplicates.

Acknowledgments
We thank the Department of Chemistry for support for PD.

References
13. Experimental procedure for the synthesis of (E)-5-Bromopent-2-en-1-yn-1-ol (6): Dibromo Compound was prepared by using previous described procedure for compound 4 in 96% yield; 1H NMR (300 MHz, CDCl3) δ = 7.28 (d, J = 1.8 Hz, 1H), 6.78 (d, J = 16.1 Hz, 1H), 6.45 – 6.31 (m, 2H), 6.03 (d, J = 18.4 Hz, 1H), 3.09 (d, J = 2.4 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ = 152.0, 143.5, 130.3, 111.2, 110.7, 105.3, 83.0, 80.3.
14. Experimental procedure for the synthesis of (E)-5-Bromopent-2-en-1-yn-1-ol (6): Dibromo Compound was prepared by using previous described procedure for compound 4 in 96% yield; 1H NMR (300 MHz, CDCl3) δ = 6.96 (d, J = 10.3 Hz, 1H), 6.42–6.26 (m, 1H), 6.14–6.00 (m, 1H), 4.00 (d, J = 7.8 Hz, 2H), 0.91 (s, 9H), 0.08 (d, J = 7.5 Hz, 3H).
15. To a solution of the dibromomalonate obtained above (0.383 g, 1.08 mmol) in THF was added TBAF (1.0 M solution in THF, 0.4 mL, 0.4 mmol) at rt then the mixture was stirred at 45 °C for 18 h and diluted with EtO. The mixture was washed with saturated NH4Cl, H2O, and brine and then dried over MgSO4. Concentration gave the mixture of the corresponding TBS-protected bromoacetylene 6. 1H NMR (300 MHz, CDCl3) δ = 6.38–6.25 (m, 1H), 5.72 (d, J = 15.9, 1.9 Hz, 1H), 4.20 (dd, J = 9.0, 1.9 Hz, 2H).
16. Antiviral Activity: Compounds were diluted in DMSO and screened for anti-PRRSV activity using a focus-reduction assay adapted from Wu et al. Briefly, MARC-145 cells were seeded at 3x10^5 cells/well in a 12-well plate 24 hours prior to the anti-viral assay, and media changed to 1 ml/well directly before infection. For each compound, 35 μg (35 μl) was added to 700 focus forming units (FFU) of PRRSV in a volume of 1.2 ml (incubation volume), for an incubation concentration of 29.17 μg/ml of the compound. In addition, a virus-only sample with 700 FFU PRRSV was used as a control. The virus-compound mixtures and virus-only control were incubated at 37°C for one hour. Samples were brought to a total volume of 3.5 ml, and 1 ml was inoculated well in triplicate, resulting in each well containing 10μg compound and 200 FFU in a well volume of 2 ml for a final well concentration of 5 μg/ml of compound. The plates were incubated at 37°C supplemented with 5% CO2. At 24 hours post infection, cells were fixed in ice-cold methanol/aceton and immunocytochemistry performed using the PRRSV N protein specific monoclonal antibody SDOW17 (Rural Technology) as the primary antibody and sheep anti-mouse IgG conjugated to HRP (Jackson ImmunoResearch) as the secondary antibody. Following addition of the HRP substrate, cells were rinsed with distilled water, air-dried, and fixed of infected cells enumerated by light microscopy. Percent virus inhibition was calculated compared to virus-only control wells. Standard deviations were calculated using the means of repeated experiments.