2019

Heterobimetallic Single-Source Precursors: A Springboard to the Synthesis of Binary Intermetallics

Carena L. Daniels
Iowa State University, cdaniels@iastate.edu

Deyny L. Mendivelso-Perez
Iowa State University, dlety@iastate.edu

Bryan A. Rosales
Iowa State University, brosales@iastate.edu

Di You
Texas A&M University

Sumit Sahu
Texas A&M University

Follow this and additional works at: https://lib.dr.iastate.edu/chem_pubs
See next page for additional authors
Part of the Materials Chemistry Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/chem_pubs/1116. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Heterobimetallic Single-Source Precursors: A Springboard to the Synthesis of Binary Intermetallics

Abstract
Intermetallics are atomically ordered crystalline compounds containing two or more main group and transition metals. In addition to their rich crystal chemistry, intermetallics display unique properties of interest for a variety of applications, including superconductivity, hydrogen storage, and catalysis. Because of the presence of metals with a wide range of reduction potentials, the controlled synthesis of intermetallics can be difficult. Recently, soft chemical syntheses such as the modified polyol and ship-in-a-bottle methods have helped advance the preparation of these materials. However, phase-segregated products and complex multistep syntheses remain common. Here, we demonstrate the use of heterobimetallic single-source precursors for the synthesis of 10–15 and 11–15 binary intermetallics. The coordination environment of the precursor, as well as the exact temperature used play a critical role in determining the crystalline intermetallic phase that is produced, highlighting the potential versatility of this approach in the synthesis of a variety of compounds. Furthermore, we show that a recently developed novel plasma-processing technique is successful in removing the surface graphitic carbon observed in some of the prepared compounds. This new single-source precursor approach is a powerful addition to the synthesis of atomically ordered intermetallic compounds and will help facilitate their further study and development for future applications.

Keywords
Organometallic chemistry, Separation science

Disciplines
Materials Chemistry

Comments

Rights
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Authors
Carena L. Daniels, Deyny L. Mendivelso-Perez, Bryan A. Rosales, Di You, Sumit Sahu, J. Stuart Jones, Emily A. Smith, François P. Gabbaï, and Javier Vela

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/chem_pubs/1116
Heterobimetallic Single-Source Precursors: A Springboard to the Synthesis of Binary Intermetallics

Carena L. Daniels,‡ Deyny L. Mendivelso-Perez,‡⁺ Bryan A. Rosales,‡ Di You,§ Sumit Sahu,§⊥ J. Stuart Jones,§⊥ Emily A. Smith,§⊥ François P. Gabbai,§ and Javier Vela‡,†⊥

†Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
‡Ames Laboratory, Ames, Iowa 50011, United States
§Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States

Supporting Information

ABSTRACT: Intermetallics are atomically ordered crystalline compounds containing two or more main group and transition metals. In addition to their rich crystal chemistry, intermetallics display unique properties of interest for a variety of applications, including superconductivity, hydrogen storage, and catalysis. Because of the presence of metals with a wide range of reduction potentials, the controlled synthesis of intermetallics can be difficult. Recently, soft chemical syntheses such as the modified polyol and ship-in-a-bottle methods have helped advance the preparation of these materials. However, phase-segregated products and complex multistep syntheses remain common. Here, we demonstrate the use of heterobimetallic single-source precursors for the synthesis of 10–15 and 11–15 binary intermetallics. The coordination environment of the precursor, as well as the exact temperature used play a critical role in determining the crystalline intermetallic phase that is produced, highlighting the potential versatility of this approach in the synthesis of a variety of compounds. Furthermore, we show that a recently developed novel plasma-processing technique is successful in removing the surface graphitic carbon observed in some of the prepared compounds. This new single-source precursor approach is a powerful addition to the synthesis of atomically ordered intermetallic compounds and will help facilitate their further study and development for future applications.

INTRODUCTION

Atomically ordered intermetallics are stoichiometric crystalline compounds in which main group and transition metals together adopt a unique structure that differs from that of its constituent elements. In addition to their rich and diverse structural chemistry, intermetallic compounds display important properties of interest for magnetism, superconductivity, catalysis, hydrogen storage, and shape-memory applications.¹–⁸

Often grown as single crystals, intermetallic compounds are typically made from the elements by traditional solid-state syntheses at relatively high temperatures—normally exceeding 1000 °C. As a result, it can be challenging to study their formation, measure their properties, or assess their practical utilization.

Recently, progress was made in the synthesis of intermetallic compounds by mild “soft” chemistry methods (Scheme 1).⁵,¹⁰ One approach involves dissolving separate metal salts in tetraethylene glycol, which acts as a mild reducing agent under relatively modest temperatures.¹¹–¹⁹ This “modified polyol synthesis” method can be limited due to the different reduction potentials of the separate metal ions, leading in some cases to phase-segregated products rather than to the desired intermetallic compound. Very recently, a new templated approach was developed to overcome this problem.²⁰ Termed the “ship-in-a-bottle” method, it involves growing a porous oxide shell on a metal particle, followed by the addition of a second metal salt; the latter is able to permeate the porous shell and react with the original metal core, resulting in an encapsulated version of the intermetallic compound. Limitations include the multiple steps required to grow (and, if necessary, later remove) the porous oxide shell.

Single-source precursors—molecular complexes that contain all of the necessary elements required to make an inorganic material—were originally developed for the chemical vapor deposition of thin films.²¹–²⁵ Later, single-source precursors were successfully applied to the solution phase synthesis of colloidal nanomaterials.²⁵–²⁹ Because of the presence of very different metals with dissimilar electronegativities and disparate reduction potentials, complex intermetallics are an ideal target for single-source precursors (SSPs). In this paper, we
demonstrate the general synthetic utility of heterobimetallic single-source molecular precursors in the preparation of a wide range of binary 10−15 and 11−15 intermetallic compounds.

RESULTS AND DISCUSSION

Precursor Screening. A quick search in the Cambridge Structural Database30 (CSD) is a great way to find well-characterized molecular compounds comprised of specific multiple elements (Scheme 2). Hits from the initial CCSD search can then be easily grouped into families of compounds supported by common or closely related ligands; they can also be narrowed down according to the desirable structural and bonding features, such as the presence of heterometal−metal interactions. A case in point is the family of heterobimetallic compounds shown in Scheme 3, all of which are supported by the same multidentate phosphine scaffold and contain a group 10 or 11 metal directly bonded to a group 15 element.31−35 The presence of a common ligand platform allows for systematic synthetic variation by changing the identity of the metals or group substitution of the R groups on the terminal phosphine or of the X ligands. In addition, the presence of a pre-existing, heterometal−metal bond bodes well for the use of these complexes as SSPs to the synthesis of atomically ordered intermetallics.

Establishing Scope and Tunability. Thermolysis of seven representative heterobimetallic complexes with varying transition-metal (Ni, Pd, Pt, or Au), pnictogen (As, Sb, or Bi), and ancillary ligand combinations demonstrates the utility of this platform in accessing several crystalline intermetallic compounds (Figure 1). Reflecting the original stoichiometry, thermolysis of several of the precursors produces “one-to-one” (1:1) binaries (NiAs, NiSb, PdSb, PtSb) that are known to adopt a common NiAs structure type (hexagonal, P63/mmc) (Table 1). In cases where the relevant phase diagram lacks any known one-to-one phases,56 thermolysis produces other stoichiometries such as Pd3As (hexagonal, P62m) and Au3Bi (cubic, Fd3m). Interestingly, thermolysis of the cationic precursor [(CyNC)Pd(o-Ph3P-C6H4)2SbCl2][SbF6] produces Pd3Sb, whereas thermolysis of the neutral analog ClPd(o-Ph3P-C6H4)2SbCl produces Pd80Sb7 (trigonal, R3, Figure 1d vs 1e, respectively). These divergent results strongly suggest that the specific ligand scaffold and metal coordination environment of the precursor precisely determine its mechanism and rate of decomposition, raising the prospect of fine tuning the outcome of thermolysis by group substitution or “molecular programming.”37−45

Single Source versus Separate Precursors. Control experiments with separate commercially available precursors, thoroughly mixed and heated under the same conditions used to thermolyze the heterobimetallic complexes attest to the superiority of the latter. For example, NiCl2 and Ph3Sb fail to react with one another, whereas Ni(COD)2 and Ph3Sb do so...
uncontrollably, producing a mixture of NiSb and Ni$_2$Sb$_2$ (Figure 2). Therefore, thermolysis of ClNi(o-Ph$_2$P-C$_6$H$_4$)$_3$SbCl and other SSPs is a more reliable and generalizable approach to the preparation of binary intermetallics.

Precursor Decomposition and Phase Evolution. An added feature of the heterobimetallic SSPs presented here is their ability to produce different intermetallic compounds when heated to different temperatures. For example, thermolysis of ClPd(o-Ph$_2$P-C$_6$H$_4$)$_3$SbCl at 340, 450, or 600 °C produces phase-pure PtSb, a mixture of PtSb and Pt, or only Pt metal, respectively. Similarly, thermolysis of [ClPd(o-Ph$_2$P-C$_6$H$_4$)$_3$]Cl at 475 or 600 °C produces either phase-pure Pd$_2$As or a mixture of Pd$_2$As and PdAs$_2$, respectively. Finally, thermolysis of ClPd(o-Ph$_2$P-C$_6$H$_4$)$_3$SbCl$_2$ at 380, 450, or 600 °C produces phase-pure PdSb$_2$, phase-pure Pd$_2$Sb$_2$, or a mixture of PdSb and Pd$_2$Sb$_2$, respectively—see the Supporting Information.

Figure 2. Powder XRD patterns of solids obtained after thermolysis of separate vs SSPs (600 °C).

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) coupled to online MS and IR analysis of evolved gases provide additional clues about the mechanism of thermal decomposition of SSPs (Figure 3). The two most common decomposition products are phenylchloride (PhCl) and triphenylphosphine (PPh$_3$) (Table 1 and Supporting Information). These are confirmed IR peaks corresponding to C(Ar)–H stretches slightly above 3000 cm$^{-1}$ and C(Ar)–P stretches at 1100 and 1400 cm$^{-1}$. In the case of ClAu(o-iPr$_2$P-C$_6$H$_4$)$_2$BiCl, where R = iPr rather than phenyl (Scheme 3), MS and IR spectra are consistent with the evolution of di-isopropylphenylphosphine (iPr$_2$PPh) instead of Ph$_3$P. A majority of heterobimetallic complexes start to decompose between 270 and 340 °C, with the exception of [(CyNC)Pd(o-Ph$_2$P-C$_6$H$_4$)$_3$SbCl$_2$][SbF$_6$]$_2$, which starts to decompose at only 173 °C. In this case, MS and IR show that this is accompanied by loss of cyclohexene (C$_6$H$_10$) from fragmentation of the cyclohexylisocyanide (CNCy) ligand. Therefore, a change in the nature of the monodentate ligand from phosphine to isocyanide can have a significant effect in lowering the temperature of thermolysis.

Interestingly, the difference between the total mass left after thermolysis, as measured by TGA, and the theoretical total

Table 1. Thermolysis of 10–15 and 11–15 Heterobimetallic SSPs

<table>
<thead>
<tr>
<th>Precursor</th>
<th>g/mol (%)</th>
<th>T_{dec}/°C</th>
<th>XRD (°C)</th>
<th>g/mol (%)</th>
<th>Res. mass Δ%/°C</th>
<th>Gasesa</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClNi(o-Ph$_2$P-C$_6$H$_4$)$_3$As]Cl</td>
<td>988.37 (100)</td>
<td>340</td>
<td>NiAs (600)</td>
<td>133.62 (13.52)</td>
<td>43.29</td>
<td>PhCl, PPh$_3$</td>
</tr>
<tr>
<td>ClNi(o-Ph$_2$P-C$_6$H$_4$)$_3$SbCl</td>
<td>1035.20 (100)</td>
<td>315</td>
<td>NiSb (600)</td>
<td>180.45 (17.43)</td>
<td>28.17</td>
<td>PhCl, PPh$_3$</td>
</tr>
<tr>
<td>ClPd(o-Ph$_2$P-C$_6$H$_4$)$_3$]Cl</td>
<td>1036.10 (100)</td>
<td>300</td>
<td>Pd$_2$As (475)</td>
<td>287.76 (13.89)</td>
<td>40.98 (600)</td>
<td>PhCl, PPh$_3$</td>
</tr>
<tr>
<td>[(CyNC)Pd(o-Ph$_2$P-C$_6$H$_4$)$_3$SbCl$_2$][SbF$_6$]$_2$</td>
<td>1166.57 (100)</td>
<td>173</td>
<td>PdSb$_2$ + PdAs$_2$ (600)</td>
<td>(181.34) c (17.50)</td>
<td>21.53</td>
<td>C$_6$H$_10$</td>
</tr>
<tr>
<td>ClPd(o-Ph$_2$P-C$_6$H$_4$)$_3$SbCl$_2$</td>
<td>857.09 (100)</td>
<td>317</td>
<td>Pd$_2$Sb$_2$ (380)</td>
<td>1216.64 (17.74)</td>
<td>38.22 (600)</td>
<td>PhCl, PPh$_3$</td>
</tr>
<tr>
<td>ClPd(o-Ph$_2$P-C$_6$H$_4$)$_3$SbCl</td>
<td>1171.59 (100)</td>
<td>270</td>
<td>Pd$_2$Sb$_2$ (450)</td>
<td>2980.70 (17.39)</td>
<td>21.53</td>
<td>C$_6$H$_10$</td>
</tr>
<tr>
<td>ClAu(o-iPr$_2$P-C$_6$H$_4$)$_2$BiCl</td>
<td>863.35 (100)</td>
<td>319</td>
<td>Au$_2$Bi + Bi (600)</td>
<td>(811.89) d (47.02)</td>
<td>44.62</td>
<td>iPr$_2$PPh</td>
</tr>
</tbody>
</table>

aThermal decomposition onset from TGA/DSC; multiple steps were observed in all cases. bDifference between % mass left after TGA and theoretical mass from inorganic binary alone (previous column): $\Delta = \text{TGA}_\text{act} - \text{theo}_{\text{act}}$. cFrom IR–MS. dMinor impurity. eAverage mass of hypothetical 1:1 binary (unknown). fSum of masses of two binaries (1:1 + 8:3).
inorganic mass, calculated only from the content of group 10 or 11 transition-metal (M) and group 15 (Pn) elements, points to the presence of some leftover organics in a few of the intermetallic products (Table 1). Because only crystalline inorganic compounds are observed by X-ray diffraction (XRD), we conclude that these residues must be made of either an amorphous or semicrystalline material. Interestingly, despite thermolysis occurring in the absence of additional solvents or surfactants, transmission electron microscopy (TEM) shows that the intermetallic products are made of nanocrystalline particles (Figure 4 and Supporting Information).

Fate and Removal of Carbon. To probe the nature of the excess mass observed after thermolysis, we used Raman spectroscopy (Figure 5). A Raman peak observed at about 1340 cm$^{-1}$ corresponds to disordered and structural defects within the graphitic sp2 carbons (known as the D or A$_{1g}$ band), whereas another at 1570 cm$^{-1}$ corresponds to the doubly degenerate in-plane sp2 C–C stretching mode (known as the G or E$_{2g}$ band). A third Raman peak around 2680 cm$^{-1}$, indicative of layered graphene (a D-band overtone known as the 2D band) is absent from our samples. On the basis of this information, we conclude that the residual organics observed in some of the intermetallic compounds prepared here is mostly made of graphitic carbon. Critically, there is a good correlation between the amount of excess mass measured by TGA and the relative intensity of the graphitic peaks, as observed by Raman spectroscopy (Figure 5a).

The presence of associated graphitic carbon could be advantageous in some applications such as catalysts or electrochemistry. However, it can sometimes slow down the further development of materials for other applications. Therefore, we sought to remove this impurity from the surface of the intermetallic compounds. To do this, we employed plasma cleaning or "processing," which was recently shown to be superior to calcination in the removal of organic ligands and other carbonaceous materials from the surface of nanocrystal assemblies, without negatively impacting their structure. Typically, the gases employed are O$_2$ or He. Both have been shown to effectively remove carbon from the surface of various nanoparticles without detrimentally affecting their properties. Using Pd$_3$As under an O$_2$ plasma as an example, we find that the graphitic peak intensities greatly decrease after 24
h and mostly disappear after 72 h of plasma processing (see Figure Sb and Experimental Section). To avoid the risk of oxidation, He plasma could be employed too, but carbon removal was slower in this case.

CONCLUSIONS

Atomically ordered intermetallics, often grown as single crystals at relatively high temperatures, were recently made by milder soft chemistry methods. However, phase segregation or multistep reactions remain common challenges. A search in the CCSD allowed us to identify a family of heterobimetallic complexes containing the desirable SSP features, such as the presence of a common and flexible ligand platform and the presence of a pre-existing heterometal–metal bond.

Thermolysis of these heterobimetallic precursors consistently produces crystalline binary phases containing both metals, confirming our hypothesis that these complexes are ideal single-source precursors to atomically ordered intermetallics. Control studies demonstrate that SSPs are superior to separate precursors in producing the desired intermetallic products under otherwise identical reaction conditions. The specific ligand coordination environment affects the specific product phase, suggesting that the mechanism and rate of decomposition can be tuned by group substitution or molecular programming. Additionally, heating the precursors to different temperatures also affects the specific product phase, providing more opportunities for tunability.

EXPERIMENTAL SECTION

Materials. The heterobimetallic complexes,
[C2Ni(o-Ph,P-Ph,C6H4)3]Cl,31 [ClNi(o-Ph,P-Ph,C6H4)3SbCl]2,32 [ClAu(o-iPr,P-C6H4)2]BiCl,33 CI Pt(o-Ph,P-C6H4)2SbCl,34 and ClPd(o-Ph,P-C6H4)2SbCl,35 were prepared according to literature procedures. ([CyNC]Pd(o-Ph,P-C6H4)3SbCl2][SbF6]− and [ClPd(o-Ph,P-C6H4)3]Cl) are synthesized as follows. NiCl2 (anhydrous, 98%), bis(1,5-cyclooctadiene)nickel(0) (Ni(COD)2, 98%), Ph3Sb (97%), cyclohexyl isocyanide (CyNC, 98%), and AgSbF6 (99%) were purchased from ChemService and used as received. CH2Cl2 was dried over alumina using a column-based solvent purification system from MBraun. Et2O and THF were purchased from Cambridge Isotope Labs and used as received.

Synthesis. ([CyNC]Pd(o-Ph,P-C6H4)3SbCl2][SbF6]−. (o-Ph,P-C6H4)3SbCl (34 mg, 0.05 mmol) was mixed with PdCl2(COD) (14 mg, 0.05 mmol) in CH2Cl2 (4 mL). After 2 h, cyclohexyl isocyanide (8 μL, 0.06 mmol) and AgSbF6 (17 mg; 0.05 mmol) were sequentially added, and stirring continued for 16 h. The mixture was evaporated to dryness and the residue washed with Et2O taken up in CH2Cl2 (2 mL), and filtered through celite. Solvent evaporation afforded a yellow solid (33 mg, yield: 56%). Single crystals suitable for XRD were obtained by slow diffusion of Et2O into a CH2Cl2 solution at ambient temperature (21 °C or RT). 1H NMR (499.42 MHz; CD2Cl2): δ 5.33 (d, 2H, 3JH-H = 7.7 Hz), 7.95 (d, 2H, 3JH-H = 10.7 Hz, 3JH-H = 4.3 Hz), 7.72 (dd, 2H, 3JH-H = 10.7 Hz, 3JH-H = 4.3 Hz), 7.66–7.54 (m, 22 H), 3.82 (s, 1H), and 1.59–1.16 (m, 10 H). 13C{1H} NMR (125.5 MHz, CD2Cl2): δ 136.11 (s), 135.51 (s), 133.61 (s, Jc-p = 6.9 Hz), 133.30 (s), 132.37 (t, Jc-p = 3.3 Hz), 131.08 (br s), 130.32 (t, Jc-p = 5.7 Hz), 128.43 (s), 31.71 (s), 24.73 (s), and 22.41 (s). 31P{1H} NMR (121.49 MHz, CD2Cl2): δ 53.9.

[CIPd(o-Ph,P-C6H4)3]Cl. A solution of PdCl2(COD) (70 mg, 0.25 mmol) in CH2Cl2 (3 mL) was added dropwise to a stirred suspension of (o-Ph,P-C6H4)3As (212 mg, 0.25 mmol) in CH2Cl2 (ca. 5 mL) Stirling for 12 h gave a red suspension. The mixture was filtered, washed with THF (2 mL), and dried in vacuo to afford a dark red powder (55 mg, yield: 78%). Single crystals suitable for XRD were obtained by slow diffusion of Et2O into a chloroform solution at RT. 1H NMR (499.42 MHz; CDCl3): δ 8.33 (d, 3H, 3JH-H = 8.0 Hz), 8.17 (t, 3H, 3JH-H = 7.6 Hz), 7.65 (d, 3H, 3JH-H = 7.3 Hz), 7.42 (d, 3JH-H = 7.7 Hz), 7.22 (dd, 6H, 3JH-H = 8.0 Hz, 3JH-H = 7.2 Hz), 7.13–7.05 (m, 12H), and 7.02 (dd, 12H, 3JH-H = 7.5 Hz, 3JH-H = 7.3 Hz). 13C{1H} NMR (100 MHz, CDCl3): δ 135.5 (s), 135.3 (s), 134.6 (br s), 132.9 (s), 132.4 (s), 130.3 (s), and 128.8 (s). 31P{1H} NMR (202.16 MHz, CDCl3): δ 39.9.

Thermolysis. **Single Source Precursors.** TGA and DSC were carried out on a Netzsch DSC/TGA (STA449 F1) coupled with a mass spectrometer and an infrared spectrophotometer for the analysis of evolved gases. The heterobimetallic precursor (5–20 mg) was placed in an alumina crucible, inserted into the TGA–DSC furnace, and placed under an inert Ar atmosphere. The temperature was increased from 45 to 600 °C at a rate of 10 °C/min. Mass spectra from 10 to 300 amu and FT-IR spectra of the evolved gases were measured at a rate of 10 scans per min. After cooling to RT, the remaining solids were removed and analyzed by powder XRD.

Separate Precursors. Equimolar amounts (0.1 mmol each) of Ni (NiCl2, 16 mg or Ni(COD)2, 21 mg) and Ph3Sb (35 mg) were ground together in a mortar with a pestle. The mixture was transferred to an alumina crucible, placed in a tube furnace, purged with N2 gas for 30 min, and heated from 21 to 600 °C at a rate of 10 °C/min under continuous N2 flow. After cooling to RT, the remaining solids were removed and analyzed by powder XRD.

Plasma Processing. Samples deposited on a glass slide were exposed to low temperature plasma using a Harrick’s etcher (PDC-001) with PlasmaFlo gas mixer, O2 as the feed gas, and 30 W power at 500 mTorr.59–53

Structural Characterization. **Single Crystal XRD.** Single crystal XRD measurements were performed at 110(2) K using a Bruker APEX-II CCD area detector diffractometer (Mo Ka radiation, λ = 0.71069 Å). In each case, a specimen of suitable size and quality was selected and mounted onto a nylon loop. The structures were solved by direct methods, which successfully located most of the nonhydrogen atoms. Semi-empirical absorption corrections were applied. Subsequent refinement on F2 using the SHELXTL/PC package (v. 6.1) allowed location of the remaining nonhydrogen atoms.
Powder XRD. Powder XRD was collected using a Cu Kα radiation source on a Rigaku Ultima IV (40 kV, 44 mA) diffractometer. Each sample was prepared by drop-casting hexane suspensions onto a background-less quartz slide.

Spectroscopy. NMR. NMR spectroscopy was recorded at RT on a Varian Unity Inova 500 FT NMR (499.42 MHz for 1H, 125.58 MHz for 13C, 202.16 MHz for 31P). Inova 400 FT NMR (100 MHz for 13C), and an Inova 300 FT NMR (121.49 MHz for 31P). 1H and 13C{1H} NMR chemical shifts are given in ppm and referenced against SiMe4 using residual solvent grooves/mm grating.

Raman Spectroscopy. Raman spectroscopy analyses were performed using an XploRa Plus confocal Raman upright microscope, equipped with a Synapse EMCCD camera (Horiba Scientific/NJ, France). Diode lasers (532 and 785 nm) were used at 0.3 and 0.9 mW power, respectively. The 532 nm excitation laser was used for the analysis of PtSb, NiSb, Pd,As, PdSb, and Au,Bi samples, whereas the 785 nm excitation laser was used for the NiAs sample. A 50X air objective (Olympus, LMPPlanFL) with a 0.5 numerical aperture was used to collect the Raman signal at five different locations on the sample with a 30 s acquisition time and 2 accumulations. Reported spectra were recorded with a 600 grooves/mm grating.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.9b00088.

Additional TGA, DSC, MS, IR, XRD, Raman, NMR, crystallographic, and TEM data, reaction scheme, visual appearance of the precursor, optical micrograph of the intermetallic product, TGA-DSC, IR, MS of evolved gases, Raman spectra of intermetallic compounds produced by thermolysis of heterobimetallic single source precursors, asymmetric unit of [(CyNC)Pd(o-Ph,P-C,H,O)SbCl] [SbF6], displacement ellipsoid plot of [(CyNC)Pd(o-Ph,P-C,H,O)SbCl] [SbF6], and selected bond lengths and angles (PDF)

Single crystal XRD data (CIF)

(PDF)

(CIF)

AUTHOR INFORMATION

Corresponding Author
E-mail: vela@iastate.edu.

ORCID
Deyny L. Mendivelso-Perez: 0000-0001-8261-5081
Sumit Sahu: 0000-0001-7409-9275
Emily A. Smith: 0000-0001-7438-7808
François P. Gabbai: 0000-0003-4788-2998
Javier Vela: 0000-0001-5124-6893

Present Addresses
*Current affiliation: Intel Corporation, 2501 NE Century Blvd., Hillsboro, OR 97124.
†Current affiliation: Phillips 66 Research Center, Highway 60 Highway 123, Bartlesville, OK 74004.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

J.V. thanks the U.S. National Science Foundation for a CAREER grant from the Division of Chemistry, Macromolecular, Supramolecular and Nanochemistry program (1253058). F.P.G. thanks the U.S. National Science Foundation (CHE-1566474) and the Welch Foundation (A-1423). The authors thank Ludovico Cademartiri for assistance as well as Pat Thiel for comments.

REFERENCES

