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With the strain and stress comparison completed, the additional moment capacity was then 

calculated.  From the ABAQUS model the distance from the neutral axis to the prestressing strand 

was obtained, 22 in.  The distance from the neutral axis to the top of the slab was also obtained, 16 in.  

To calculate the additional moment, the force in the strand was found from the stress and multiplied 

by the distance to the centroid of the compression force.  The distance to the centroid of the 

compression force, 32.33 in., was calculated by adding the distance of the steel from the neutral axis 

to 2/3 the height of the compression depth.  The resulting compression force was estimated to be at 

2/3 the height because the additional moment capacity calculation was performed to obtain a quick 

estimate of the amount of additional capacity would be generated to verify the model was predicting 

an accurate response.  The steps taken to obtain the additional end reaction from the middle girder are 

presented below.  Table 6.1 provides the values for all three girders. 

� = 0.28 �*.320 �*. = .000875 �*.�*. 
Ö = 0.000875 �*�* ∗ 29000 	
� = 24.94 	
� 
× = 24.94 	
� ∗ 2 ∗ (0.085 �*+) = 4.24 	�,
 

�33�w iBDC*? ØE,EA�?Ù = 4.24 	�,
 ∗ 32.33 �*.12 = 11.42  	�, − �? 

�33�w #*3 ÚCEA?�B* = 11.42 	�, − �?.27 �?. = 0.43 	�,
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Table 6.1. Additional girder end reaction from ungrouted connection 

 

The additional end reactions combined (1.47 kips) are larger than the analysis prediction of 1.017 

kips, the reason for the discrepancy was the neutral axis was measured at the middle girder and used 

for all three connections.  However, the calculations show that the unstressed strand is ineffective in 

providing a positive moment connection.  The next step was to suggest a change that would make the 

connection more effective.  The suggestion was to grout the strand along the full length.  By doing 

this, the strain in the strand would increase since the gap displacement would be acting over a much 

shorter length of strand.  Since the strand would be full grouted and there are no gaps along the 

strand, the length of strand effective in resisting the gap opening would be the length of strain 

penetration.  The strain and stress was obtained from the analysis with the fully grouted strand and 

were significantly higher than previously, 0.02 in./in. and 241.7 ksi, respectively.  The resulting force 

from the strands at the middle girder cap-beam-to-girder connection was 41.089 kips.  The response 

from ABAQUS is presented below in Figure 6.43.  The capacity of the connection more than doubles, 

going from a combined end reaction of 9.948 kips to 23.415 kips.  The capacity was calculated from 

the Middle, Intermediate and Exterior girders.  The doubled middle girder capacity was not used.  The 

capacity required to be resisted for the plastic hinge was 650 kip-ft., which was half of the required 

value of 1300 kip-ft. obtained from the grillage analysis.  The proposed connection capacity will 

exceed the required values at 0.0018 rad. of cap rotation.  At that rotation, the reinforcing bars 

between the cap beam and diaphragm, along with the girder-to-diaphragm connections remain elastic.  

The cap-to-diaphragm reinforcing bars yield at 0.002 rad. and the girder-to-diaphragm connection 

in. in./in. ksi kips kip-ft kips

Middle 0.28 0.000875 25.38 4.31 11.62 0.43

Intermediate 0.18 0.000563 16.31 5.55 14.94 0.55

Exterior 0.16 0.0005 14.50 4.93 13.28 0.49G
ir

d
e

r
Add'l End 

Reaction

Add'l 

Moment
ForceStressStrainDisplacement
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yields at 0.005 rad.  The proposed unstressed strand remains elastic until a rotation of 0.0055 rad.  At 

that rotation, the moment capacity of the model was 1416 kip-ft.  That is for 2 ½ girders, not the full 5 

girders that would contribute to the formation of the plastic hinge.  Therefore, the proposed 

unstressed, grouted prestressing strand would be sufficient in providing the additional resistance for 

the plastic hinge to form in the column during a seismic loading.  With the capacity sufficient, the 

damage would be primarily in the column, as the column would be more cost effective and require a 

shorter time to repair than repairing the superstructure, which is desired by the capacity design 

philosophy. 

The comparison of girder openings was then compiled and presented in Figure 6.44.  The 

gaps are much smaller with the strand, as expected.  The strands are grouted fully along the length 

and are embedded within the girder, diaphragm and cap beam.  This allows for the strand to be fully 

effective in resisting the gap opening that was occurring in the previous analyses. 

 

Figure 6.43. Comparison of gap openings between the current connection and unstressed, fully 

grouted prestressing strand connection 
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Figure 6.44. Gap displacements of the girders with and without the proposed strand 

6.6.2 Test Unit connection response validation 

 The actual test unit protocol is to displace the girder ends in a cyclic manner in the 

longitudinal direction of the bridge to generate the moment in the cap beam from the column.  All the 

previously mentioned effects were captured by rotating the cap at the column centerline where the 

moment would be transferred to the column.  To verify that rotating the cap beam end will provide 

the same results as the testing protocol, one-half of an elastic column, with the same effective cross 

section as the grillage model used for the test unit, was modeled in the ABAQUS model.  The 

effective cross section was obtained from the idealized moment-curvature analysis response of the 

plastic hinge section.  The radius of the cross-section was taken as 11.33 in.  The modulus of 

elasticity for the elastic concrete was 3604996 psi, which corresponds to 4 ksi concrete.  With the 

column in place, the girders remained on rollers while the cap beam pinned boundary condition was 

removed.  One end of the girders was displaced laterally to the maximum displacement before the 
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model could not converge.  The modeled test unit with the column is shown in Figure 6.45 and Figure 

6.46, and the displaced shape is shown in Figure 6.47.   

The model was analyzed to compare three different connection setups.  The first setup was 

with the current, unretrofitted cap-beam-to-girder connection on both sides of the cap beam which is 

referred to as the as-built setup.  Second, the analysis was performed with one connection to include 

the unstressed, prestressing strand placed from one end of the girders to the opposite edge of the cap 

beam, referred to as the testing setup, as shown in Figure 6.38, since the test unit will be detailed in 

that way for the scaled testing.  The third analysis was performed with the strands placed the full 

length of the test unit, since the retrofitted connection will be grouted from one end of the bridge 

structure to the opposite end, referred to as the full connection. 

 

 

Figure 6.45. Angled view of test unit model with column 
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Figure 6.46. Side view of test unit model with column showing the boundary conditions 

 

Figure 6.47. Displaced shape with stress contours 

Previously, an analysis was performed to take into consideration the effect of the strand on 

the moment capacity of the girder-to-cap beam connections.  The strand was expected to greatly 

improve the moment capacity; however, the main purpose of this analysis was to capture the effects 

the strand would have on the current force distribution between the girders.  The connection 

performance of the as-built case is given in Figure 6.48 and Figure 6.49.  The performance will be 

compared to the other two connection cases. 
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The full connection case is shown in Figure 6.50 and Figure 6.51.  The as-built case is shown 

in the figures as the dashed lines.  The end reactions increase significantly on the positive moment 

side of the cap beam since the moment capacity in the connection has increased due to the 

prestressing strand.  The gap displacement was decreased significantly when compared to the as-built 

case, similar response was shown in Figure 6.44 corresponding to the cases compared previously.  

One observation to note was the resistance of negative moment side decreased due to the significant 

increase in the positive moment cap-beam-to-girder connection stiffness.  Another observation in the 

response is the exterior girder no longer resists the most load on the positive moment side in the 

testing setup case.  The unstressed strand yields at a rotation of 0.0044 rad. where the moment 

resistance from both connections was 1062 kip-ft.  The moment required to create a plastic hinge was 

650 kip-ft.  The proposed connection would be more than sufficient in developing the plastic hinge 

and remain effective in future seismic attacks.  

 

Figure 6.48. End reaction of the positive moment connect side from the as-built case 
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Figure 6.49. End reaction of the negative moment connection side from the as-built case 

 

Figure 6.50. End reaction comparison of the positive moment connection side of the as-built and full 

connection 
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Figure 6.51. End reaction comparison of the negative moment connection side of the as-built and full 

connection 

The third case, the testing setup, is shown below in Figure 6.52 and Figure 6.53 when the 

proposed connection resists the positive moment.  The analysis was performed to ensure that the 
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connection and the existing connection.   
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any further rotation of the cap beam would not occur.  On the negative moment side, the resistance 

provided in the testing setup will be less than in the full connection.  The full connection includes the 

strand which would affect the connection stiffness since the strand would resist an additional force 

when in compression.  However, through a rotation of 0.005 rad., the difference in the end reactions 

is minimal and the plastic hinge should is expected to be fully developed prior to that rotation.  The 

difference in the response after 0.005 rad. was due to the strand continuing to resist the load in an 

elastic manner as the concrete in the diaphragm between the girder and cap beam begins to crush.  

With the strand present, the additional load is resisted and the cap beam does not rotate as much.  

Therefore referring to Figure 6.53, since the full connection resists less load than the as built 

connection, the test set up also will provide less moment resistance than the as built connection.  

However, the difference in the resistance was small in magnitude and the overall behavior was 

unchanged.  The test setup should capture a comparable behavior of a bridge structure with the 

proposed unstressed prestressing strand included in the girder-to-cap-beam connection on both sides 

of the cap beam.   

 

Figure 6.52. End reaction comparison of the positive moment connection side of the testing setup and 

full connection 
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Figure 6.53. End reaction comparison of the negative moment connection side of the testing setup and 

full connection 
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Chapter 7. CONCLUSION 

The following are the conclusions that were provided from the analytical investigation presented 

in the previous chapter: 

• The damaged plasticity model in ABAQUS is capable of modeling the effect of 

confinement on concrete.  However, the unconfined material properties had to be 

modified to allow for the confined results to match closely. 

• However, the concrete material property is unable to accurately model the tensile 

behavior of concrete under flexure.  The tensile stress cannot be reduced to zero stress 

after cracking due to convergence problems. 

• The behavior of the current cap-beam-to-girder connection of an inverted-tee cap beam 

bridge with precast girders results from the capacity of the deck slab in parallel with the 

cap-beam-to-diaphragm reinforcing bars and the girder-to-diaphragm reinforcing bars 

acting in series. 

• The current connection would cause concrete in the deck to crack, the cap-beam-to-

diaphragm reinforcing bars to yield and the girder-to-diaphragm bars to yield. Once the 

reinforcing bars yield, the moment capacity achieved from the post-yielding strength of 

the bars may be enough to create a plastic hinge in the top of the column. 

• A proposed connection would ensure the moment capacity in the cap-beam-to-girder 

region to be sufficient in resisting the required moment to form a plastic hinge in top and 

bottom of the column. 



169 

• The proposed connection consists of an unstressed, grouted prestressing strand placed in 

the bottom web of the precast girders and through the cap beam.  Grouting is required to 

develop the additional moment capacity. 

• The deck of the bridge has a large affect on the behavior and distribution of forces 

between the girders.  The middle girder connection resists the most moment, according 

to the gap displacement between the cap beam and girder, but the girder end reaction 

measures the least force.  The deck develops a strut which transfers the force from the 

middle girder out to the exterior girder.  Consideration needs to be taken in the grillage 

model to capture the affect. 

• The end diaphragms on the Test Unit actively transfer the force from the exterior girder 

back into the middle girder and intermediate girder.  Consideration also needs to be 

taken in the grillage model to capture the affect. 

• The assumed girder stiffness in the grillage model influences the resulting stiffness in 

the system initially and after yielding.  The assumed girder stiffness values must be 

developed by incorporating the respective moment demands from the analysis. 

With the above recommendations for the grillage model and the proposed connection the 

large-scale testing can be performed with a degree of confidence.  The proposed connection should 

perform well to adequately develop the plastic hinge and the test setup should allow for the response 

of the two connections to be captured.  The full testing results will be presented with 

recommendations for future work in the future report (Snyder, 2010). 
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Appendix A. PROTOTYPE DRAWINGS 



176 

 

Figure A.1. Prototype drawing 1 of 7 
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Figure A.2. Prototype Drawing 2 of 7 
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Figure A.3. Prototype drawing 3 of 7 
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Figure A.4. Prototype drawing 4 of 7 
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Figure A.5. Prototype drawing 5 of 7 
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Figure A.6. Prototype drawing 6 of 7 
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Figure A.7. Prototype drawing 7 of 7
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Appendix B. TEST UNIT DRAWINGS 
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Figure B.1. Test unit drawing 1 of 7 
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Figure B.2. Test unit drawing 2 of 7 
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Figure B.3. Test unit drawing 3 of 7 
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Figure B.4. Test unit drawing 4 of 7 
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Figure B.5. Test unit drawing 5 of 7 
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Figure B.6. Test unit drawing 6 of 7 
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Figure B.7. Test unit drawing 7 of 7 
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Appendix C. MATERIAL PROPERTIES 
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4.5 ksi Concrete 

Dilation Angle 32 

Eccentricity 0.1 

fbo/fco 1.16 

K 0.666 

viscosity Paramter 0 

  E 3605000 psi 

  Compressive 

Stress (psi) 

Inelastic 

Strain 

1600 0 

2450 0.0005 

3000 0.0011 

4500 0.0035 

4400 0.0059 

3900 0.0089 

3300 0.0145 

2800 0.0195 

2400 0.0245 

2000 0.0295 

400 0.0495 

  

Tensile Stress (psi) 

Cracking 

Strain 

100 0 

200 2.77E-05 

300 5.55E-05 

400 8.32E-05 

497 0.000110125 

300 0.04 
 

7 ksi Concrete 

Dilation Angle 32 

Eccentricity 0.1 

fbo/fco 1.16 

K 0.666 

viscosity Paramter 0 

  E 4768962 

  Compressive 

Stress (psi) 

Inelastic 

Strain 

2400 0 

4800 0.0005 

7153 0.001 

7000 0.0035 

6500 0.0059 

6000 0.0089 

5000 0.0145 

4200 0.0195 

3400 0.0245 

2500 0.0295 

400 0.0495 

  

Tensile Stress (psi) 

Cracking 

Strain 

132 0 

264 2.77E-05 

396 5.54E-05 

528 8.30E-05 

627 0.000103796 

400 0.04 
 

 

a) 4.5 ksi concrete 

 

b) 7 ksi concrete 

 

Table C.1. Concrete material properties 
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Prestressing Steel 

E 28500000 

  Yield 

Stress 

Plastic 

Strain 

200000 0 

240000 0.002982 

270000 0.042982 
 

Reinforcing Bar Steel 

E 29000000 

  Yield 

Stress 

Plastic 

Strain 

60000 0 

68000 0.02 

90000 0.08 

80000 0.25 

1000 0.3 
 

 

a) Prestressing Steel 

 

b) Reinforcing Bar Steel 

 

Table C.2. Steel material properties 

 


