Oxygen insertion reactions of mixed N-heterocyclic carbene–oxazolinylborato zinc alkyl complexes

Songchen Xu
Iowa State University

William C. Everett
Iowa State University

Arkady Ellern
Iowa State University, ellern@iastate.edu

Theresa L. Windus
Iowa State University, twindus@iastate.edu

Aaron D. Sadow
Iowa State University, sadow@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/chem_pubs

Part of the Chemistry Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/chem_pubs/1158. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Oxygen insertion reactions of mixed N-heterocyclic carbene–oxazolinylborato zinc alkyl complexes

Abstract
We report the synthesis of a new mixed oxazoline–carbene scorpionate ligand, bis(4,4-dimethyl-2-oxazolinyl)(1-mesitylimidazolyl)phenylborate (PhB(OxMe2)2ImMes). Reactions of the protonated form PhB(OxMe2)2(ImMesH) with dialkylzinc compounds provide four-coordinate zinc alkyl complexes, and X-ray diffraction studies of the {PhB(OxMe2)2ImMes}ZnR (R = Me, Et) compounds show significant structural distortions involving the R groups shifting away from the carbene donor. The reaction of {PhB(OxMe2)2ImMes}ZnEt (3) and O2 provides an isolable mononuclear zinc alkylperoxide {PhB(OxMe2)2ImMes}ZnOOEt (4), which has been characterized by single crystal X-ray diffraction and 17O NMR spectroscopy.

Disciplines
Chemistry

Comments
Oxygen Insertion Reactions of Mixed N-Heterocyclic Carbene-Oxazolinylborato Zinc Alkyl Complexes

Journal: Dalton Transactions
Manuscript ID: DT-ART-04-2014-001011.R1
Article Type: Paper
Date Submitted by the Author: 19-May-2014

Complete List of Authors: Xu, Songchen; Iowa State University, Chemistry
Everett, William; Iowa State University, Chemistry
Ellern, Arkady; Iowa State University, Chemistry; Iowa State University of Science and Technology, bMolecular Structure Laboratory
Windus, Theresa; Iowa State University, Chemistry
Sadow, Aaron; Iowa State University, Department of Chemistry
Oxygen Insertion Reactions of Mixed N-Heterocyclic Carbene-Oxazolinylborato Zinc Alkyl Complexes

Songchen Xu, William C. Everett, Arkady Ellern, Theresa L. Windus, and Aaron D. Sadow*

We report the synthesis of a new mixed oxazoline-carbene scorpionate ligand, bis(4,4-dimethyl-2-oxazolonyl)(1-mesitylimidazolyl)phenylborate ([PhB(OxMe$_2$)$_2$ImMes$^-$]). Reactions of the protonated form PhB(OxMe$_2$)$_2$(ImH) with dialkylzinc compounds provide four-coordinate zinc alkyl complexes, and X-ray diffraction studies of the [PhB(OxMe$_2$)$_2$ImMes$^-$]ZnR (R = Me, Et) compounds show significant structural distortions involving the R groups shifting away from the carbene donor. The reaction of [PhB(OxMe$_2$)$_2$ImMes$^-$]ZnEt (3) and O$_2$ provides an isolable mononuclear zinc alkylperoxide {PhB(OxMe$_2$)$_2$ImMes$^-$}ZnOOEt (4), which has been characterized by single crystal X-ray diffraction and 17O NMR spectroscopy.

Introduction

Reactions of metal-carbon bonds and O$_2$ are important potential components of new approaches to green oxidative catalysis. Often these reactions can be complicated by unselective product formation from overoxidation rather than formation of metallo-alkylperoxides that might be used as mediators of selective oxidation. This challenge affects organozinc chemistry, and the vigorous reactions of zinc alkyl compounds and oxygen are often difficult to control. For example, reactions of ZnEt$_2$ and O$_2$ give Zn(=OEt)$_2$ or EtZnOEt, while ZnMe$_2$ and O$_2$ provide MeZnOMe rather than [Zn]OOR. Lithium zinicates, which can show enhanced reactivity in metalation in comparison to zinc alkyls, also react with O$_2$ to give bridging alkoxides. Only recently, the interaction of organozinc compounds and oxygen provided isolable and crystallographically characterized zinc alkylperoxide products, and this isolation often required carefully controlled preparative conditions. In addition, the products are generally multimetallic species with bridging alkoxide or alkylperoxide groups.

Recently, the synthesis of ToMZnOOR (ToM = tris(4,4-dimethyl-2-oxazolonyl)phenylborate) by reaction of ToMZnR (R = Et, i-C$_3$H$_7$, t-C$_3$H$_7$, t-Bu) and O$_2$ was described. In contrast to these alkylzinc compounds, ToMZnMe and ToMZnH are inert to oxygen up to 120 °C and 100 psi of O$_2$, even in the presence of reacting ToMZnEt/O$_2$ mixtures. In addition, tris(pyrazolyl)borato zinc alkyls are inert to O$_2$, while Tp*BuMgR (Tp*Bu = tris(3-tert-butyl)pyrazolylborate) react to give magnesium alkylperoxides. ToMMgMe reacts with O$_2$ to give ToMMgOMe species. {HB(3-tBupz)(5-t-Bupz)}AIEt$_2$ ($\text{Bupz} = \text{N}$_2C_5H_3$-t-Bu) forms uncharacterized products upon addition of excess O$_2$. On the basis of the pattern that suggests that ToM enhances the reactivity of Mg and Zn relative to Tp*Bu, we considered approaches to further enhance the reactivity of [L$_2$X]ZnMe or [L$_2$X]ZnH toward reaction with O$_2$ through modification of the ancillary ligand's electronic properties. However, strategies for this are not entirely straightforward. First, the ToM ligand is currently the only ancillary ligand that has provided monometallic zinc alkylperoxides from zinc alkyls and O$_2$. Second, in a comparative study, the infrared stretching frequencies of Tp*Re(CO)$_3$ and ToMRe(CO)$_3$ suggest ToM is the stronger donor of the two, while the $E_{1/2}$ data indicates that Tp*Re(CO)$_3$ is more easily oxidized than ToMRe(CO)$_3$. Furthermore, the electron donating ability of tris(pyrazolyl)borates, at least in comparison to isoelectronic cyclopentadienide, is known to vary across the periodic table.

Some direction comes from the proposed pathway for O$_2$ insertion into Zn–C bonds. Kinetic evidence supporting a radical chain mechanism in the reaction of ToMZnEt and O$_2$ suggests that the inertness of ToMZnMe toward O$_2$ is related to the lack of interaction of ToMZnMe and OOR. We hypothesized that increasing the electron density on the zinc center could further increase the reactivity of zinc methyl and hydride moieties. N-Heterocyclic carbenes (NHCs) are strong donors and should increase the electron density on the zinc center. Moreover, tris(carbene)borates are sufficiently strong donors to allow access to high oxidation state 3d metal complexes, such as a monometallic Fe(V) nitrido, and bis(carbene)borates have been shown to stabilize low coordinate Ni(II) centers and catalytic calcium and strontium centers. Mixed oxazolylcarbene-coordinated...
rhodium complexes catalyze carbonyl hydrosilylation, and the combination of oxazolines and N-heterocyclic carbenes may offer new possibilities in catalysis. Furthermore, an N-heterocyclic carbene zinc dihydride complex was recently isolated and shown to react with carbon dioxide, whereas ZnH₂ is unstable with respect to its elemental components and reportedly inert toward CO₂.

Hence, a modified tetradentate monoanionic scorpionate ligand in which one oxazoline ring in To⁴ was replaced with an N-heterocyclic carbene, generated from N-substituted imidazolium, was sought to affect the aforementioned reactivity of [Zn–Me toward oxygen. Typically, N-heterocyclic carbenes coordinate to a zinc(II) center as neutral L-type ligands. ²³, ²⁴ However, N-borylation gives an overall unnoticeable charge to the bis(oxazolinyl)(carbene)phenylborate, and the reaction of the imidazolium borate and dialkylzinc results in a metalation reaction to give zwitterionic complexes. Recently, a bis(carborane)-substituted NHC provided an interesting dianionic carbene ligand. ²⁵

The present study describes the synthesis of the first example of a mixed oxazoline-carbene borate ligand, bis(oxazolinyl)(carbene)phenylborate, its metalation chemistry with alkyl zinc reagents to give tetracoordinate [L₂X]ZnR, and the reactions of [L₂X]ZnR and O₂ to give the second example of an ancillary ligand that supports an isolable monomeric zinc alkylperoxide.

Experimental

General synthetic procedures. All reactions were performed under a dry argon atmosphere using standard Schlenk techniques or under a nitrogen atmosphere in a glovebox, unless otherwise indicated. Benzene, toluene, and pentane were dried and deoxygenated using an IT PureSolv system. Benzenediazoniumtetrafluoroborate was heated to reflux over Na/K alloy and vacuum transferred. Acetonitrile-d₄ was heated to reflux over CaH₂ and vacuum transferred. [PhB(OXMe)₂]₃⁺ and 1-mesitylimidazole⁻ were synthesized according to literature procedures. Dimethylzinc solution (2.0 M in toluene) was purchased from Sigma-Aldrich and transferred to flask equipped with resealable Teflon valves for storage inside a glovebox. Diethylzinc was purchased from Strem Chemicals, Inc., and stored inside a glovebox in its original Swagelok cylinder.

²¹H, ²³C{¹H}, ²⁵B, and ²⁷O NMR spectra were collected on an Avance II 600 spectrometer. ¹³N chemical shifts were determined by ¹³H-¹⁵N HMBC experiments on Avance II 600 spectrometer. ¹⁵N chemical shifts were originally referenced to an external liquid NH₃ standard and recalculated to the CH₃NO₂ chemical shift scale by adding ~381.9 ppm. Infrared spectra were recorded on a Bruker Vertex spectrometer. Elemental analyses were performed using a Perkin-Elmer 2400 Series II CHN/S in Iowa State Chemical Instrumentation Facility.

PhB(OXMe)₂(ImH)₂LiCl (1-LiCl). [PhB(OXMe)₂](LiCl)₄ (1.175 g, 3.598 mmol) was suspended in toluene (15 mL), and 1-mesitylimidazole (0.625 g, 3.36 mmol) was added to give a transparent brown solution. The reaction mixture was stirred at room temperature overnight. The product, as a white precipitate, was observed after 6 h. The resultant suspension was allowed to settle in a centrifuge for 7 min. at 4000 rpm, the top clear brown solution was decanted. The precipitate was washed with toluene (3 × 5 mL) and dried in vacuo to afford the product as a white solid (1.144 g, 2.232 mmol, 66.8%). ¹³B NMR (acetonitrile-d₃, 600 MHz): δ 8.15 (d, 1 H, 2H-N₃C₆H₄Mes), 7.31-7.18 (m, 7 H, C₆H₄), 4- and 5H-N₃C₆H₄Mes), 7.07 (s, 2 H, m-C₆H₄Mes), 3.74 (m, 4 H, CNCMe₂CH₂O), 2.33 (s, 3 H, p-C₆H₄Mes), 2.01 (s, 6 H, o-C₆H₄Mes), 1.33 (s, 6 H, CNCMe₂CH₂O), 1.24 (s, 6 H, CNCMe₂CH₂O). ¹⁵N(¹H) NMR (acetonitrile-d₃, 150 MHz): δ 179.53 (br, CNCMe₂CH₂O), 146.96 (br, ipso-C₆H₄), 139.95 (2C-N₃C₆H₄Mes), 135.85 (ipso-C₆H₄Mes), 133.33 (o-C₆H₄), 132.79 (o-C₆H₄Mes), 130.18 (m-C₆H₄Mes), 129.92 (p-C₆H₄Mes), 128.49 (m-C₆H₄), 127.09 (4,5-N₃C₆H₄Mes), 126.26 (p-C₆H₄), 123.12 (4,5-N₃C₆H₄Mes), 78.30 (CNCMe₂CH₂O), 68.14 (CNCMe₂CH₂O), 28.72 (CNCMe₂CH₂O), 28.52 (CNCMe₂CH₂O), 21.17 (p-C₆H₄Mes), 17.51 (o-C₆H₄Mes). ¹⁵B NMR (acetonitrile-d₃, 128 MHz): δ −9.2. ¹⁵N(¹H) NMR (acetonitrile-d₃, 71 MHz): δ −139 (CNCMe₂CH₂O), −180 (N₃C₆H₄Mes), −202 (N₃C₆H₄Mes). IR (KBr, cm⁻¹): 3164 w, 2962 m, 2927 w, 1658 s (CN), 1546 m, 1461 w, 1135 s, 990 m, 969 m, 767 m. Anal. Caled for C₃₀H₂₅BClLiN₂O₂: C, 65.58; H, 6.88; N, 10.93. Found: C, 67.76; H, 7.04; N, 10.56. Mp, 127-130 ºC.

PhB(OXMe)₂(Im₃H)ZnMe (2). PhB(OXMe)₂(Im₃H)LiCl (1, 0.351 g, 0.684 mmol) was suspended in benzene (10 mL), and a 2.0 M solution of ZnMe₂ (0.380 mL, 0.760 mmol) in toluene was added. The white suspension was stirred at room temperature overnight. The suspension was filtered, and the solvent was removed under reduced pressure to afford a white solid, which was triturated with pentane (2 × 10 mL) and dried in vacuo (0.336 g, 0.611 mmol, 89.3%). ¹¹B NMR (benzene-d₆, 600 MHz): δ 8.45 (d, J_HH = 7.2 Hz, 2 H, o-C₆H₄), 7.55 (t, J_HH = 7.2 Hz, 2 H, m-C₆H₄), 7.40 (t, J_HH = 7.2 Hz, 1 H, p-C₆H₄), 6.75 (s, 2 H, m-C₆H₄Mes), 6.62 (s, 1 H, N₃C₆H₄Mes), 6.06 (s, 1 H, N₃C₆H₄Mes), 3.55 (d, J_HH = 7.8 Hz, 2 H, CNCMe₂CH₂O), 3.53 (d, J_HH = 7.8 Hz, 2 H, CNCMe₂CH₂O), 3.09 (s, 3 H, p-C₆H₄Mes), 1.97 (s, 6 H, o-C₆H₄Mes), 1.08 (s, 6 H, CNCMe₂CH₂O), 1.03 (s, 6 H, CNCMe₂CH₂O), −0.52 (s, 3 H, ZnCH₃). ¹⁵N(¹H) NMR (benzene-d₆, 150 MHz): δ 188.56 (br, CNCMe₂CH₂O), 186.02 (br, 2C-N₃C₆H₄Mes), 143.39 (ipso-C₆H₄), 138.29 (p-C₆H₄Mes), 137.40 (p-C₆H₄Mes), 137.01 (p-C₆H₄), 135.26 (ipso-C₆H₄Mes), 129.47 (m-C₆H₄Mes), 127.75 (m-C₆H₄), 127.23 (p-C₆H₄), 124.61 (4,5-N₃C₆H₄Mes), 119.01 (4,5-N₃C₆H₄Mes), 80.46 (CNCMe₂CH₂O), 66.14 (CNCMe₂CH₂O), 28.40 (CNCMe₂CH₂O), 28.31 (CNCMe₂CH₂O), 21.36 (p-C₆H₄Mes), 18.19 (o-C₆H₄Mes), −16.91 (ZnCH₃). ¹¹B NMR (benzene-d₆, 128 MHz): δ −9.9. ¹⁵N(¹H) NMR (benzene-d₆, 71 MHz): δ −148 (CNCMe₂CH₂O), −171 (3N-N₃C₆H₄Mes), −190 (1N-N₃C₆H₄Mes). IR (KBr, cm⁻¹): 3123 w, 3076 w, 2906 w, 2956 s, 2926 m, 2891 m, 2824 w, 1594 s (CN), 1491 m, 1461 m, 1268 s, 1193 m, 1183 m, 1158 s, 1108 w, 1015 w, 951 m, 819 m, 704 m, 669 m, 640 m, 523 w. Anal. Caled for C₃₉H₃₇BN₃O₄Zn: C, 63.55;
\[\text{CNCMe}_3\text{CH}_2\text{O}, \ 28.04 \ (\text{CNCMe}_2\text{CH}_2\text{O}), \ 21.21 \ (\text{p-C}_6\text{H}_4\text{Me}_3), \ 18.00 \ (\text{o-C}_6\text{H}_4\text{Me}_3), \ 14.62 \ (\text{ZnOOC}_2\text{CH}_3). \]

\[\text{11B NMR} \ (\text{benzene-d}_6, \ 128 \text{MHz}) : \delta -10.0. \]

\[\text{15N}^{\text{1H}} \text{NMR} \ (\text{benzene-d}_6, \ 71 \text{MHz}) : \delta -150 \ (\text{CNCMe}_2\text{CH}_2\text{O}), -169 \ (\text{N}_2\text{C}_6\text{H}_3\text{Me}), -190 \ (\text{N}_2\text{C}_6\text{H}_3\text{Me}). \]

\[\text{17O NMR} \ (\text{benzene-d}_6, \ 81 \text{MHz}) : \delta 328 \ (\text{ZnOOC}_2\text{CH}_3), 165 \ (\text{ZnOOC}_2\text{CH}_3). \] IR \ (KBr, cm\(^{-1}\)) : 3133 w, 2966 s, 2927 m, 2888 s, 1610 s (CN), 1462 m, 1276 w, 1179 m, 1154 s, 1065 m, 968 s, 853 w, 849 w, 734 m, 704 m.

Anal. Calcd for C\(_{10}\)H\(_8\)N\(_2\)O\(_3\)Zn: C, 60.47; H, 6.60; N, 9.40. Found: C, 60.98; H, 6.64; N, 8.92. Mp, 138-141°C.

X-ray Crystallography. Single-crystal X-ray diffraction experiments for 1-4 were carried out on a Bruker diffractometer with an APEX II CCD detector using graphite monochromated MoK\(\alpha\) radiation with a detector distance of 50.6 mm. Full-sphere data collection with exposures of 30 s per frame were made with \(\omega\) scans in the range 0-180° at \(\varphi = 0, 120,\) and 240°. A semi-empirical absorption correction was based on a fit of a spherical harmonic function to the empirical transmission surface as sampled by multiple equivalent measurements\(^{30}\) using SADABS software.\(^{31}\) The experiment was optimized to collect data to a resolution of 0.71 Å, however, the datasets have been truncated to obtain the statistically relevant resolution. The positions of metal atoms were found by direct methods. The remaining atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined in the full-matrix anisotropic approximation. All hydrogen atoms were placed in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. All calculations were performed using the BRUKER APEX II software suite.\(^{42}\)

SQUEEZE was used to treat diffused electron density in solvent accessible voids for structures 1-3.\(^{43}\) Crystallographic data and structure refinement parameters for 1-4 are summarized in Table 1.

DFT calculations. All calculations were performed with the NWChem computational chemistry software.\(^{44}\) Density functional theory with the B3LYP functional was used for single point energy calculations, geometry optimization and frequency calculations.\(^{45-47}\) The 6-311G(d,p) basis set was used for H, C, N, O, and B.\(^{48}\) The Stuttgart 1997 relativistic small core basis set with effective core potential was used for Zn.\(^{49}\)

Results and discussion

The compound \(\text{PhB(OxMe}_2)_2\text{(ImMe})\) (I; \(\text{ImMe} = 1\)-mesitylimidazolium; \(\text{OxMe}_2 = 4,4\)-dimethyl-2-oxazoline) is synthesized in 67% yield by the reaction of bis(4,4-dimethyl-2-oxazolinyl)phenylborane (\(\text{PhB(OxMe}_2)_2\)) and 1-mesitylimidazolide (\(\text{ImMe} = 1\)-mesitylimidazolium) in toluene (eqn. (1)).\(^{38, 39}\) Previously, a related strategy for the synthesis of heteropodal multideterminate oxazolinylborate ligands involved addition of sodium cyclopentadienide to \(\text{PhB(OxMe}_2)_2\) to provide the compound \(\text{Na[PhB(OxMe}_2]_2(C_6H_5)}\).\(^{50}\) It appears that this ligand synthesis approach has some versatility in varying donor groups linked to oxazolines through a borate center.
NMR chemical shifts for oxazoline and both imidazolium nitrogen atoms were obtained through experiments. The oxazoline chemical shift (–139 ppm) was easily identified by correlations to its methyl groups; both imidazolium nitrogen atoms correlated with the imidazolium 2-para signals from alkyl and aryl-substituted imidazoles, although this signal is similar to that reported for silver-coordinated N-heterocyclic carbenes. For comparison, the 15N NMR chemical shifts of ImMes are –206 and –121 ppm for the 1-N and 3-N, respectively.

Crystals obtained from a concentrated toluene solution cooled to –30 °C were subjected to an X-ray diffraction study, verifying the connectivity of compound 1 as containing an imidazolide coordinated to the boron center. A trace amount of benzene facilitates the crystallization and two benzene molecules are included in the unit cell. The molecular structure is shown to be the centrosymmetric dimer (1-LiCl)2 (Figure 1); the two oxazolines of 1 are coordinated to a lithium cation, and each half of the dimer are related by a crystallographically imposed inversion center. As a result, the two imidazolium rings are located on opposite faces of the (LiCl)2 parallelogram.

The Li centers are four coordinate, and the N1-Li1-N2 angle of 93.7(1)° and Cl1-Li1-Cl1# angle of 95.12(8)° are much smaller than the N1-Li1-C11 or N2-Li1-C11 angles that range from 112.8(1)° to 123.3(1)°. As expected based on VSEPR considerations, the L1-C11-L1# angles are acute (84.88(8)°).

LiCl is carried over in variable amounts from the reaction of 2-LiOxMes and PhBCl2 for preparation of [PhB(OxMes)2]2, although [PhB(OxMes)2]2 may be purified from LiCl by repeated extractions with benzene or by column chromatography. The solution phase NMR spectroscopy above describes 1-LiCl, likely with acetonitrile-d3 coordinated to the lithium center. The presence of LiCl does not interfere in later
metalation chemistry with dialkylzinc compounds, and (1-LiCl)2 may be used in further reactions described here. Although LiCl sometimes enhances metalation chemistry, typically the LiCl is associated with the base rather than the substrate. In fact, LiCl must be removed from (1-LiCl)2 for the successful deprotonation of 1 by more aggressive bases, such as PhCH2K. That work will be described elsewhere. In addition, elemental analysis data for (1-LiCl)2 was consistently high for carbon which may reflect slightly variable quantities of LiCl and coordinated donor in 1.

Compound 1 is readily metalated at the imidazolium 2P–H by reaction with dialkylzinc compounds to give {PhB(OxMe2)ImMes}2ZnR (R = Me (2), Et (3)) in 89 and 93% yield, respectively (eqn. (2)). The most convenient preparation involves the reaction of (1-LiCl)2 as a suspension in benzene with ZnMe2 or ZnEt2. As the reaction proceeds and 2 or 3 is formed, LiCl is eliminated and the cloudy suspension becomes less opaque. Methane or ethane by-products are formed, and the zinc methyl 1H NMR resonances also correlated with the oxazoline nitrogen, proving that both oxazolines are coordinated to the zinc center in solution. Three additional crosspeaks in the 1H–15N HMBC experiment showed correlations between the imidazole 1–N (–190 ppm) and the 1H NMR resonances assigned to metaC2H2Me3 (6.75 ppm) and the imidazole 4–H and 5–H (6.68 and 6.08 ppm). Two more crosspeaks between a 15N NMR signal at –148 ppm (referenced to nitromethane). The zinc methyl 1H NMR resonances also correlated with the oxazoline nitrogen, proving that both oxazolines are coordinated to the zinc center in solution. Three additional crosspeaks in the 1H–15N HMBC experiment showed correlations between the imidazole 1–N (–190 ppm) and the 1H NMR resonances assigned to metaC2H2Me3 (6.75 ppm) and the imidazole 4–H and 5–H (6.68 and 6.08 ppm). Two more crosspeaks between a 15N NMR signal at –171, assigned to the 3–N bonded to the boron center, and the imidazole 4–H and 5–H completed the assignment of the nitrogen centers in 2. Thus, the 15N NMR chemical shift values for both oxazoline and imidazole groups change from those of (1-LiCl)2 upon metalation with zinc. In the 13C{1H} NMR spectrum, a signal at 186.02 ppm was assigned to the zinc-coordinated N-heterocyclic carbene. This chemical shift is essentially identical to that reported for HB(Im2Bu)2MgBr.78

Similar 15N and 13C NMR data describing the ancillary mixed oxazoline-carbene borate ligand were obtained for compound 3.

Compounds 2 and 3 are readily crystallized from concentrated benzene solutions at room temperature. Results from single crystal X-ray diffraction studies are presented in Figures 2 and 3. Interestingly, both 2 and 3 are solved in the space group R-3 (trigonal crystal system).
Figure 2. Rendered thermal ellipsoid diagram of \(\text{PhB(Ox}^{\text{Me}_2})\text{Im}^{\text{Mes}}\text{ZnMe}\ (2)\) with ellipsoids at 35% probability. H atoms are not depicted for clarity. Selected interatomic distances (Å): \(\text{Zn1-C13, 2.043(2); Zn1-N1, 2.104(2); Zn1-N2, 2.193(2); Zn1-C23, 1.978(2).}\) Selected interatomic angles (°): \(\text{B1-Zn1-C23, 166.8(1); C13-Zn1-C23, 138.1(1); N1-Zn1-C23, 116.08(9); N2-Zn1-C23, 120.1(1); N1-Zn1-N2, 88.27(9); C13-Zn1-N1, 92.74(7); C13-Zn1-N2, 88.27(7); C13-N4-C14-C21, 60.1(3).\)

The distinguishing feature of the molecular structures of both compounds 2 and 3 is a distortion of the zinc alkyl group from the pseudo tetrahedral position where the ligand-zinc-carbon angles would be similar and the boron-zinc-carbon angles would be 180°. Instead, the B1-Zn1-C23 and B1-Zn1-C29 angles in 2 are 166.8(1) and 164.8(1)°, respectively. The large obtuse carbene-zinc-alkyl angles in 2 and 3 are 138.1(1) and 140.01(6)°, while the nitrogen-zinc-carbon angles range from 116 – 120°. The three angles from the donors on the ancillary ligand are similar in both mixed carbene-oxazolinoylborato zinc methyl and ethyl compounds (ranging from 88 – 92°).

The mesitylcarbene donor is much larger than the oxazoline donors, and the steric properties of \(\text{[PhB(Ox}^{\text{Me}_2})\text{Im}^{\text{Mes}}]^{-}\) (solid angle, 6.26 steradians, 49.9%) are greater than those of \(\text{[To}^{\text{M}_2}]^{-}\) (solid angle, 5.51 steradians, 43.9%). The steric bulk of the mesitylcarbene donor might be responsible for the distortion. However, a few features argue against steric effects as responsible for the unusual geometry. First, there are no unfavorable interligand interactions, as determined by the above angle calculations. Second, the zinc-oxazoline and zinc-alkyl distances in 2 and 3 are similar to those in the \(\text{C}_3\text{-symmetric, undistorted To}^{\text{M}_2}\text{ZnMe and To}^{\text{M}_2}\text{ZnEt.}\) For example, the Zn–C interatomic distances in 2 and 3 are 1.979(2) and 1.978(2) Å, whereas the distances are 1.97 and 1.99 Å in To^{M}_2ZnMe and To^{M}_2ZnEt, respectively. The Zn–N interatomic distances in 2 and 3 range from 2.10 – 2.19 Å, whereas the Zn–N distances in To^{M}_2ZnEt and To^{S}_2ZnMe range from 2.06 – 2.10 Å. Thus, the coordination environment at zinc appears unremarkable with the exception of the unexpected alkyl ligand position.

Additionally, the methyl group is twisted with respect to the imidazole ring by approximately 60° in both 2 and 3. The shortest H–H distance in 2 between a mesityl ortho-methyl and the zinc methyl is 2.83 Å (the C–C distance is 3.877 Å) and these are greater than the sum of the van der Waals radii of H and Me groups. In compound 3, the ethyl ligand is oriented with the methyl group pointing into the open space resulting from the canted mesityl group. It is unreasonable that the mesityl ring would twist to form close contacts to an alkyl group on zinc, and then subsequently push the alkyl group into a distortion.

However, an electronic effect for the alkyl group’s unusual position would also be surprising in the context of a metal-centered electronic distortion because compounds 2 and 3 are closed-shell, d^{10} complexes and unlikely to be distorted, even though the structural distortion of 2 and 3 is reminiscent of the tetragonal distortion of Cu(II) in spinels. In addition, bending the ligand from a pseudo-tetrahedral position does not lower the overall symmetry of the complex.

To further probe these unusual structural features, the full structure of 2 was computationally optimized. In the gas-phase minimized structure, the methyl distortion is maintained (carbene-zinc-carbon angle, 139.4°), while the imidazole-mesityl torsion angle rotates to 84.3° (in comparison to 60.1° in the structure obtained by X-ray diffraction). From this, we conclude that the canted mesityl group does not relate to the distortion of the zinc’s coordination sphere.

To further emphasize this point, the methyl position was straightened with both gas-phase and X-ray mesityl torsion angles of 84.3° and 60.1°. In both cases, the energy of the linear
B-Zn-Me structures are higher by 0.9 and 1.2 kcal/mol, respectively, than structures with the observed B-Zn-Me angle of 167°. This small energy change related to the methyl position suggests that there are subtle electronic effects rather than steric effects in play and, indeed, it is difficult to identify any single electronic feature that is responsible for the distortion from pseudo-C₃ᵥ symmetry.

Compound 3 and O₂ (1 atm) react at room temperature overnight to give {PhB(Ox₄Me)₂}ImMes₂ZnOOEt (4) (eqn. (3)), which is isolated as a white solid in 84% yield. Other possible products, including zinc ethoxy {PhB(Ox₄Me)₂}ZnOEt or 2-O-imidazolone, were not detected in ¹H NMR spectra of crude reaction mixtures.

![Diagram of reaction between 3 and O₂ to form 4](image)

The reaction at the [Zn]-CH₂CH₃ is readily assessed by changes in the ¹H and ¹³C [¹H] NMR spectra acquired in benzene-d₆. The ¹H NMR signals for the CH₂CH₃ appeared at 0.44 ppm in 3 and 3.8 ppm in 4. The ¹³C [¹H] NMR signals for the CH₂CH₃ was upfield of tetramethylsilane in the zinc alkyl starting material 3 at –1.48 ppm, and the signal in 4 was downfield in the ether region at 71.29 ppm. The 2-C signal in the ¹³C [¹H] NMR spectra of 3 (186.24 ppm) and 4 (181.45 ppm) were barely affected by exposure to oxygen. In addition, 3 was allowed to react with ¹⁷O-labelled O₂ to give 4.¹⁷O. An ¹⁷O NMR spectrum acquired in benzene-d₆ contained two broad peaks at 328 and 165 ppm. The downfield resonance was assigned to the oxygen bonded to zinc (O₂), and the upfield resonance was then assigned to ZnOOEt (O₃); the difference Δ(δO) = 163 ppm (Δ(δO) = δO₂ – δO₃). For comparison, the ¹⁷O NMR signals for To⁶ZnOOEt were detected at 319 and 169 ppm and have a smaller difference in chemical shift (Δ(δO) = 150 ppm),¹⁴ while the signals for Tp⁴OBuMgOOEt are even more separated (Δ(δO) = δO₄ – δO₃ = 407 – 130 = 277 ppm).¹⁵

Thus, the ¹⁷O chemical shifts of 4-¹⁷O₂ are upfield for O₂ and downfield for O₃ with respect to the corresponding shifts in To⁶ZnOOEt.

Compounds 4 crystallizes from a concentrated toluene solution at ~30 °C. The solution to the single crystal X-ray diffraction study confirmed that O₃ inserted into the Zn–C bond (Figure 4). Most importantly, the formation of a ZnOOEt moiety is confirmed, and the zinc-carbene interaction is intact. The OOEt ligand is disordered over two positions, and the interatomic distances and angles must be cautiously interpreted; however, it is worth noting that the model places O3a and O3b at the same position, and this position gives the same type of distortion observed and described above for compounds 2 and 3. In addition, the C22-N4-C19-C12 torsion angle (72.3(2)°) that describes the mesityl group position is larger than in 2 and 3.

As noted above, the alkyl ligands of 2 and 3 are distorted with respect to ideal positions. However, this distortion apparently did not translate into enhanced reactivity for the zinc methyl, at least with respect to the interaction of 2 and oxygen. In fact, compound 2 is stable under O₂ (1-3 atm) up to 60 °C. The inert nature of the zinc methyl in 2 follows the reactivity of To⁶ZnMe and To⁶ZnH, which, as noted above, also are inert toward reaction with O₂.

![Thermal ellipsoid diagram of 4](image)

Figure 4. Rendered thermal ellipsoid diagram of {PhB(Ox₄Me)₂}ImMes₂ZnOOEt (4) with ellipsoids plotted at 35% probability. The OOEt heavy atom positions are disordered over two positions, and only O3a, O4a, C29a, C30a atoms of the alkyl peroxide moiety are shown. The two positions for the OOEt group were refined using similarity restraints. However, O3a and O3b positions are identical. H atoms and a disordered toluene solvent molecule are not depicted for clarity.

We were unable to isolate {PhB(Ox₄Me)₂}ImMes₂ZnOOR-Bu from the reaction of 3 and t-BuOOH. Even though a small amount of ethane was detected by ¹H NMR spectroscopy in micromolar scale reactions performed in benzene-d₆, the majority of 3 remained unreacted at room temperature over 1 day. After 2 days at room temperature, a signal at 10.86 ppm assigned to a 2H-imidazolium moiety was observed as part of the major product suggesting protonation of the carbene.

Conclusions

We have described the preparation of a new heteroleptic monoanionionic scorpionate ligand that contains two oxazoline donors and one N-heterocyclic carbene donor. There are some similarities between the tris(oxazolyl)borate [To³N] and the bis(oxazolyl)carbeneborate in the facile metatation reactions of H[ligand] by dialkylzinc reagents. Both ligands support four-coordinate monoalkyl zinc compounds. In addition, both To⁶ZnMe and {PhB(Ox₄Me)₂}ImMes₂ZnMe compounds are inert toward O₂, whereas both To⁶ZnEt and {PhB(Ox₄Me)₂}ImMes₂ZnEt react with O₂ to give isolable zinc alkylperoxides. Unlike To³ZnEt, {PhB(Ox₄Me)₂}ImMes₂ZnEt does not provide an isolable [Zn]OOR-Bu in its reaction with t-BuOOH. The ancillary ligand {PhB(Ox₄Me)₂}ImMes₂ is only the second example of a ligand that supports a monometallic zinc
alkylperoxide formed from O₂. Notably, the carbene moiety is inert toward O₂ as well as any "OOR present during the radical chain process that gives {PhB(OxMe₂)₂}Im[ZnX]. Additionally, a significant and systematic structural distortion of the compounds {PhB(OxMe₂)₂}Im[ZnX] has been observed, where the X group (Me, Et, OOEt) is distorted away from the carbene ligand in three structures determined by X-ray crystallographic diffraction studies. However, this distortion, or the substitution of an oxazoline in the Të¹ZnR compounds with a carbene donor does not appear to affect the reactivity of zinc methyl or ethyl toward O₂, either by increasing the reactivity of the zinc methyl or decreasing the reactivity of the zinc ethyl toward O₂.

Acknowledgements

This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory Catalysis and Chemical Physics programs. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This research was also supported by an allocation of advance computing resources provided by the National Science Foundation (A.D.S. and T.L.W). The computations were performed on Kraken at the National Institute for Computational Sciences.

Notes and references

42. Madison WI USA, 2008.
TOC Entry:

Formation of a zinc alkylperoxide from O\textsubscript{2}

A oxazoliny1-carbene borate zinc ethyl compound reacts with O\textsubscript{2} at room temperature to provide a monometallic zinc ethylperoxide.