Multisite Evaluation of APEX for Water Quality: II. Regional Parameterization

Thumbnail Image
Date
2017-01-01
Authors
Nelson, Nathan
Baffaut, Claire
Lory, John
Senaviratne, G.M.M.M.
Bhandari, Ammar
Udawatta, Ranjith
Sweeney, Daniel
Helmers, Matthew
Van Liew, Mike
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
AgronomyAgricultural and Biosystems Engineering
Abstract

Phosphorus (P) Index assessment requires independent estimates of long-term average annual P loss from fields, representing multiple climatic scenarios, management practices, and landscape positions. Because currently available measured data are insufficient to evaluate P Index performance, calibrated and validated process-based models have been proposed as tools to generate the required data. The objectives of this research were to develop a regional parameterization for the Agricultural Policy Environmental eXtender (APEX) model to estimate edge-of-field runoff, sediment, and P losses in restricted-layer soils of Missouri and Kansas and to assess the performance of this parameterization using monitoring data from multiple sites in this region. Five site-specific calibrated models (SSCM) from within the region were used to develop a regionally calibrated model (RCM), which was further calibrated and validated with measured data. Performance of the RCM was similar to that of the SSCMs for runoff simulation and had Nash–Sutcliffe efficiency (NSE) > 0.72 and absolute percent bias (|PBIAS|) < 18% for both calibration and validation. The RCM could not simulate sediment loss (NSE < 0, |PBIAS| > 90%) and was particularly ineffective at simulating sediment loss from locations with small sediment loads. The RCM had acceptable performance for simulation of total P loss (NSE > 0.74, |PBIAS| < 30%) but underperformed the SSCMs. Total P-loss estimates should be used with caution due to poor simulation of sediment loss. Although we did not attain our goal of a robust regional parameterization of APEX for estimating sediment and total P losses, runoff estimates with the RCM were acceptable for P Index evaluation.

Comments

This article is published as Nelson, Nathan O., Claire Baffaut, John A. Lory, G. M. M. M. Anomaa Senaviratne, Ammar B. Bhandari, Ranjith P. Udawatta, Daniel W. Sweeney et al. "Multisite evaluation of APEX for water quality: II. Regional parameterization." Journal of Environmental Quality 46, no. 6 (2017): 1349-1356. DOI: 10.2134/jeq2016.07.0254. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Collections