6-1-2019

Efficient, Scalable Syntheses of Ginkgolic Acids

Joshua L. Alterman
iowa State University, alterman@iastate.edu

George A. Kraus
iowa State University, gakraus@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/chem_pubs

Part of the [Organic Chemistry Commons](https://lib.dr.iastate.edu/chem_pubs/1166). For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Efficient, Scalable Syntheses of Ginkgolic Acids

Abstract
Ginkgolic acids were directly synthesized from 6-methylsalicylic acid using a sequence involving protection of the phenol and acid as methoxymethyl ethers and esters, lateral alkylation and deprotection under mild aqueous acid conditions.

Keywords
lateral alkylation, anti-HIV, direct synthesis

Disciplines
Organic Chemistry

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/chem_pubs/1166
Efficient, Scalable Syntheses of Ginkgolic Acids

Joshua L. Alterman¹ and George A. Kraus¹

Abstract
Ginkgolic acids were directly synthesized from 6-methylsalicylic acid using a sequence involving protection of the phenol and acid as methoxymethyl ethers and esters, lateral alkylation and deprotection under mild aqueous acid conditions.

Keywords
lateral alkylation, anti-HIV, direct synthesis

Received: January 24th, 2019; Accepted: February 21st, 2019.

Ginkgolic acid C15:1 (1) and ginkgolic acid C15:0 (2) are natural acids isolated from Ginkgo biloba (Figure 1).¹ Ginkgolic acid is a component of a botanical extract which shows pleiotropic effects including antitumor and anti-HIV activities.² The synthesis of (1) has been reported by Martin in 2018 using a Heck-based strategy.³ Several researchers used Wittig-based strategies.⁴⁻⁷ The lateral alkylation strategy presented herein, also used by Tyman,⁸ utilizes commercially available and stable reagents such as (3) and is amenable to scale up.

Protection of 6-methyl salicylic acid (3) with in situ derived chloromethyl methyl ether provided ester (4) as shown in Scheme 1.⁹ A variety of bases were evaluated for the deprotonation of (4). Ultimately, treatment of (4) with lithium 2,2,6,6-tetramethylpiperidine (LiTMP) in tetrahydrofuran (THF) at −78°C, followed by the addition of the acetylenic iodide (5),¹⁰ and warming to ambient temperature overnight afforded the alkynyl ester (6) in 60% yield. Reduction of the alkyne using hydrogen and the Lindlar’s catalyst followed by treatment with 1 N HCl to remove the protecting groups afforded (1) in 61% yield. The use of the methoxymethyl ether protecting groups increased the solubility of (4) and enables easy global deprotection to 1.

The reaction of the anion of (4) with 1-iodotetradecane followed by deprotection generated (2) in 61% yield as shown in Scheme 2. Iodotetradecane was prepared from the commercially available chloride in 90% yield using sodium iodide.

The synthesis of (1) and (2) in three or four steps constitutes a direct route to these biologically active compounds.¹¹ This direct pathway will enable the synthesis of (1), (2), and analogs for biological evaluation.

Experimental

Methoxymethyl-2-(Methoxymethoxy)-6-Methylbenzoate (4)
To 35 mL DMF was added (3) (893 mg, 5.86 mmol) and allowed to stir at 0°C for 15 minutes. Then 5 equivalents of NaH was added in 4 portions. The solution was brought from 0°C to r.t for 30 minutes, then cooled back to 0°C. Chloromethyl methyl ether, (1.4 mL, 3.14 equiv.), was added over 4 additions, every 15 to 20 minutes. Reaction was gently quenched with ice and sat. NH₄Cl and then extracted with ethyl acetate. After drying over Na₂SO₄, and concentrating in vacuo, the resulting oil was purified using silica gel chromatography (Hexane:Ethyl acetate, 3:7) affording a clear, colorless, oil (4) (1.13 g, 80% yield).

¹H NMR (400 MHz CDCl₃): δ (ppm) 7.23 (t, J = 8.0 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 5.47 (s, 2H), 5.18 (s, 2H), 3.58 (s, 3H), 3.47 (s, 3H), δ 2.34 (s, 3H).

Methoxymethyl-2-(Methoxymethoxy)-6-(Pentadec-8-yn-1-yl) Benzoate (6)
To oven dried reaction vessel tetramethylpiperidine (0.26 mL, 1.5 mmol) was added, followed by 6 mL of THF and

¹Department of Chemistry, Iowa State University, Ames, IA, USA

Corresponding Author:
George A. Kraus, Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
Email: gakraus@iastate.edu

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
was cooled to 0°C. Argon was then bubbled through the solution for ~5 minutes. Addition of nBuLi (0.60 mL, 1.5 mmol) was done dropwise, and the reaction allowed to reach room temperature (r.t.) for 25 minutes. The solution was then cooled to −78°C where (4) (238 mg, 0.991 mmol) in 2 mL of THF was slowly added and reacted for 71 minutes. Then (5) (548 mg, 1.7 mmol) in 2 mL of THF was chilled to −78°C, and syringed while cold. The reaction was let warm to room temperature overnight. The reaction was quenched with sat. NH$_4$Cl and extracted with ethyl acetate, dried over Na$_2$SO$_4$, and concentrated in vacuo. The resulting oil was purified using silica gel chromatography (Hexane:Ethyl acetate, 1:1) affording a clear, orange, oil (6) (0.260 g, 60% yield).

1H NMR (400 MHz CDCl$_3$): δ (ppm) 7.26 (t, $J = 7.9$ Hz, 1H), 7.00 (d, $J = 8.1$ Hz, 1H), 6.89 (d, $J = 7.7$ Hz, 1H), 5.46 (s, 2H), 5.18 (s, 2H), 3.56 (s, 3H), 3.47 (s, 3H), 2.59 (t, $J = 7.8$ Hz, 2H), 2.13 (m, 4H), 1.60 (m, 4H), 1.51-1.22 (m, 16H), 0.88 (t, $J = 6.5$ Hz, 3H).

(Z)-2-Hydroxy-6-(Pentadec-8-en-1-yl)Benzoic acid (1)

A flask containing (6) (208 mg, 0.48 mmol), in 5 mL of methanol, with 10 µL of quinoline, was sparged with Argon. Lindlar’s catalyst was added, and then hydrogen was bubbled through via balloon. Lindlar’s catalyst was removed over a pad of Celite, and the filtrate condensed. Treatment of the resulting oil with 1 M HCl in the presence of isopropyl alcohol for 5 hours afforded (1) (0.101 g, 61% yield).

1H NMR (400 MHz CDCl$_3$): δ (ppm) 7.09 (t, $J = 7.8$ Hz, 1H), 6.67 (d, $J = 8.1$ Hz, 1H), 6.62 (d, 1H, $J = 7.5$ Hz), 5.32 (m, 2H), 2.95 (t, $J = 7.5$ Hz, 2H), 1.96 (m, 4H), 1.50 (m, 2H), 1.32-1.18 (m, 17H), 0.84 (t, $J = 6.6$ Hz, 3H).

LRMS (ESI-QTOF) calcd. for C$_{22}$H$_{34}$O$_3$ [M-H]$^-$ 345.2435, found 345.2445.

2-Hydroxy-6-Pentadecylbenzoic Acid (2)

To an oven dried flask tetramethylpiperidine (0.34 mL, 2.0 mmol) was added, followed by 2 mL of THF and was cooled to 0°C. Argon was then bubbled through the solution for ~5 minutes. Addition of nBuLi (0.80 mL, 2.0 mmol) was done dropwise, and the flask allowed to reach r.t. for 26 minutes. It was then cooled to −78°C where (4) (291 mg, 1.21 mmol) in 2 mL of THF was slowly added and reacted for 70 minutes. 1-Iodotetradecane (778 mg, 2.4 mmol) in 2 mL of THF, was chilled to −78°C, and syringed while cold. The reaction was let warm to room temperature overnight. The reaction was acidified with 1 M HCl in the presence of isopropyl alcohol for 5 hours and extracted with ethyl acetate, dried over Na$_2$SO$_4$, and then concentrated in vacuo. The resulting solid was purified using silica gel chromatography (Hexane:Ethyl acetate, 1:1) affording a brownish orange solid (2) (0.257 g, 61% yield).

1H NMR (400 MHz CDCl$_3$): δ (ppm) 11.12 (s, OH), 7.29 (t, $J = 8.2$ Hz, 1H), 6.84 (d, $J = 8.2$ Hz, 1H), 6.72, (d, $J = 7.6$ Hz, 1H), 2.88 (t, $J = 7.5$ Hz, 2H), 1.53-1.15 (m, 26H), 0.88 (t, $J = 7.5$ Hz, 3H).

Iodotetradecane

To an oven dried flask 1-chlorotetradecane (2.35 g, 14.4 mmol) was added, followed by 50 mL of acetone and NaI (3.01 g, 20.1 mmol), and refluxed for 48 hours. Then the reaction was cooled to 0°C and extracted with hexane and concentrated in vacuo. Residual yellow discoloration was removed over a pad of silica affording a clear, colorless, oil (4.20 g, 90% yield).

1H NMR (400 MHz CDCl$_3$): δ (ppm) 3.18 (t, $J = 7.1$ Hz, 2H), 1.82 (pent, $J = 7.2$ Hz, 2H), 1.43-1.21 (m, 22H), 0.88 (t, $J = 6.8$ Hz, 3H).

Figure 1. Structures for ginkgolic acids C15:1 (1) and C15:0 (2).

Scheme 1. Synthesis of 1.

Scheme 2. Synthesis of (2).
Acknowledgments

We thank the Antimicrobial Resistance program at ISU for partial support for J.L.A.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed no financial support for the research, authorship, and/or publication of this article.

References