Silicene, Siloxene, or Silicane? Revealing the Structure and Optical Properties of Silicon Nanosheets Derived from Calcium Disilicide

Bradley J. Ryan
iowa State University, bryan@iastate.edu

Michael P. Hanrahan
iowa State University and Ames Laboratory, mph@iastate.edu

Yujie Wang
iowa State University

Utkarsh Ramesh
iowa State University, uramesh@iastate.edu

Charles K. A. Nyamekye
iowa State University and Ames Laboratory, nyamekye@iastate.edu

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/chem_pubs

Part of the Materials Chemistry Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/chem_pubs/1184. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Silicene, Siloxene, or Silicane? Revealing the Structure and Optical Properties of Silicon Nanosheets Derived from Calcium Disilicide

Abstract
Si-nanosheets (Si-NSs) have recently attracted considerable attention due to their potential as next-generation materials for electronic, optoelectronic, spintronic, and catalytic applications. Even though monolayer Si-NSs were first synthesized over 150 years ago via topotactic deintercalation of CaSi2, there is a lack of consensus within the literature regarding the structure and optical properties of this material. Herein, we provide conclusive evidence of the structural and chemical properties of Si-NSs produced by the deintercalation of CaSi2 with cold (~ −30 °C) aqueous HCl, and characterize their optical properties. We use a wide range of techniques, including XRD, FTIR, Raman, solid-state NMR, SEM, TEM, EDS, XPS, diffuse reflectance absorbance, steady-state photoluminescence, time-resolved photoluminescence, and thermal decomposition; combined together, these techniques enable unique insight into the structural and optical properties of the Si-NSs. Additionally, we support the experimental findings with density functional theory (DFT) calculations to simulate FTIR, Raman, NMR, interband electronic transitions, and band structures. We determined that the Si-NSs consist of buckled Si monolayers that are primarily monohydride terminated. We characterize the nanosheets' optical properties, finding they have a band gap of ~2.5 eV with direct-like behavior and an estimated quantum yield of ~9%. Given the technological importance of Si, these results are encouraging for a variety of optoelectronic technologies, such as phosphors, light-emitting diodes, and CMOS-compatible photonics. Our results provide critical structural and optical properties to help guide the research community in integrating Si-NSs into optoelectronic and quantum devices.

Disciplines
Materials Chemistry

Comments
This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Chemistry of Materials, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.chemmater.9b04180. Posted with permission.

Authors

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/chem_pubs/1184
Silicene, Siloxene, or Silicane? Revealing the Structure and Optical Properties of Silicon Nanosheets Derived from Calcium Disilicide

†Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
†Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
⊥U.S. Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
∥Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States

Supporting Information

ABSTRACT: Si-nanosheets (Si-NSs) have recently attracted considerable attention due to their potential as next-generation materials for electronic, optoelectronic, spintronic, and catalytic applications. Even though monolayer Si-NSs were first synthesized over 150 years ago via topotactic deintercalation of CaSi₂, there is a lack of consensus within the literature regarding the structure and optical properties of this material. Herein, we provide conclusive evidence of the structural and chemical properties of Si-NSs produced by the deintercalation of CaSi₂ with cold (~ −30 °C) aqueous HCl, and characterize their optical properties. We use a wide range of techniques, including XRD, FTIR, Raman, solid-state NMR, SEM, TEM, EDS, XPS, and thermal decomposition; combined together, these techniques enable unique insight into the structural and optical properties of the Si-NSs. Additionally, we support the experimental findings with density functional theory (DFT) calculations to simulate FTIR, Raman, NMR, interband electronic transitions, and band structures. We determined that the Si-NSs consist of buckled Si monolayers that are primarily monohydridedrinated. We characterize the nanosheets’ optical properties, finding they have a band gap of ~2.5 eV with direct-like behavior and an estimated quantum yield of ~9%. Given the technological importance of Si, these results are encouraging for a variety of optoelectronic technologies, such as phosphors, light-emitting diodes, and CMOS-compatible photonics. Our results provide critical structural and optical properties to help guide the research community in integrating Si-NSs into optoelectronic and quantum devices.

INTRODUCTION

Recent progress in the area of two-dimensional (2D) materials such as graphene† and MoS₂∥ has sparked interest within the research community due to extraordinary properties that have potential for transformative technologies. 2D materials offer superior properties to their bulk counterparts, with higher photosensitivity,† tunable band structures and band gaps,∥ and increased exciton annihilation efficiency.∥⊥ 2D semiconductors provide immense potential to satisfy the need to decrease microelectronics size; however, there are strong limitations on material composition due to desires to integrate materials which are currently established in our electronics infrastructure. 2D Si-nanosheets (Si-NSs) are expected to improve the electronic and optical properties of Si-based devices while preserving the infrastructure on which our technology resides.

Prior studies have reported the synthesis of monolayer Si-NSs and investigated their optical properties. These reports include structures such as silicane (SiH₃ or layered polysilane)∥⊥ and siloxene∥∥∥ (SiH₂(OFH)₃), both synthesized via topotactic deintercalation of Ca from CaSi₂ using aqueous HCl. In the silicane structure, intercalated Ca atoms are removed, leaving a buckled Si backbone with each Si atom terminated with H.⊥⊥ There are various reported structures of siloxene: Wöhler siloxene (i.e., cis-hydroxysilicane) is terminated with OH on one side and H on the other,∥∥ while Kautsky siloxene consists of Si-O-Si rings connected by SiOSi bridges or as 1D Si-Si chains connected by SiOSi bridges.∥∥⊥ However, the literature lacks conclusive evidence to sufficiently describe the structure and connectivity of these Si-NSs.

There are several reports on the synthesis of Si-NSs obtained from the deintercalation of CaSi₂ with aqueous HCl∥∥⊥–41 however, the reported structures are often inconsistent. For example, recent reports indicate that deintercalation of CaSi₂ leads to a Si-NS structure that can be described by a Si backbone that is terminated with H, O, OH, and alkyl groups; conversely, other reports conclude that deintercalation leads to Kautsky-type siloxene, or even 2D sheets consisting of a silicon-oxide framework that is terminated with OH groups. Other reports claim that the product is hydrogen-terminated Si-NSs. These discrepancies have motivated our work to explore the structural properties of the Si-NSs obtained from deintercalating CaSi₂ with aqueous HCl.
In this work, we characterize the structural and optical properties of Si-NSs using a variety of diffraction, spectroscopic, thermal, and microscopy techniques to elucidate the structure, composition, and optical properties of the Si-NSs. We use density functional theory (DFT) calculations of FTIR, Raman, NMR, interband electronic transitions, and band structures to support our experimental conclusions. The results of this study suggest that the Si-NSs consist of a buckled Si monolayer that is mostly monohydride terminated, resembling silicane, with a relatively small quantity of chloride and hydroxide termination.

Results & Discussion

The Si-NSs were synthesized by deintercalating CaSi\textsubscript{2} in aqueous HCl at \(\sim -30 \) °C. Scanning electron microscopy (SEM) images of the Si-NSs (Figure 1c-d) reveal a morphology that resembles loosely-stacked sheets that are not atomically-registered with each other, consistent with deintercalation of Ca2+. This lack of registry prevents isolation of extended crystals of stacked Si-NSs, and is corroborated by the photograph in Figure 1a, which shows a large volume expansion accompanying deintercalation, indicating an increase in Si-NS interlayer separation. Transmission electron microscopy (TEM) images show the presence of stacks and few-layer wrinkled sheets (Figures 1e and S1). The decrease in particle size after deintercalation likely arises from agitation provided by stirring during the deintercalation step (Figure 1b-c).

FTIR spectra are shown in Figure 2b. Experimental (DFT) silicon-hydride modes occur at 2108 (2136),40,47 897 (897/903),50 877,50,61 742,47 635 (601),40,50,61 and 512 (511) cm^{-1};42 the peaks at 897 and 877 cm^{-1} correspond to SiH\textsubscript{2} modes.47,60,61 Many previous reports attributed the peak at \(\sim 512 \) cm^{-1} to Si-Si, contrary to our work and a prior isotope vibrational study.62 DFT demonstrates this peak as a wag of SiH (see attached GIF files in the Supporting Information for visualization of the vibrational modes). Oxygen-containing FTIR modes occur at 797 (SiO),62 1027 (SiO\textsubscript{2}),60,67 2250 (O\textsubscript{2}SiH\textsubscript{2}),60,67 and 3595 cm^{-1} (SiOH).35,47 Features at 3362 and 1631 cm^{-1} are attributed to intercalated and/or adsorbed H\textsubscript{2}O; Raman spectra exhibit no such features, as Raman scattering of H\textsubscript{2}O is weak.51 Thermal decomposition also suggests the presence of H\textsubscript{2}O (Figures S21 & S22). DFT predicts SiOH and SiO modes at 3740 and 774 cm^{-1},41,42 agreeing with literature.65,66 The only common SiO feature in Raman and FTIR is the feature at \(\sim 900 \) cm^{-1}, which might also arise from SiOH modes, as suggested by DFT. The CH\textsubscript{2} features observed at ca. 1360-1460 and 2850-3000 cm^{-1} do not arise from Si-OCH\textsubscript{3}, as the spectrum lacks the strong CO stretch at \(\sim 1182 \) cm^{-1}.60

We used DFT to simulate the vibrational modes of the Si-NSs. Several structures were geometrically relaxed into their most thermodynamically stable configuration. We hypothesized that SiH\textsubscript{2} (edge of a sheet), SiH\textsubscript{3} (corner of a sheet), SiOH, and SiCl functional groups could be attached to the Si-NSs; this hypothesis was based on our NMR data (vide infra) and knowledge of finite sheets (edges and corners). These structures consisted of monolayer Si-NSs containing Si\textsubscript{n}=SiH\textsubscript{n} (1 ≤ n ≤ 3), Si\textsubscript{2}SiH\textsubscript{3}SiH\textsubscript{3}Cl (0 ≤ n ≤ 2), and/or SiOH groups (Figure S24). For each structure, the spatial location of each ion was allowed to relax, minimizing the forces on each atom and the overall energy of the system as defined by the Kohn-Sham62 equations. The DFT-simulated Raman and FTIR spectra (Figure 2) show a linear combination of
nanosheets containing SiH, SiH₃, SiCl, and SiOH groups (also see Figure S25). Note that the linear combination of structures was used for Raman and FTIR spectra.

Comparing experimental and DFT data suggests there are few SiH and SiH₃ groups relative to SiH. DFT suggests the FTIR feature at 572 cm⁻¹ corresponds to SiCl, agreeing well with prior nanocrystal work.²⁹ The presence of Cl is confirmed with EDS, X-ray photoelectron spectroscopy (XPS), and FTIR analysis of gaseous thermal decomposition byproducts (Figures S5-S10, S20, and S21 and S22, respectively). Thermal decomposition shows an evolution of HCl at ~350 °C. We roughly estimate the ratio of Si:Cl to be 6.7:1, agreeing with a prior report;²⁹ however, it is unclear if the presence of Cl solely arises from SiCl or if intercalated HCl also contributes to the Cl signal. The presence of residual HCl or CaCl₂•xH₂O is not observed in Raman or FTIR (Figure S18).

![Figure 2](Figure 2.png)

Figure 2. (a) Raman and (b) FTIR spectra of the Si-NSs. See Table S2 (Table S3) for complete Raman (FTIR) peak assignments. Peaks labeled in blue were intentionally not modeled with DFT. Note that the x-axes are plotted on log scale, increasing the apparent width of all peaks at low wavenumber while compressing the width of all peaks at high wavenumber.

While the FTIR data exhibits an intense SiOSi feature, it is important to note that the relative intensity of an FTIR feature does not correlate to the relative concentration of the bonds participating in that particular mode. The intensity is, however, directly proportional to the square of the change in dipole moment (induced by the IR-excited phonon) with respect to the normal-mode coordinate.⁷² For a given vibrational mode, i, the intensity of an FTIR feature, I_{FTIR}^i, can be calculated by squaring the sum over all atoms, the product of the Born effective charge tensor, $\mathbf{Z}_{\alpha\beta}(s)$, and the atomic-displacement vibrational eigenvector, $\mathbf{e}_\beta(s)$, as shown in Equation 1.

$$I_{\text{FTIR}}^i = \sum_{\alpha=1}^{3} \sum_{s=1}^{3} \mathbf{Z}_{\alpha\beta}(s) \mathbf{e}_\beta(s)^2$$

In Equation 1, $\mathbf{Z}_{\alpha\beta}(s)$ is the proportionality constant relating the polarization in the α-direction induced by the displacement of atoms in the β-direction, $\mathbf{e}_\beta(s)$ is the spatial displacement of atoms along the β-axis, and s is an index running over all atoms belonging to the ith vibrational mode. Thus, the FTIR intensity is a function of the number of atoms involved in a vibrational mode, the magnitude of the distance each atom moves within a vibration, and the magnitude of the elements of the Born effective charge tensor. In Table S5, the Born effective charge tensor for each atom for characteristic vibrations are shown for α-quartz, silicane, and cis-hydroxysilicane.

For SiO bonds, the relatively large magnitude of the diagonal components of $Z_{\alpha\alpha}(Si)$ and $Z_{\alpha\alpha}(O)$ gives rise to intense FTIR features. We calculate that, on a unit cell basis, the intensities of the vibrational modes of SiO and SiOH in cis-hydroxysilicane at 773 and 3741 cm⁻¹ are ca. 5 and 2 times greater than its SiH mode at 2118 cm⁻¹. To this end, we compared the DFT predictions of FTIR intensities of the SiO features in α-quartz to the characteristic modes in silicane and cis-hydroxysilicane. These results demonstrate that, on a unit cell basis, the FTIR-active SiO modes in α-quartz are ca. 9 and 29 times greater than the SiH features in silicane at 511 and 2136 cm⁻¹, respectively. Similarly, the predicted SiO intensities of a-quartz are ca. 14, 70, and 29 times greater than the SiO, SiH, and SiOH features in cis-hydroxysilicane at 773, 2118, 3741 cm⁻¹, respectively. Thus, we conclude that the intense SiOSi feature arises from the relatively large induced dipole moment of SiO bonds in this material—not from a high concentration of SiO bonds. The SiOSi bonds likely originate from oxidation during deintercalation and washing steps.

High-resolution magic angle spinning (MAS) 1H and 29Si solid-state NMR spectroscopy were used to investigate the structure of the Si-NSs. The 1H NMR signals at 3.9 and 6.0 ppm are assigned to SiH and SiOH,⁷⁴ while the signal at 1.3 ppm is likely SiSiOH (Figure 3a). A 1H–1H dipolar double quantum single quantum homonuclear correlation (DQ-SQ) spectrum demonstrates SiH correlate to themselves and all other 1H signals, indicating that all these hydrogen sites are proximate within a Si-NS (Figure S26), consistent with the 2D 29Si DQ-SQ spectrum (vide infra).

![Figure 3](Figure 3.png)

Figure 3. (a) MAS 1H solid-state NMR spectrum ($\nu_{\text{rot}} = 25$ kHz). (b) Comparison of CPMAS (CP contact time of 6 ms) and 1H–29Si refocused INEPT (τc and τ¢ mixing times of 1.44 ms); dashed lines are to guide the eye. (c) Natural abundance 29Si–29Si scalar DQ-SQ spectrum acquired with τ_{rot} (MAS frequency) of 6 ms (10 kHz); dashed red lines indicate chemically bonded 29Si spins. (d) INEPT τc and τ¢ evolution curves with a fit of τ¢ curve to determine J_{SiSi}.⁷⁴

We justify the SiSiOH assignment in the following. The assignment at 1.3 ppm is in good agreement with isolated silanol groups on the surface of silica, which resonate near 1.8 ppm. Further, the 1.3 ppm 1H signal is absent from the 1H–29Si INEPT HETCOR spectra.
To probe the interactions of electromagnetic radiation with silicane, we compared experimental absorbance data with DFT predictions of the extinction coefficient, ε, which is derived from the dielectric function, ε_{DFT}. The dielectric function is a complex-valued 3×3 tensor with real and imaginary parts, $\varepsilon_{\text{DFT}}^{(1)}$ and $\varepsilon_{\text{DFT}}^{(2)}$, respectively, such that $\varepsilon_{\text{DFT}} = \varepsilon_{\text{DFT}}^{(1)} + i \varepsilon_{\text{DFT}}^{(2)}$. Here, α is the direction of the dielectric response due to an electric field applied in the β-direction. The imaginary portion of ε_{DFT} is calculated by Equation 2, and depends on the energy of the electromagnetic radiation, E.

$$
\varepsilon_{\text{DFT}}^{(2)}(E) = \frac{4\pi\varepsilon_0^2}{V} \sum_{\mathbf{q}} \sum_{\mathbf{k}} 2\cos(\delta(E_{\mathbf{k} - E_{\mathbf{q}}}) - E) \times \left(|u_{\mathbf{k} \alpha \beta}|^2 + |u_{\mathbf{q} \alpha \beta}|^2 \right)
$$

The summation runs over all conduction and valence bands for all k-points within the first Brillouin zone (ε, v, and k, respectively). q is the Bloch wave vector of the incident wave, V is the volume of the unit cell, and δ is the Dirac delta function. The product of the bra-ket terms can intuitively be thought of as the probability of an electron being excited from a conduction to a valence band at a wave vector, k. The periodic coefficients of the Bloch waves are represented by $u_{\mathbf{k} \alpha \beta}$ and $u_{\mathbf{q} \alpha \beta}$. The unit vectors along the three principal directions are represented by e_α and e_β.

Qualitatively, Equation 2 sums over all bands in the first Brillouin zone, all transitions from a conduction to a valence band with energy equal to that of the incident electromagnetic radiation, weighted by the probability of the transition occurring. With $\varepsilon_{\text{DFT}}^{(2)}$, the real portion of the dielectric function, $\varepsilon_{\text{DFT}}^{(1)}$, can be calculated with the Kramers-Kronig transformation. The extinction coefficient (Figure 4a) is calculated with Equation 3. Here, we assumed that the experimental sample is comparable to a uniformly dispersed sample without any preferential direction, and as such, we calculated the direction-averaged extinction coefficient by using the trace of $\varepsilon_{\text{DFT}}^{(1)}$ and $\varepsilon_{\text{DFT}}^{(2)}$.

$$
\varepsilon = \sqrt{0.5 \left(-\text{Tr} \left(\varepsilon_{\text{DFT}}^{(1)} \right) + \sqrt{\text{Tr} \left(\varepsilon_{\text{DFT}}^{(1)} \right)^2 + \left(\text{Tr} \left(\varepsilon_{\text{DFT}}^{(2)} \right) \right)^2} \right)}
$$

A Kubelka-Munk (KM) transformation of diffuse reflectance demonstrates that the Si-NSs have optical features similar to previous reports (Figure 4a).11,13,82 Aauc analysis of the KM data (Figure S33) indicates a direct band gap of 2.53 eV; DFT predicts an indirect band gap of 2.16 eV that is energetically close to a direct transition at 2.26 eV. DFT predictions of the extinction coefficient (Figure 4a) demonstrate a shoulder between ~2-3.5 eV—a feature not present in the experimental KM data—which is attributed to the conduction band with energies below ~3 eV (Figure 4c). The onset of ε is attributed to the direct transition from $\Gamma_1 \rightarrow \Gamma_5$. The sharp increase of ε at ~3.2 eV correlates to the increased density of states (DOS) at ~3-2.4 eV and the optically-allowed transition from $M_1 \rightarrow M_3$ (transition of 3.6 eV). We therefore conclude that the experimental Si-NSs have a larger DOS at the absorption onset when compared to the simulated models; we speculate that this increased DOS arises from defects. It has been reported that hydroxyl groups11,28,52-53 and chlorination60,71 can induce a direct transition within Si-NSs (also see Figure S34c). We ascribe the KM peak at 3.2 eV to the electronic transition associated with the Si framework, corresponding to the ε peak at ~4 eV, arising from the direct transition near M and the Si(p) \rightarrow Si(p) transition from $\Gamma_{11} \rightarrow \Gamma_{12}$ (transition of 3.91 eV).

A direct excitation (DE) 29Si NMR spectrum obtained with a 30 minute recycle delay showed similar signals to those in the CPMAS and INEPT spectra, and a new intense 29Si signal at ~80 ppm attributed to bulk-Si impurities (Figure S29 and Table S7). Integration of the DE NMR spectrum suggests that ~30% of the NMR signals are from bulk-Si impurities; however, we note that this spectrum is not absolutely quantitative because 29Si can have spin-lattice relaxation times (T_1) between minutes and days.

A 2D 29Si scalar DQ-SQ spectrum was obtained with the refocused INADEQUATE pulse sequence45 to determine whether the 29Si signals at ±10 and ~70 ppm arise from Si atoms within the NSs (Figure 3c). The DQ-SQ spectrum shows intense auto-correlation at ~1 ppm in the DQ (SQ) dimensions, confirming Si-Si bonds between SiH groups within the sheets. The INADEQUATE spectrum also shows that signals at ±10 ppm arise from Si atoms that are directly bonded to SiH groups. The 29Si signals at ±10 ppm are absent from 1D and 2D 1H INEPT spectra, suggesting they lack SiH bonds. Thus, we conclude that the 29Si signals at ±10 ppm likely correspond to Si-SiX groups (where X = H). These signals could arise from Si, SiCl or Si, SiOH; however, no auto-correlations are observed for the Si-SiX signals, suggesting any SiX groups are isolated within the sheets and there are few Si-XiX bonds.
Photoluminescence (PL) spectra were collected from a dispersion of Si-NSs in methanol (Figure 4b). The PL maximum occurs near the absorption onset, which is characteristic of direct band gap behavior. The peak is centered at 500 nm (2.48 eV), closely matching the band gap estimated using Tauc analysis, assuming a direct band gap (Figure S33). The PL spectrum is asymmetric and has a full width at half maximum (FWHM) of ~0.37 eV. By fitting the PL to two Gaussian-Lorentz product distributions, we deconvoluted the spectrum into two distributions: a higher energy peak centered at 498 nm with a FWHM of 0.31 eV, comprising 64% of the total curve, and a lower energy peak centered at 543.9 nm with a FWHM of 0.48 eV, comprising 36% of the total curve; see Table S10 for peak fitting parameters.

Time-resolved PL (TRPL) suggests a biexponential decay, with a shorter lifetime of ~4.1 ns and a longer lifetime of 110 ns (Figure 4b, inset); such short lifetimes provide additional evidence of direct band gap emission.

![Image](image_url)

Figure 4. (a) KM (black) and simulated extinction coefficient (red), photo inset is of the sample dispersed in methanol under ambient lighting. (b) Photoluminescence and its deconvolution; excitation wavelength is 375 nm, photo inset is of the dispersed sample under UV illumination, graph inset is TRPL. Green and blue dashed lines are the peak curve, and a lower energy peak centered at 543.9 nm with a FWHM of 0.31 eV, comprising 64% of the total curve; see Table S10 for peak fitting parameters. Time-resolved PL (TRPL) suggests a biexponential decay, with a shorter lifetime of ~4.1 ns and a longer lifetime of 110 ns (Figure 4b, inset); such short lifetimes provide additional evidence of direct band gap emission.

We estimate the PL quantum yield (PLQY) of a dispersion of the Si-NSs in methanol to be ~9.3%; however, the preparation of non-scattering dispersions limits our ability to accurately determine this value. Previous work determined a PLQY of 9%. Further experimental investigations on the influence of terminal SiOH and SiCl groups are needed to gain a better understanding of the origin of emission.

Figure 4c shows the band structure and projected density of states (pDOS) of silicane. The color of each band enables visualization of the hybridization of each band at a given wave vector. The Si(p) orbitals (blue line in the pDOS) contain the pₓ, pᵧ, and pₜ orbitals. It is observed that the H contribution to the band structure (red in the pDOS) includes bands at ca. ~2.5 and 4 eV. Sharing of electrons between the H(s) and Si(p) orbitals results in hybridization in the DOS, as indicated by the purple lines in the band structure. We find that H is bound to Si through the Si(p) orbitals.

We sought to determine the cause of the direct band gap-like behavior of silicane. Interestingly, the band structure does not agree with the results that are expected from the Brus equation, which describes how the energies of bands with different effective masses change with confinement. Our results indicate that silicane’s lighter, direct transition bands increase in energy slower than the heavier, indirect transition bands as confinement increases. We hypothesize that H-termination of Si-NSs causes the lighter bands to move down in energy relative to the CBM of (Figure S34a-b). Interestingly, the frontier orbitals at the CMB₇ exists around the H atoms (Figure 4d and 4e), but H contributions do not appear in the bands or DOS at either the CBM or CBM (Figure 4c). The electrons associated with the CBM₇ that occupy the space around the H atoms likely result from the larger electronegativity of H relative to Si. We note that one aspect that is lacking in our computational model is the contributions of Si-NS edges, corners, and Cl-termination to the optical properties, this should be a topic of future research.

CONCLUSION

In summary, we characterized the structural, compositional, and optical properties of Si-NSs obtained from deintercalating CaSi using cold (~ -30 °C) aqueous HCl. We determined that the Si-NSs consist of a buckled Si monolayer that is mostly monohydride terminated, resembling silicane, with a relatively small quantity of chloride and hydroxide termination. We also conclude that many features observed in Raman, NMR, EDS, and XRD arise from impurities that originate from the precursor. Thus, we advise that, when using commercially-sourced CaSi, researchers should carefully and judiciously distinguish which properties arise from the impurities versus the Si-NSs. We determine that the relatively intense FTIR signals from oxygen-containing functional groups do not correlate to large amounts of oxidation, as the FTIR intensities cannot be quantitatively interpreted as concentration without knowing the absorption cross section, or the Born effective charge tensors and atomic displacements associated with each vibrational mode. Our results from UV-visible absorbance measurements, steady-state PL, and time-resolved PL correlate well with DFT simulations, and point toward direct band gap-like behavior. The Si-NSs have relatively short carrier lifetimes and blue-green PL with narrower linewidth compared to other forms of nano-Si such as Si nanostructures or porous Si. This work elucidates the structure of deintercalated CaSi by providing conclusive experimental data that is supported by DFT calculations. This new understanding may help guide the integration of Si-NSs into next-generation electronic, optoelectronic, and quantum devices.
EXPERIMENTAL METHODS

All data were collected under ambient conditions unless otherwise specified.

Chemicals. Calcium disilicide (CaSi₂, Sigma Aldrich, technical grade), 36-38% hydrochloric acid (HCl(aq), Fisher, ACS plus grade), methanol (Sigma Aldrich, ACS reagent grade), toluene (Sigma Aldrich, anhydrous), acetone (Fisher, Certified ACS), isopropanol alcohol (Fisher, HPLC grade), and detergent (Decon™ Contrex™).

Calcium chloride dihydrate (CaCl₂·2H₂O, Fisher, Certified ACS) were all used without any additional purification unless otherwise noted. Deionized water was obtained in-house with a Milli-Q Advantage A10 Water Purification System with a resistivity of 18.2 MΩ·cm. Glass substrates were manufactured by Corning Eagle XG and purchased from Thin Film Devices. Carbon paint (DAGGTG502, Product No. 16056) was purchased from Ted Pella.

Synthesis of Si-NSs. In a glovebox filled with N₂, 1.707 g of CaSi₂ was added to a round bottom, three-necked flask, and attached to a Schlenk line using standard air-free techniques. In a separate flask, 142 mL of concentrated HCl(aq) was degassed via three freeze/pump/thaw cycles with liquid N₂. After the last thaw cycle, the HCl was chilled to −20 °C, and injected into the flask containing the CaSi₂ after which the flask was immediately flushed with N₂. The reaction was kept under N₂ and subsequently sealed with a piece of Kapton tape to prevent oxidation during data acquisition, which occurred over the course of 24 hours (range = 3 to 80° 2Theta, step size = 0.020° 2Theta, at 22 seconds per step). Data were collected 3.8 months after the Si-NSs were isolated.

Transmission Electron Microscopy. TEM images were recorded using an FEI Tecnai G2-F20 instrument operated at 200kV. TEM preparation was performed by sonicating the sample in degassed, anhydrous toluene before depositing on lacey carbon grids in a glovebox filled with N₂. Data were collected between 3.9 and 4.2 months after the Si-NSs were isolated.

Diffuse Reflectance. Diffuse reflectance data were collected with a Perkin Elmer Lambda 750 Spectrophotometer equipped with a Labsphere 100 mm integrating sphere; these data were transformed with the Kubelka-Munk equation. The sample was dispensed onto the adhesive side of clear packaging tape (3M Scotch™ Packaging Tape), and reflectance of the bare Si-NSs was taken. Data were collected 5.6 months after the Si-NSs were isolated.

Fourier Transform Infrared Spectroscopy. FTIR data were collected with a Nicolet iS5 FTIR Spectrometer with an iD5 Attenuated Total Reflectance (ATR) accessory. Data were collected 5.9 months after the Si-NSs were isolated.

Raman Spectroscopy. Raman spectra and bright-field optical microscopy images were collected using an XploRa Raman confocal upright microscope (HORIBA Scientific, Edison, New Jersey). Approximately 20 mg of the sample was placed onto lens paper positioned on top of a glass cover slide (to ensure the powder did not disperse across the bare glass). A 6.97 mW, 532 nm solid-state diode laser producing a 16.8 ± 0.3 µm laser spot size passing through a 300 µm confocal pinhole was focused on the sample surface by means of an Olympus 10× magnification objective (0.25 numerical aperture, Olympus, Melville, NY). The signal was collected by a Synapse EMCCD sensor operating at −70 °C and a grating of 1200 grooves/mm, allowing a spectral resolution of 5 cm⁻¹. The acquisition time was 60 seconds. Data were collected 3.7 months after the Si-NSs were isolated.

Thermogravimetric Analysis and Differential Scanning Calorimetry. TGA/DSC data were collected in an alumina (Al₂O₃) crucible, with a flow rate of 10 mL/min of either N₂ or synthetic air, and ramp rate of 10 °C/min. Synthetic air consisted of a blend of 20 mol% O₂ and 80 mol% N₂. The TGA/DSC instrument was a Netzsch Jupiter STA449 F1. The exhaust gases of the TGA/DSC were analyzed for gaseous decomposition byproducts. FTIR was a Bruker Tensor 37, and the MS was an AEIelos QMS 403 D. Data were collected 1.2 months after the Si-NSs were isolated.

Scanning Electron Microscopy. SEM images and energy dispersive X-ray spectroscopy (EDS) data were collected with an FEI Te-2000. Samples were prepared in a glovebox filled with N₂ by directly painting an aluminum SEM stub with carbon paint, and immediately depositing the sample onto the wet carbon paint. The sample was kept under N₂ until immediately before loading into the SEM.

Photoluminescence. PL data were collected on a Horiba-Jobin Yvon Nanolog scanning spectrophotometer using degassed, anhydrous methanol. Sample was prepared in the glovebox filled with N₂. Data were collected 5.2 months after the Si-NSs were isolated.
Time-Resolved Photoluminescence. TRPL lifetime measurements were performed using a custom-built confocal scanning microscope utilizing a time-correlated single photon counting method. Briefly, a 405 nm laser diode (QLD-405-100S, QPhotons) with 4 ns pulse duration and a repetition rate of 1 MHz was used as the excitation source. TRPL was collected using a 50x long working distance objective in reflection geometry and filtered by a 500 nm long pass filter and monochromator (NeoChromax 250, Dawool Attotics Co., Ltd.). Photons were counted with a Hamamatsu Microchannel Plate-Photomultiplier Tube (MCP-PMT). Samples were prepared in a glovebox filled with N$_2$ by drop casting a suspension of the Si-NSs in anhydrous toluene onto a freshly cleaned glass substrate. Glass substrates were cleaned by ultrasonication in detergent water, followed by rinsing with deionized water and subsequent ultrasonication in acetone followed by isopropyl alcohol. Then, the substrates were blown dry with ultra-high purity N$_2$ followed by treatment with O$_2$ plasma. The substrates were then loaded into a glovebox. All three sonication steps were performed for 20 minutes each. Data were collected 5.0 months after the Si-NSs were isolated.

X-ray Photoelectron Spectroscopy. XPS measurements were performed using a Kratos Amicus/ESCA 3400 instrument. The sample was irradiated with 240 W unmonochromated Al Ka x-rays, and photoelectrons emitted at 0° from the surface normal were energy analyzed using a DuPont type analyzer. Data were collected 10.8 months after the Si-NSs were isolated.

COMPUTATIONAL METHODS

All calculations were performed via plane wave DFT in VASP,53,44 and all structures were subject to the same computational treatment, unless otherwise specified, as described in the following. Exchange-correlation functionals were described by the PBE-GGA,92 PAW91,43 potentials approximated core electrons. Unit cell shape, volume, and atomic positions were relaxed (ISIF = 3) until all forces and the self-consistent field energies were less than 0.01 eV/Å and 1E-5 eV, respectively. Brillouin zone k-point spacing was at most 0.13 Å$^{-1}$ with an automatic Monkhorst-Pack grid.41 Kinetic energy cutoffs were 550 eV. Raman, FTIR, extinction coefficients, bands, and orbitals were all calculated after geometric relaxation. Real-space orbitals and crystal structures were visualized with VESTA.95 Band structures and projected density of states (pDOS) were plotted in MATLAB using custom-written code. Due to computational cost, calculations of FTIR, Raman, Bands, pDOS, and orbitals were not performed on the finite NSs described in the Supporting Information (see NMR 1, NMR 2, and NMR 3).

Raman and FTIR. Raman spectra were simulated by calculating the off-resonance activity by calculating the phonons at the Gamma point and subsequently calculating the macroscopic dielectric tensor with the vasp_raman.py script.96 FTIR spectra were simulated with techniques described elsewhere.$^{72,97-101}$ FTIR and Raman peaks were fit to Lorentzian distributions with a FWHM of 30 cm$^{-1}$. To model the FTIR and Raman vibrational modes, calculations were performed on a total of 5 distinct models (Figure S24); four of the structures are infinite sheets, and one is semi-infinite. The semi-infinite sheet has at least 17 Å of vacuum between nearest neighbor hydrogen atoms in the direction parallel to the sheet’s surface; the z-direction was allowed to relax to an equilibrium nearest neighbor distance. See the Supporting Information for additional details of these models. The amplitude of the vibrational modes in the GIFs are magnified by a factor of 10 to aid in visual clarity (see Supporting Information).

Solid State NMR. SSNMR calculations were performed using plane wave DFT with the gauge-including projector augmented wave (GIPAW)102 approach using the commercially available software CASTEP version 2017 R2.103 The geometry relaxation and NMR properties were calculated with PBE-GGA92 functional with On-the-Fly ultrasoft pseudopotential104,105 and the ZORA106 relativistic treatment. The kinetic energy cut-off was set to 630 eV with a Monkhorst-Pack grid with a k-point spacing of 0.07 Å$^{-1}$. Calculations were performed on a total of seven distinct structural models; three of the structures being finite silicane sheets with at least 14 Å of vacuum between nearest neighbor hydrogen atoms in the directions parallel to the sheet (Figure S30), and four being infinite sheets (Figure S31). See the Supporting Information for additional details of these models.

ASSOCIATED CONTENT

Supporting Information

This material is available free of charge via the internet at http://pubs.acs.org.

- Solid-state NMR experimental details, TEM images, powder XRD patterns, SEM-EDS elemental mapping, Raman spectra, bright-field optical microscopy images, Raman and FTIR peak assignment tables, Born effective charge tensors, additional FTIR spectra, XPS spectra, TGA and DSC profiles coupled with FTIR and MS, associated XRD patterns after thermal decomposition, ball and stick models of DFT structures, DFT simulations of Raman and FTIR, additional NMR spectra, NMR calibration curve, Tauc plots of KM data, band structures with pDOS of silicon, silicane, and cis-hydroxysilicane, energies of the relaxed structures (PDF)
- GIF files which illustrate the vibrational modes (ZIP)
- VASP output files of Raman/FTIR calculations (ZIP)
- CASTEP output files of NMR calculations (ZIP)

AUTHOR INFORMATION

Corresponding Author

Email: panthani@iastate.edu

Author Contributions

Φ These authors contributed equally to this work.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

This work was supported by the Department of Defense (DoD) Air Force Office of Scientific Research (AFOSR) Young Investigator Program (Grant # FA9550-17-1-0170) and the National Science Foundation CAREER Award (Grant # 1847370). MPH and AJR (solid-state NMR spectroscopy) were supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. CKAN and EAS (Raman spectroscopy) were supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The Ames Laboratory is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358. The
time-resolved PL measurements were partially supported by the National Science Foundation Award No. 1611454. The computational work was performed by using supercomputing resources at the Department of Defense (DoD) High Performance Computing Modernization Program: the US Air Force Research Laboratory DoD Supercomputing Resource Center (AFRL DSRC), and the Navy DoD Supercomputing Resource Center (Navy DSR). The research reported in this paper is partially supported by the HPC@ISU equipment at Iowa State University, some of which has been purchased through funding provided by NSF under MRI grant number CNS 1726447. BJR and RDN acknowledge support from the National Science Foundation Graduate Research Fellowship Program under DGE 1744592. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. BJR would like to thank Catherine H. Mul for edits to the manuscript and useful discussions. MGP acknowledges support from the Herbert L. Stites Faculty Fellowship. We thank Stephen Veysey and Dr. Matt Besser for assistance with TGA/DSC/MS/IR and powder XRD measurements, respectively.

REFERENCES

Page 10 of 11

(71) Uriarte, L. M.; Dubyess, J.; Boulet, P.; Baonza, V. G.; Bihannic, L.; Robert, P.; Reference Raman spectra of synthesized CaCl₂-nH₂O solids (n = 0, 2, 4, 6). J. Raman Spectrosc. 2015, 46, 822-828.

The lock represents the long-lived mysteries associated with the structure of silicon nanosheets (Si-NSs), which are shown luminescing within the keyhole. The style of the lock and key was inspired by the locks used in the 1800’s, alluding to the time when Wöhler first reported the synthesis of the Si-NSs. In the middle, the key ring contains the information needed to open the mysteries contained inside the lock; the many components on the key ring portray the notion that many techniques are simultaneously needed to open the lock and unveil the secrets of the Si-NSs. On the right, an idealized form of Si-NSs are shown in a warm light, representing that their secrets are now visible. The orientation of the Si-NSs depicts their irregular and non-periodic stacking pattern.