B-MWW Zeolite: The Case Against Single-Site Catalysis

Natalie R. Altvater
University of Wisconsin – Madison

Rick W. Dorn
iowa State University and Ames Laboratory, rwdorn@iastate.edu

Melissa C. Cendejas
University of Wisconsin – Madison

William P. McDermott
University of Wisconsin – Madison

Brijith Thomas
iowa State University

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/chem_pubs

Part of the Catalysis and Reaction Engineering Commons, and the Materials Chemistry Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/chem_pubs/1207. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
B-MWW Zeolite: The Case Against Single-Site Catalysis

Abstract
Boron-containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron-containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous B2(OH)2xO(3 – x) (x = 0 - 3) layer. Yet, the precise nature of the active site(s) remains elusive. In this communication, we provide a detailed characterization of zeolite MCM-22 isomorphously substituted with boron (B-MWW). Using 11B solid-state NMR spectroscopy, we show that the majority of boron species in B-MWW exist as isolated BO3 units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B-MWW for ODH of propane falsifies the hypothesis that site-isolated BO3 units are the active site in boron-based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium-based catalysts and provides an important piece of the mechanistic puzzle.

Keywords
selective oxidation, Zeolites, NMR spectroscopy, single-site catalysts

Disciplines
Catalysis and Reaction Engineering | Materials Chemistry

Comments
This is the peer-reviewed version of the following article: Altvater, Natalie, Rick Dorn, melissa Cendejas, William McDermott, Brijith Thomas, Aaron Rossini, and Ive Hermans. "B-MWW Zeolite: The Case Against Single-Site Catalysis." Angewandte Chemie (2020), which has been published in final form at DOI: 10.1002/anie.201914696. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Posted with permission.

Authors
Natalie R. Altvater, Rick W. Dorn, Melissa C. Cendejas, William P. McDermott, Brijith Thomas, Aaron J. Rossini, and Ive Hermans

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/chem_pubs/1207
Titel: B-MWW Zeolite: The Case Against Single-Site Catalysis

Autoren: Natalie Altvater, Rick Dorn, melissa Cendejas, William McDermott, Brijith Thomas, Aaron Rossini, and Ive Hermans

Dieser Beitrag wurde nach Begutachtung und Überarbeitung sofort als "akzeptierter Artikel" (Accepted Article; AA) publiziert und kann unter Angabe der unten stehenden Digitalobjekt-Identifizierungsnummer (DOI) zitiert werden. Die deutsche Übersetzung wird gemeinsam mit der endgültigen englischen Fassung erscheinen. Die endgültige englische Fassung (Version of Record) wird ehestmöglich nach dem Redigieren und einem Korrekturgang als Early-View-Beitrag erscheinen und kann sich naturgemäß von der AA-Fassung unterscheiden. Leser sollten daher die endgültige Fassung, sobald sie veröffentlicht ist, verwenden. Für die AA-Fassung trägt der Autor die alleinige Verantwortung.

Zitierweise: Angew. Chem. Int. Ed. 10.1002/anie.201914696
Angew. Chem. 10.1002/ange.201914696

Link zur VoR: http://dx.doi.org/10.1002/anie.201914696
http://dx.doi.org/10.1002/ange.201914696
COMmUNICATION

B-MWW Zeolite: The Case Against Single-Site Catalysis

Natalie R. Altvater[a], Rick W. Dorn[b,c], Melissa Thomas[b], Aaron J. Rossini[b,c], Ive Hermans[a,d]

Abstract: Boron-containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron-containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous $\text{B}_x(\text{OH})_{2x}\text{O}_{3-x}$ layer. Yet, the precise nature of the active site(s) remains elusive. In this communication, we provide a detailed characterization of zeolite MCM-22 isomorphously substituted with boron (B-MWW). Using 11B solid-state NMR spectroscopy, we show that the majority of boron species in B-MWW exist as isolated BO_3 units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B-MWW for ODH of propane falsifies the hypothesis that site-isolated BO_3 units are the active site in boron-based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium-based catalysts and provides an important piece of the mechanistic puzzle.

Zeolites, microporous, crystalline materials composed of characteristic SiO_4 tetrahedra, are among the most widely used industrial catalysts.[1] The so-called T-sites may be replaced with different atoms via isomorphous substitution to tune the catalytic properties by - for example - altering the Bronsted/Lewis acidity or creating a catalytic center. Isomorphous substitution can be achieved directly via hydrothermal synthesis or post-synthetically by methods, including impregnation and ion-exchange. [2,3] Although widely applied in industry, isomorphously substituted zeolites are still the subject of many ongoing studies. [4]

Boron-containing materials, such as hexagonal boron nitride and boron nitride nanotubes, have been shown to be highly selective catalysts for the transformation of light alkanes to olefins via oxidative dehydrogenation (ODH). [5–11] Analysis of these materials after catalytic testing for the ODH of propane revealed the formation of an oxidized, amorphous boron phase at the catalyst surface. This layer consists of three-coordinate boron with varying numbers of hydroxyl and bridging oxide groups represented by the general formula $\text{B}_x(\text{OH})_{2x}\text{O}_{3-x}$ ($x = 0 - 3$). [12] To understand the function of this oxidized boron phase, we recently investigated silica-supported boron oxide (B/SiO_2) materials, which showed a similar conversion-selectivity trend and product distribution to the bulk boron-containing catalysts.[13] While these results confirm that the active site is most likely contained in the oxidized boron phase, the precise reaction mechanism and active site structure have not been identified.

Magic angle spinning (MAS) 11B solid-state NMR spectroscopy (SSNMR) analysis of the B/SiO_2 materials revealed the $\text{B}_x(\text{OH})_{2x}\text{O}_{3-x}$ phase restructures under ODH reaction conditions to give a higher degree of boron agglomeration. The observed restructuring is in line with a recent computational study on h-BN that predicts the formation of a highly dynamic oxidized boron active phase under reaction conditions (~500 °C), in agreement with the low Taiman temperature of boron oxides. [14]

The large distribution of boron sites in active materials and their dynamic nature under reaction conditions precludes the precise experimental identification of the active site(s). To understand the requirements for active site formation, the synthesis of a material with more controlled, uniform boron oxide speciation is necessary. In this contribution, we focus on zeolite MCM-22 isomorphously substituted with boron (referred to as B-MWW). MWW is an industrially prepared catalyst used as an additive to ZSM-5 for catalytic cracking, in Mobil’s Badger Curve process for the alkylation of benzene, the alkylation of toluene, and the liquid phase epoxidation of propylene. [15–18] The borosilicate form of MWW (also called ERB-1) is used primarily as an intermediate for creating high Si/Al ratio frameworks and for the post-synthetic incorporation of metals into the structure. [19] Because of its industrial applications, we know that the MWW framework can accommodate propylene molecules and is therefore viable for use as a potential propane ODH catalyst.

[a] N.R. Altvater, Prof. Dr. I. Hermans
Department of Chemical and Biological Engineering
University of Madison – Wisconsin
1415 Engineering Drive, Madison, Wisconsin 53706, USA
E-mail: hermans@chem.wisc.edu

[b] R.W. Dorn, Dr. B. Thomas and Prof. Dr. A.J. Rossini
Department of Chemistry
Iowa State University
2438 Parmel Dr., Ames, IA 50011, USA
Email: arossini@iastate.edu

[c] R.W. Dorn and Prof. Dr. A.J. Rossini
U.S. Department of Energy
Ames Laboratory
311 Iowa State University, Ames, IA 50011, USA

[d] M.C. Cendejas, W.P. McDermott, and Prof. Dr. I. Hermans
Department of Chemistry
University of Wisconsin – Madison
1101 University Avenue, Madison, WI, 53706 USA

‡ These authors contributed equally to this work.
Supporting information for this article is given via a link at the end of the document.

Figure 1. 1D 11B MAS SSNMR spectra of (lower) fresh and (upper) spent B-MWW. The solid lines correspond to the experimental spectra and the dashed lines correspond to analytical simulations. The analytical simulations of fresh and spent B-MWW were generated from parameters reported in Table 1.
B-MWW was hydrothermally synthesized according to an established literature procedure (see Supporting Information). The successful synthesis of the MWW framework was confirmed by powder X-ray diffraction (Figure S1) and N₂ physisorption (S_{BET} = 498 m²/g). The boron loading was quantified by inductively coupled plasma-mass spectrometry (ICP-MS) to be 1.1 ± 0.1 wt. %. This loading is within the 0.23-2.20 wt. % range for B/SiO₂ catalysts made by incipient wetness impregnation that showed significant conversion under our ODH reaction conditions.

Table 1. Isotopic chemical shift and electric field gradient tensors for the three site analytical simulations of B-MWW in Figure 1.^[a]

<table>
<thead>
<tr>
<th>Site</th>
<th>δ<sub>B</sub> (ppm)</th>
<th>C<sub>0</sub> (MHz)</th>
<th>η</th>
<th>Integration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>11</td>
<td>2.6</td>
<td>0.0</td>
<td>66</td>
</tr>
<tr>
<td>green</td>
<td>12</td>
<td>2.4</td>
<td>0.0</td>
<td>23</td>
</tr>
<tr>
<td>blue</td>
<td>15</td>
<td>2.7</td>
<td>0.0</td>
<td>11</td>
</tr>
</tbody>
</table>

[a] Fresh and spent B-MWW were fit to identical parameters.

Catalytic testing for the ODH of propane was performed at 500 °C under a flow of C₃H₈, O₂, and N₂ with a pretreatment at 525 °C under the same gas composition. Surprisingly, the B-MWW material showed no conversion above the background observed with a blank reactor (i.e. < 0.5% conversion). This result was unexpected since a B/SiO₂ catalyst with 0.23 wt. % boron showed 92% total olefin selectivity at 4% propane conversion. The boron content did not change, within the error margin of the experiment, indicating that there was insignificant leaching during reaction. This lack of catalytic activity indicates that the boron species in the zeolite framework are surprisingly not active for propane ODH. As a further control, we performed ODH catalytic testing for a catalyst made by incipient wetness impregnation of boron onto the B-MWW zeolite, denoted B-B-MWW. B-B-MWW was made by a similar procedure as B/SiO₂ (see Supporting Information). The B/B-MWW catalyst (1.3 ± 0.1 wt. %) showed similar catalytic activity to the B/SiO₂ catalyst, with a 90% total olefin selectivity at 5% propane conversion. We have previously shown that B/SiO₂ catalysts contain agglomerated boron species as is likely the case for B-B-MWW. As discussed in detail below, the B-MWW is likely an inactive ODH catalyst because it contains very stable and isolated framework species.

To investigate the source of ODH inactivity in B-MWW, we performed ¹H and ¹¹B MAS SSNMR spectroscopy experiments to directly probe the structure and distribution of boron atoms in the zeolite framework. Prior to all SSNMR experiments, the samples were fully dehydrated and further handled in an inert atmosphere. Direct excitation ¹¹B spin echo MAS SSNMR spectra of pristine B-MWW (fresh) and after 12 hours on stream (spent) were recorded at 11.7 T (ν₀(¹¹H) = 500 MHz) with a 10 kHz MAS frequency (Figure 1). ¹¹B SSNMR spectra of fresh and spent B-MWW samples were fit to three sites and display near identical quadrupolar powder patterns, suggesting no boron restructuring occurred under the reaction conditions (Table 1). The ¹¹B isotropic chemical shift (δ_B), electric field gradient asymmetry parameter (η) and quadrupolar coupling constant (C₀) values are characteristic of trigonal-planar boron species (Figure S2). The validity of the three site analytical fits in Figure 1 were further confirmed by a 2D ¹H triple-quantum multiple-quantum MAS (MQMAS) spectrum of B-MWW fresh, fitting a 9.4 T spin echo ¹¹B SSNMR spectrum (Figure S3) and by performing 2D H→¹¹B heteronuclear correlation (HETCOR) experiments (discussed below). On the basis of δ_B, the simulated peaks with δ_B = 11 ppm (red fit) and δ_B = 12 ppm (green fit) are assigned to framework B(OSi) species substituted into the zeolite. The observed distribution in δ(11)_B is expected because MWW has eight T-sites that boron could occupy, resulting in a distribution in boron sites from the subtle difference in chemical environment. Based upon the analytical simulations, B(OSi) units make up ca. 90% of the boron incorporated into the framework. The peak with δ_B = 15 ppm and ca. 10% integrated intensity is assigned to a B(OSi)₂(OH) species consisting of two bonds to the framework and a terminal hydroxide. All of these assignments are consistent with the findings of others who previously showed that B/SiO₂ catalysts made by a similar procedure have similar catalytic activity to the B/SiO₂ catalyst, with a 90% total olefin selectivity at 5% propane conversion.

In comparison, the ¹¹B spin echo spectrum of the active ODH catalyst B-B-MWW reveals that 57 % of the boron species are framework B(OSi)₂ groups (δ_B = 11 ppm) and 43 % are B(OSi)(OH) species (δ_B = 15 ppm, Figures S4–S5). Clearly, the B(OSi)(OH) sites now make up a larger fraction of the boron species in B-B-MWW. The ¹¹B spin echo spectrum of B-B-MWW and accompanying NMR parameters are similar to that of a catalytically active B/SiO₂. While we have assigned the ¹¹B NMR signals of B-B-MWW as framework B(OSi)₂ and B(OSi)(OH) because of the similarity to B/SiO₂ NMR parameters to B-MWW, some of the ¹¹B NMR signal from B/B-MWW likely arise from clustered boron sites, as discussed below.

To better understand the boron speciation and confirm the assignments of the distinct ¹¹B NMR signals for B-MWW, we performed ¹H→¹¹B correlation NMR experiments. Because of the similarity in the 1D ¹¹B SSNMR spectra for fresh and spent B-MWW, we only consider the fresh material for these experiments. 2D ¹H→¹¹B dipolar-recoupled INEPT (D-RINEPT) spectra were recorded with 0.64 ms (blue) or 2.56 ms (red) of total S_R Fourier transform (Figure 2a). Analysis of the 1D D-RINEPT and 2D D¹¹B→¹¹B D-RINEPT spectra clearly illustrates that distinct ¹H and ¹¹B resonances can be observed depending on the duration of heteronuclear dipolar recoupling. With 0.64 ms of recoupling (blue trace), only the higher frequency ¹H NMR signals (ca. 3.6 ppm) are observed and they show intense correlations to the higher frequency ¹¹B NMR signal (δ_B = 15 ppm, Figure 2b and Figure S6). On the basis of the chemical shifts, the ¹H NMR signal at 3.6 ppm and ¹¹B NMR signal with δ_B = 15 ppm are assigned to the framework B(OSi)₂(OH) species (Figure S3). The 2D ¹¹B→¹¹B D-RINEPT spectrum recorded with 2.56 ms of dipolar recoupling...
shows additional strong correlations between the 1H NMR signal at 2.7 ppm and 11B NMR signal with δ_{rel} of 12.11 ppm. Notably, the 11B NMR spectrum extracted from this 2D 11B-1H D-RINEPT spectrum is essentially identical in appearance to the 11B spin echo spectrum (Figure 2b and Figure S6), suggesting that all boron atoms within B-MWW are proximate to 1H spins. In contrast, the 11B NMR spectrum of B/B-MWW extracted from the 2D D-RINEPT experiment shows different signal intensities from the corresponding 11B spin echo NMR spectrum (Figure S5). Taken together these observations suggest that some boron spins are distant from protons, likely due to the formation of some boron oxide clusters in B/B-MWW.

To estimate the 1H-11B inter-nuclear distance for each pair of 1H-11B NMR signals and thus provide a more detailed structure of boron incorporation into the zeolite framework, we recorded 1H-11B dipolar recoupling build-up curves using the 11B-1H D-RINEPT sequence. In this experiment, the 11B-1H D-RINEPT 1H NMR signal intensity is recorded as a function of the heteronuclear dipolar recoupling duration (Figures 2c and 2d). The dipolar coupling constant (D) between two spins is proportional to the inverse of the distance cubed ($D \propto r^{-3}$). By comparing the experimental build-up curves to numerical SIMPSON simulations for different 1H-11B inter-nuclear distances, the 1H-11B inter-nuclear distances can be estimated.28,29 The D-RINEPT signal build-up for the 1H NMR signal at 3.6 ppm fits best to a simulated curve with a dipolar coupling constant of ca. 3.6 kHz, corresponding to a 1H-11B inter-nuclear distance of ca. 2.2 Å (Figure 2c and Figure S7a). It is important to keep in mind that an H atom in an isolated B-OH group may experience some degree of rotation. Rotation will partially average the 1H-11B dipolar coupling constant, resulting in measurement of lower dipolar coupling constants and longer than expected inter-nuclear distances. The D-RINEPT signal build-up for the 1H NMR signal at 2.7 ppm fits best to a simulated curve with a 1H-11B dipolar coupling constant of ca. 1.6 kHz, corresponding to a 2.9 Å 1H-11B inter-nuclear distance (Figure 2d and Figure S7b). Taking into account the 11B δ_{rel} of 11 ppm and the relatively large 1H-11B inter-nuclear distance, this 1H signal is assigned to a framework B(OSi)$_n$ species that is adjacent to a framework silanol (Figure 3), in agreement with previous models of boron substituted zeolites.24 A proton detected 1H[29Si] cross polarization MAS (CPMAS) spectrum of fresh B-MWW confirms that the 1H NMR signals at 2.7 ppm results from a silanol defect adjacent to boron (Figure S9)21,24,30,31 Note that 1H[29Si] CPMAS spectrum of B-MWW fresh required ca. 10 hours of signal averaging, confirming the majority of the zeolite framework is pristine. Infrared spectroscopy of the dehydrated B-MWW confirms that B-OH as well as silanol defect sites are present in the fresh and spent sample (Figure S10).32

In summary, the 11B chemical shifts suggest that in B-MWW nearly all boron atoms are incorporated into the framework. The SSNMR data also suggests that these sites are also well separated (> 3.4 Å apart) from one another, for the reasons given below. In the 2D 11B-1H DRINEPT spectrum of B-MWW recorded with 2.56 ms of recoupling only weak correlations are observed between the B(OSi)OH 1H NMR signal at 3.6 ppm and the B(OSi) 11B NMR signals, suggesting these sites are well separated within the zeolite. This interpretation is confirmed by a 2D 1H-11B dipolar double quantum-single quantum (DQ-SQ) homonuclear correlation spectrum of B-MWW which shows that the 1H NMR signals at 2.7 ppm, assigned to silanol adjacent to B(OSi)$_n$, do not give rise to any appreciable DQ signal intensity (Figure S11). In comparison, these silanol groups give rise to an observable 1H DQ NMR signal in B/B-MWW, consistent with more extensive aggregation of boron sites in this material. Finally, 1D 1B-11B DQ-SQ experiments show that the DQ-filtered 11B NMR
signal for B-MWW is about three times less than that of B/B-MWW (Figure S12)\(^{33-35}\). Notably, the DQ-filtered \(^{11}\)B solid-state NMR spectra of B-MWW and B/B-MWW both show signals with more positive chemical shifts as compared to the SO \(^{13}\)B spin echo spectra. The more positive shifts suggest that aggregation preferentially occurs for hydroxylated or oxide-like boron sites, both of which are much more common in B/MWW as shown by quantitative \(^{11}\)B spin echo experiments above. All of these observations confirm the hypothesis that catalytically inactive B-MWW consist of predominately isolated boron sites incorporated into the zeolite framework, while the active ODH catalyst B/B-MWW contains some partially aggregated boron sites.

Long recoupling time

![Long recoupling time diagram](image1)

Short recoupling time

![Short recoupling time diagram](image2)

Figure 3. Simplified illustration of the two different \(^1\)H-\(^{11}\)B interactions observed in the 2D \(^{11}\)B-\(^1\)H D-RINEPT spectra and molecular structures of framework boron sites.

In this work, we successfully synthesized stable, isolated framework B[OSi\(_2\)]\(_3\) (major, ca. 90 %) and B(OSi\(_2\))(OH) (minor, ca. 10 %) species in zeolite MWW framework and catalytically tested them for the ODH of propane. The detailed characterization of B-MWW by multi-dimensional \(^1\)H and \(^{11}\)B SSNMR spectroscopy showed that boron exists predominantly as isolated B(OSi\(_2\))\(_3\) units that are adjacent to a silanol group. Although B-MWW has a boron loading sufficient for catalytic activity, testing determined that it did not exhibit any ODH conversion of propane over background levels. As was shown here and in our prior work, catalytically active B/B-MWW, B/\(\text{SiO}_2\) and boron nitride ODH catalysts contain aggregated boron sites that restructure under reaction conditions, whereas B-MWW is stable under reaction conditions and shows no restructuring of the boron atoms.\(^{10,19}\) The difference in boron sites in B-MWW and these other boron materials leads us to the important conclusion that the boron-catalyzed ODH of propane does not proceed over an isolated \(\text{BO}_3\) site. Rather, active boron-based ODH catalysts likely require boron species with some degree of B-O-B connectivity. This study advances the understanding of boron species involved in the propane ODH mechanism and will direct future work in understanding the molecular origins of highly selective ODH catalysts. Further investigations are underway to determine the surface mobility and understand precisely which types of boron-boron interactions are required to form active ODH catalysts.

Supporting Information: Additional characterization and experimental details are available in the Supporting Information. doi: 10.1002/anie.201914696

Acknowledgements

Materials synthesis and characterization was supported by the National Science Foundation under Grant No. CBET-1916809. Catalytic testing was supported by the U.S. Department of Energy under Grant No. DE-SC0017918. A.J.R. also thanks the Ames Laboratory Royalty Account and Iowa State University for additional funding. The Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. This study made use of the National Magnetic Resonance Facility at Madison, which is supported by NIH grants P41 GM103399 (NIGMS) and P41GM66326 (NIGMS). Additional equipment was purchased with funds from the University of Wisconsin, the NIH (RR02781, RR08438), the NSF (DMB-8415048, OIA-9977486, BIR-9214394), and the USDA. We thank Prof. Aaron Sadow (ISU and Ames lab) for access to a glovebox to pack and store rotors.

Keywords: zeolites • boron • heterogeneous catalysis • oxidative dehydrogenation • solid-state NMR

Detailed solid-state NMR spectroscopic characterization of hydrothermally synthesized B-MWW reveals that boron is fully incorporated into the zeolite framework as trivalent BO$_3$ units. These isolated sites are inactive for oxidative dehydrogenation (ODH) of propane, which refutes the hypothesis that site-isolated boron species are the active site on boron-containing ODH catalysts.

Natalie R. Altvater$^{[a]}$, Rick W. Dorn$^{[b][c]}$, Melissa C. Cendejas$^{[a]}$, William P. McDermott$^{[b]}$, Brijith Thomas$^{[b]}$, Aaron J. Rossini$^{[b][c]}$, Ive Hermans$^{[a]}

B-MWW Zeolite: The Case Against Single-Site Catalysis

10.1002/ange.201914696

This article is protected by copyright. All rights reserved.