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Abstract

This paper represents a novel online self-learning disturbance observer (SLDO) by benefiting from the combination
of a type-2 neuro-fuzzy structure (T2NFS), feedback-error learning scheme and sliding mode control (SMC) theory.
The SLDO is developed within a framework of feedback-error learning scheme in which a conventional estimation
law and a T2NFS work in parallel. In this scheme, the latter learns uncertainties and becomes the leading estimator
whereas the former provides the learning error to the T2NFS for learning system dynamics. A learning algorithm
established on SMC theory is derived for an interval type-2 fuzzy logic system. In addition to the stability of the
learning algorithm, the stability of the SLDO and the stability of the overall system are proven in the presence of time-
varying disturbances. Thanks to learning process by the T2NFS, the simulation results show that the SLDO is able to
estimate time-varying disturbances precisely as distinct from the basic nonlinear disturbance observer (BNDO) so that
the controller based on the SLDO ensures robust control performance for systems with time-varying uncertainties, and
maintains nominal performance in the absence of uncertainties.

Keywords: Disturbance observer, neural networks, neuro-fuzzy structure, online learning algorithm, robustness,
sliding mode control, type-2 fuzzy logic systems, uncertainty.

1. Introduction

One of the most essential requirements for controllers is to be insensitive to uncertainties. Many control methods
have been proposed to handle different types of uncertainties, (e.g. H∞ control (Glover and Doyle, 1988; Gahinet and
Apkarian, 1994), sliding mode control (SMC) (Slotine et al., 1991; Li et al., 2013; Xu et al., 2014), adaptive control
(Sun et al., 2013a,b; He et al., 2014; Yao et al., 2015), etc...). In H∞ control, uncertainties must be bounded in H∞-norm.
This implies that disturbances must disappear suddenly and completely. However, this is not a realistic assumption for
real-time applications. In SMC theory, integral SMC controller is proposed in the presence of uncertainties. It is a well
known fact that the integral action may cause unwanted effects such as, large settling time and overshoots. Moreover,
adaptive control systems may not have an ability to control uncertain systems with highly changing parameters (Chen
et al., 2015). As an alternative method, disturbance observers (DOs) have been proposed since they are very crucial
for control of systems due to the fact that uncertainties extensively exist in practice and are extremely difficult to be
modeled. These uncertainties, such as parameter variations, noise, unmodeled dynamics and interactions between
subsystems, must be taken for the controller design into account to have a capability of getting robustness. For this
purpose, different DOs have been designed in literature to obtain robust control performance for systems (Chen et al.,
2000b,a, 2016).

In DO based control approaches, the model uncertainties and external disturbances are merged into one term and
a control law contains the estimated disturbance value by a DO. The aims are to achieve performance specifications
while stabilizing the system considering the nominal model of the system and remove the disturbance effect on the
system (Chen, 2004; Yang et al., 2013; Ginoya et al., 2014). A nonlinear dynamics inversion control method was
designed for the longitudinal autopilot of a missile in (Chen, 2003). It was reported that the control method exhibit

Preprint submitted to Engineering Applications of Artificial Intelligence April 24, 2017



poor performance in case of unknown uncertainties while a basic nonlinear DO (BNDO) based nonlinear dynamics
inversion control approach ensured robust performance against uncertainty. The same BNDO has been used to design
a robust SMC controller for systems with mismatched uncertainties (Yang et al., 2013). The main drawback in these
studies, the BNDO is only be able to estimate time-invariant disturbances. If disturbances are time-varying, then the
BNDO gives bias estimates. Furthermore, there are well known nonlinear observers, such as extended Kalman filter
(EKF), particle filtering and nonlinear moving horizon estimation methods. EKF works well if linear approximation is
valid and noise on measurements is small (Haseltine et al., 2005). Besides, particle filter and nonlinear moving horizon
estimation methods require very large computation time (Daum, 2005). For this reason, an observer, computationally
cheap, is required to be able to estimate time-varying disturbances.

Type-2 fuzzy logic systems (T2FLSs) are proposed as the extended versions of type-1 fuzzy logic systems
(T1FLSs) in literature (Kayacan et al., 2010; Castillo et al., 2012; Lee et al., 2015). It allows us to have more de-
grees of freedom for design than their type-1 counterparts so that it results in better capability of handling uncertainty
(Castro et al., 2011; Castro and Castillo, 2013; Lee et al., 2014; Rubio-Solis and Panoutsos, 2015; Zaheer et al.,
2015). Type-2 fuzzy sets are especially preferred as the decision of the position of the membership functions (MFs)
precisely is a very troublesome task (Liang et al., 2000; Castillo et al., 2013). However, the computational complexity
of generalized type-2 fuzzy sets is very high. For this reason, the interval type-2 fuzzy sets were proposed to decrease
computation time and made it feasible in real-time applications (Liang and Mendel, 2000; Maldonado et al., 2013;
Lin et al., 2014; Chang and Chan, 2014; Castillo et al., 2014; Zaheer et al., 2015; Wagner et al., 2015).

Neuro-fuzzy structures as a model-free method have been widely used for control and identification of systems
in literature. It is well know that the stability of systems controlled by model-free controllers cannot be proven.
Therefore, the feedback-error learning scheme has been proposed for neuro-fuzzy structures to guarantee the global
asymptotic stability of the system in a compact space (Efe et al., 2000). SMC achieves robustness to parametric
uncertainty and high-frequency unmodeled dynamics; therefore, the SMC theory-based learning algorithms for neuro-
fuzzy structures have been proposed to ensure the robustness of the overall system (Kaynak et al., 2001; Yu and
Kaynak, 2009). Moreover, they ensure faster convergence rate than the traditional learning methods, such as gradient
descent, Levenberg-Marquardt and particle swarm optimization, because they are computationally simple. There
are numerous examples for SMC theory-based learning algorithms for artificial neural networks, type-1 and type-2
neuro-fuzzy structures (Topalov et al., 2009; Kayacan et al., 2012).

The main contribution of this paper is to develop a novel online SLDO, which can learn the disturbance behavior
of systems in time-varying case as distinct from basic nonlinear DOs (BNDOs), be solved in the range of millisecond,
and robust against uncertainties. For this purpose, the T2NFS in feedback-error learning scheme is proposed due to
fact that they are very suitable techniques for adaptive learning. Additionally, computationally efficient sliding mode
learning algorithm is used as the training algorithm of the T2NFS because it is a powerful approach for the stability
issue. Consequently, the use of the combination of T2NFS, feedback-error learning scheme and sliding mode control
theory harmoniously allow to better handle uncertainties.

The major contributions of this paper are as follows:

1. The first major contribution is that a novel estimation approach in the feedback-error learning scheme is devel-
oped for disturbance observer design for the first-time.

2. The second major contribution is that the stability of the training algorithm has been always proven for feedback-
error learning methods in literature. In this paper, in addition to the proof of the training algorithm, the overall
system stability is proven considering the dynamics of the proposed SLDO by adding a robust term. To the best
knowledge of the author, this is also the first-time such a stability analysis is ever proven.

The minor contributions of this paper are as follows:

1. The first minor contribution is that the developed SLDO is solved within milliseconds; therefore, the required
computation time for the SLDO is significantly less than other methods, such as particle filter and nonlinear
moving horizon estimation methods.

2. The second minor contribution is that the learning rate of SMC theory-based learning algorithm for the T2NFS
is adaptive so that it is possible to estimate the disturbance without the knowledge about the upper bound of the
disturbance and its derivatives.
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The paper consists of six sections: The formulation of the BNDO is given in Section 2. The SLDO benefiting
from the T2NFS is developed in Section 3. The T2NFS and online learning algorithm established on SMC theory are
respectively represented in Sections 3.1 and 3.2. The stability of the SLDO is proven in Section 3.3. The controller
design and the stability of the system are given in Section 4. The simulation results are represented in Sections 5.
Finally, the paper is summarized in Section 6.

2. Basic Nonlinear Disturbance Observer

A number of physical systems, such as robots, spacecrafts and mechanical systems, are generally described by
second-order differential equations. A second-order nonlinear system is written in the following form:

ẋ = g1(x)+g2(x)u+ zd(t) (1)

where x = [x1,x2]
T is the state vector, u is the control input, d(t) is the disturbance, z = [z1,z2]

T is the disturbance
coefficients vector, g1(x) = [x2,a(x)]T and g2(x) = [0,b(x)]T are the nonlinear system dynamics.

The disturbance d(t) in (1) is not measurable in practice. Therefore, it is required to be estimated in practice to
obtain robust control performance of systems. The following basic nonlinear disturbance observer (BNDO) dynamics
have been proposed in (Chen, 2003; Yang et al., 2013) as follows:

ṗ = −lpzp− lp

(
zlpx+g1(x)+g2(x)u

)
d̂BN = p+ lpx (2)

where p, lp and d̂BN denote respectively the internal state, proportional observer gain and estimated disturbance. By
taking time derivative of the estimated disturbance considering (2), the time derivative of the estimated disturbance
˙̂dBN is obtained as:

˙̂dBN = lpzed (3)

If the time derivative of the actual disturbance ḋ(t) is added into (3), the error dynamics of the BNDO are obtained
as follows:

ḋ(t)− ˙̂dBN = −lpzed + ḋ(t)

ėd = −lpzed + ḋ(t) (4)

where ed = d(t)− d̂BN is the disturbance error.

Assumption 1. The time derivative of the actual disturbance is bounded and lim
t→∞

ḋ(t) = 0.

If Assumption 1 is satisfied, then (4) is obtained as follows:

ėd + lpzed = 0 (5)

Lemma 1. (Chen, 2003): If lpz is positive, i.e. lpz > 0, the disturbance error dynamics in (5) converge to zero
asymptotically.

Lemma 1 implies that the estimated disturbance by the BNDO is able to track the actual disturbance of the system
in (1) asymptotically in case Assumption 1 is satisfied.

Remark 1. If the time derivative of the actual disturbance ḋ(t) is not equal to zero, the error dynamics of th BNDO
cannot converge to zero so that BNDO gives bias. Therefore, there exists always difference between the estimated
and true values of the disturbance. Similar observers have been designed in literature and the same drawback has been
reported in (Chen, 2003; Yang et al., 2013).
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3. Self-learning Disturbance Observer

BNDOs cannot give unbiased estimation results in case of time-varying disturbances; therefore, a fast, computa-
tionally efficient, adaptive and robust disturbance observer is required. A novel estimation law is proposed as follows:

˙̂dSL = τc + τr− τn (6)

where τc, τr and τn denote respectively the outputs of the conventional estimation law, robust term and T2NFS. The
schematic diagram of the SLDO is illustrated in Fig 1. As seen, the BNDO is working in series with the feedback-error
learning algorithm in which the conventional and robust estimation laws work in parallel with T2NFS.

The conventional estimation law used in this paper is defined as follows:

τc =
˙̂dBN +

ldz
lpz

¨̂dBN (7)

where ˙̂dBN denotes the time derivative of the estimated value of the disturbance by the BNDO, lp and ld denote the
proportional and derivative gain vectors, and lpz and ldz are positive, i.e. lpz, ldz > 0.

The robust estimation law is written as follows:

τr =
lrz
lpz

˙̂dBN (8)

lrz is positive, i.e. lrz > 0, and lr denotes the robust gain vector.

3.1. Type-2 Neuro-Fuzzy Structure
An interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy if-then rule Ri j is written as:

Ri j : If ξ1 is 1̃i and ξ2 is 2̃ j, then fi j = ϒi j (9)

where ξ1 =
˙̂dBN and ξ2 =

¨̂dBN denote the inputs while 1̃i and 2̃ j denote type-2 fuzzy sets for inputs. The function fi j
is the output of the rules and the total number of the rules are equal to K = I×J in which I and J are the total number
of the inputs.

The upper and lower Gaussian membership functions for type-2 fuzzy logic systems are written as follows:

µ
1i
(ξ1) = exp

(
−
(

ξ1− c1i

σ1i

)2
)

(10)

Basic Nonlinear 
Disturbance 

Observer

Conventional 
Estimation 

Law

Type-2 
Neuro-Fuzzy 

Structure

𝑑  𝑆𝐿  

𝜏𝑟  

𝑑 𝑆𝐿  𝜏𝑐  
  

𝑑

𝑑𝑡
 

  

𝑑 𝐵𝑁  

𝑝  𝑝 

𝑑  𝐵𝑁  

Robust 
Estimation 

Law

𝜏𝑛  

Controller
Nonlinear 

System
𝑥 

𝑥𝑑 , 𝑥 𝑑 , 𝑥 𝑑   
𝑢 

SLDO

Figure 1: Schematic diagram of the self-learning disturbance observer (SLDO)
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µ1i(ξ1) = exp

(
−
(

ξ1− c1i

σ1i

)2
)

(11)

µ
2 j
(ξ2) = exp

(
−
(

ξ2− c2 j

σ2 j

)2
)

(12)

µ2 j(ξ2) = exp

(
−
(

ξ2− c2 j

σ2 j

)2
)

(13)

where c,c,σ ,σ denote respectively the lower and upper mean, and the lower and upper standard deviation of the
membership functions. These parameters are adjustable for the T2NFS.

The lower and upper membership functions µ and µ of A2-C0 fuzzy system employed in this paper are determined
for every signal. Then, the firing strength of rules are calculated as follows:

wi j = µ
1i
(ξ1)µ2 j

(ξ2) and wi j = µ1i(ξ1)µ2 j(ξ2) (14)

The output of the every fuzzy rule is a linear function fi j formulated in (9). The output of the network is formulated
below:

τn = q
I

∑
i=1

J

∑
j=1

fi jw̃i j +(1−q)
I

∑
i=1

J

∑
j=1

fi jw̃i j (15)

where w̃i j and w̃i j are the normalized firing strengths of the lower and upper output signals of the neuron i j are written
as follows:

w̃i j =
wi j

∑
I
i=1 ∑

J
j=1 wi j

and w̃i j =
wi j

∑
I
i=1 ∑

J
j=1 wi j

(16)

The design parameter q weights the participation of the lower and upper firing levels and is generally set to 0.5. In
this paper, it is formulated as a time-varying parameter in the next subsection.

The vectors are defined as::

W̃ (t) = [w̃11(t) w̃12(t) . . . w̃21(t) . . . w̃i j(t) . . . w̃IJ(t)]
T

W̃ (t) = [w̃11(t) w̃12(t) . . . w̃21(t) . . . w̃i j(t) . . . w̃IJ(t)]T

F = [ f11 f12 . . . f21 . . . fi j . . . fIJ ]

where these normalized firing strengths are between 0 and 1, i.e. 0 < w̃i j ≤ 1 and 0 < w̃i j ≤ 1. In addition,

∑
I
i=1 ∑

J
j=1 w̃i j = 1 and ∑

I
i=1 ∑

J
j=1 w̃i j = 1.

3.2. SMC Theory-based Learning Algorithm

The sliding surface s is formulated as follows:

s(τc) = τc (17)

where τc is the output of the conventional estimation law and used as a sliding surface. It is to be noted that the sliding
surface is used as learning error to train the SMC theory-based learning algorithm.

The adaptation rules of the T2NFS parameters are given by the following equations:

ċ1i = ξ̇1 +(ξ1− c1i)αsgn(s) (18)

ċ1i = ξ̇1 +(ξ1− c1i)αsgn(s) (19)

ċ2 j = ξ̇2 +(ξ2− c2 j)αsgn(s) (20)

ċ2 j = ξ̇2 +(ξ2− c2 j)αsgn(s) (21)
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σ̇1i =−
(

σ1i +
(σ1i)

3

(ξ1− c1i)
2

)
αsgn(s) (22)

σ̇1i =−
(

σ1i +
(σ1i)

3

(ξ1− c1i)2

)
αsgn(s) (23)

σ̇2 j =−
(

σ2 j +
(σ2 j)

3

(ξ2− c2 j)
2

)
αsgn(s) (24)

σ̇2 j =−
(

σ2 j +
(σ2 j)

3

(ξ2− c2 j)2

)
αsgn(s) (25)

ḟi j =−
qw̃i j +(1−q)w̃i j

(qW̃ +(1−q)W̃ )T (qW̃ +(1−q)W̃ )
αsgn(s) (26)

q̇ =− 1

F(W̃ −W̃ )T
αsgn(s) (27)

α̇ = γα | s | (28)

where α and γα denote respectively the learning rate and the coefficient of the adaptation for the learning rate, and
they must be positive, i.e. α,γα > 0.

Theorem 1 (Stability of the learning algorithm). If adaptations rules are proposed as in (18)-(28) and the final
value of the learning rate α∗ is large enough, i.e. α∗ > τ̇∗r +

¨̂d∗SL where τ̇∗r and ¨̂d∗SL are respectively the upper bounds

of τ̇r and ¨̂dSL, this ensures that τc will converge to zero in finite time for a given arbitrary initial condition τc(0).

PROOF. The Lyapunov function is written as follows:

V =
1
2

τ
2
c +

1
γα

(α−α
∗)2 (29)

By taking the time derivative of the Lyapunov function in (29), it is obtained as follows:

V̇ = τcτ̇c +
2α̇

γα

(α−α
∗) (30)

If the (28) is inserted into the equation above:

V̇ = τc(τ̇n− τ̇r +
¨̂dSL)+2 | s | (α−α

∗) (31)

The calculation of τ̇n in (A.9) is inserted into (31), it is obtained as follows:

V̇ = τc

(
−2αsgn(s)− τ̇r +

¨̂dSL

)
+2 | s | (α−α

∗) (32)

If (17) is inserted into the equation above:

V̇ = τc

(
−2αsgn(τc)− τ̇r +

¨̂dSL

)
+2 | τc | (α−α

∗) (33)

If it is assumed that ¨̂dSL and τ̇r are upper bounded by ¨̂d∗SL and τ̇∗r , (33) is obtained as follows:

V̇ = | τc | (−2α + τ̇
∗
r +

¨̂d∗SL)+2 | τc | (α−α
∗)

= | τc | (−2α
∗+ τ̇

∗
r +

¨̂d∗SL) (34)

As stated in Theorem 1, if the final value of the learning rate α∗ is large enough, i.e. α∗ > τ̇∗r +
¨̂d∗SL, then the time

derivative of the Lyapunov function is negative, i.e. V̇ < 0 so that the SMC theory-based learning algorithm is stable
and τc will converge to zero in finite time.
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Remark 2. Since the adaptation rules in (28) are enforced, the final value of the learning rate of the T2NFS is
determined during the adaptation of learning rate, and it is able to reach large values to make learning algorithm
stable. This is a superiority of the proposed approach in this study as distinct from previous studies in which the upper
bounds are needed to be foreknown.

SMC theory endures high-frequency oscillations, i.e. chattering. In this paper, the function in (35) has been
proposed to remove the chattering effect as the sign function in (18)-(28).

sgn(s) :=
s

| s |+δ
(35)

where δ = 0.05.

Remark 3. The usage of the sliding surface s in (17) as learning error for the T2NFS with the adaptation laws in
(18)-(28) accomplishes the desired sliding regime for the observer.

3.3. Stability Analysis

The proposed SLDO law in (6) is re-written considering (7) and (8) as:

˙̂dSL = (1+
lrz
lpz

) ˙̂dBN +
ldz
lpz

¨̂dBN− τn (36)

The error dynamics for the SLDO are obtained by adding the actual disturbance rate ḋ into the estimated distur-
bance rate in (36) and considering the calculated time derivative of the estimated disturbance by BNDO in (3):

ḋ− ˙̂dSL = −(lp + lr)zed− ldzėd + τn + ḋ

ėd =
−(lp + lr)zed + τn + ḋ

1+ ldz
(37)

By taking the time derivative of (37), it is obtained as follows:

ëd =
−(lp + lr)zėd + τ̇n + d̈

1+ ldz
(38)

As calculated in (A.9), τ̇n =−2αsgn(s) is inserted into (38);

ëd =
−(lp + lr)zėd−2αsgn(s)+ d̈

1+ ldz
(39)

If τc in (7) is inserted into (17), the sliding surface is obtained as follows:

s
(

˙̂dBN ,
¨̂dBN

)
=

ldz
lpz

(
¨̂dBN +λ

˙̂dBN

)
(40)

where λ =
lpz
ldz is the slope of the sliding surface. The time derivative of the sliding surface is obtained as

ṡ =
ldz
lpz

(...
d̂ BN +

lpz
ldz

¨̂dBN

)
(41)

Theorem 2 (Stability of the SLDO). The estimation law in (6) is employed as a DO, the closed-loop error dynamics
for the SLDO are stable if the robust gain lr is equal to lp

ldz , i.e. lr =
lp
ldz , and the final value of the learning rate of

T2NFS α∗ is large enough, α∗ > d̈∗ where the acceleration of the actual disturbance d̈ is upper bounded by d̈∗.
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PROOF. The Lyapunov function is written as follows:

V =
1
2

s2 +
ldz

γα(1+ ldz)
(α−α

∗)2 (42)

By taking the time derivative of the Lyapunov function above considering (28), it is obtained as

V̇ = sṡ+ ldz
2 | s |

1+ ldz
(α−α

∗) (43)

If the time derivative of the sliding surface is inserted into the aforementioned equation, it is obtained as follows:

V̇ = s
ldz
lpz

(...
d̂ BN +

lpz
ldz

¨̂dBN

)
+ ldz

2 | s |
1+ ldz

(α−α
∗) (44)

It is obtained considering (3)

V̇ = s
(

ldzëd + lpzėd

)
+ ldz

2 | s |
1+ ldz

(α−α
∗) (45)

(39) is inserted into (45), it is obtained as follows:

V̇ = s
(

ldz
−(lp + lr)zėd−2αsgn(s)+ d̈

1+ ldz
+ lpzėd

)
+ ldz

2 | s |
1+ ldz

(α−α
∗) (46)

If it is assumed that d̈ is upper bounded by d̈∗:

V̇ = | s | ldz
(−2α + d̈∗)

1+ ldz
+ sėd

(
ldz
−(lp + lr)z

1+ ldz
+ lpz

)
+ ldz

2 | s |
1+ ldz

(α−α
∗) (47)

= | s | ldz
(−2α∗+ d̈∗)

1+ ldz
+ sėd

(
ldz
−(lp + lr)z

1+ ldz
+ lpz

)
︸ ︷︷ ︸

0

(48)

As stated in Theorem 2, if lr is equal to lp
ldz , i.e. lr =

lp
ldz , and the final value of the learning algorithm α∗ is large

enough, i.e. α∗ > d̈∗, then the time derivative of the Lyapunov function is negative, i.e. V̇ < 0, so that the SLDO is
stable.

Remark 4. The main advantage of the SLDO is to be able to prove the stability in case of not only time-invariant
disturbances, such as BNDOs, but also time-varying disturbances.

4. Controller Design

The control objective is to find a control law so that the system states can track a desired trajectory. One of
the most commonly used method for nonlinear systems is feedback linearization control (FLC). The traditional FLC
method for nonlinear systems is formulated considering a second-order nonlinear system in (1) where there exists no
disturbance:

u =−b−1(x)
(

ẍd +a(x)− k2(ẋd− x2)− k1(xd− x1)
)

(49)

where the controller coefficients k1,k2 are positive, i.e. k1,k2 > 0. If the control law in (49) is applied to the system in
(1), the closed-loop error dynamics are obtained as follows:

ë+ k2ė+ k1e =−zd(t) (50)

where e = xd− x1 and ė = ẋd− x2.
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Lemma 2. (Khalil and Grizzle, 1996): If a nonlinear system F(x,u) is input-to-state stable and the input satisfies
lim
t→∞

u(t) = 0, then the state satisfies lim
t→∞

x(t) = 0.

Remark 5. As seen in (50), if the disturbance d(t) is different from zero, the closed-loop error dynamics cannot
converge to zero in finite time. This shows that the traditional FLC is sensitive to disturbances.

The FLC based on the SLDO by taking the estimated disturbance value into account is formulated as follows:

u =−b−1(x)
(

ẍd +a(x)− k2(ẋd− x2)− k1(xd− x1)+ zd̂SL

)
(51)

If the control law in (51) is applied to the system in (1), the closed-loop error dynamics are obtained as follows:

ë+ k2ė+ k1e =−zed (52)

where ed = d(t)− d̂SL(t). As stated in Theorem 2, the disturbance error dynamics for the SLDO can converge to zero
asymptotically. As stated in Lemma 2, if the disturbance error ed satisfies lim

t→∞
ed(t) = 0, then the system error satisfies

lim
t→∞

e(t) = 0. As a result, the closed-loop error dynamics of the system can converge to zero asymptotically in finite
time under the control law in (51) if the controller coefficients k1 and k2 are positive, i.e. k1,k2 > 0.

Remark 6. If there exists no disturbance, i.e. d(t) = 0, then the estimated value of the disturbance in the control law
(51) will be zero, i.e. d̂SL = 0. This results in the traditional FLC in (49) so that it maintains the nominal performance
the absence of disturbances.

5. Simulation Studies

The following nonlinear system, i.e., chaotic Duffing oscillator, is considered for the simulation studies (Hsu,
2012):

ẋ1 = x2

ẋ2 = 1.1x1−0.4x2− x3
1 +2.1cos(1.8t)+u+d (53)

where a(x) = 1.1x1−0.4x2− x3
1 +2.1cos(1.8t), b(x) = 1 and z = [0,1]T as can be seen from (1).

The desired states values are defined as ẍd = ẋd = xd = 0. The initial conditions on the states of the system and
the controller coefficients are respectively selected as x(0) = [1,−1]T and k1 = 50, k2 = 25. Since the disturbance
coefficient vector in (53) is equal to z = [0,1]T , the proportional, derivative and robust gains for DOs must be positive,
i.e., lp, ld , lr > 0. The proportional gain is selected as lp = [0,3]T while the derivative gain is selected as ld = [0,1.2]T .
As stated in Theorem 2, since the robust gain must be equal to lp

ldz , i.e. lr =
lp
ldz = 2.5, the robust gain is selected as

lr = [0,2.5]T . The coefficient γα to adjust the learning rate α for the SLDO is selected as 0.001. The initial conditions
on the learning rate α and parameter q are set to 0.05 and 0.5, respectively. To benchmark different disturbance
observers in the presence and absence of uncertainties, no disturbance is imposed on the system at the beginning,
a step external disturbance d = 3 is imposed on the system at t = 10 second and a sinusoidal external disturbance
d = 3sin(t) is imposed on the system at t = 20 second as formulated below:

d(t) =

{ 0≤ t < 10 d = 0
10≤ t < 20 d = 3
20≤ t < 30 d = 3sin(t)

(54)

In simulation studies, the control performance of the FLC based on the SLDO is firstly compared with the tradi-
tional FLC and the FLC based on the BNDO. Then, the SLDO is analyzed under noisy conditions and compared with
its type-1 counterpart. Throughout simulation studies, the sampling time is set to 0.001 second while the number of
membership functions are selected as I = J = 3. In the presence of plant uncertainties, the adaptation of the learning
rate of sliding mode learning algorithm must be a robust adaptation law to avoid having infinite values. Therefore, a
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dead-zone has been proposed in literature to handle this problem. In this paper, if the sliding surface is smaller than
the dead-zone parameter ε = 0.05, i.e., s < ε , then the learning rate α is not updated.

The states responses x1,x2 are shown in Figs. 2(a) and 2(b). Firstly, the FLC controller can control the system
without steady-state error while there exists no disturbance on the system. However, after the disturbances are imposed
on the system, it is observed that it is not robust against any external disturbance and gives steady-state error as seen
in Fig. 2(a) and stated in Remark 5. Secondly, the FLC based on the BNDO can control the system without any
steady-state error while there exist no disturbance and a time-invariant disturbance. However, it is seen that it is not
robust against a time-varying disturbance as stated in Remark 1. Thirdly, the FLC based on the SLDO can control
system without steady-state error and it is robust against time-invariant and time-varying disturbances. Moreover, the
FLCs based on the BNDO and SLDO maintain the nominal performance while there exists no disturbance between
t=0-10 seconds as stated in Remark 6.

The actual and estimated disturbances are shown in Fig. 2(c). As can be observed, the SLDO can estimate time-
varying disturbances while BNDO is only able to estimate only time-invariant disturbances as stated in Remark 4.
This fact results in the robust control performance of the FLC based on the SLDO against time-varying uncertainties.
Thanks to learning process by the feedback-error learning algorithm, the T2NFS takes the overall estimation signal
while the conventional estimation signal converges to zero in finite time as shown in Fig. 2(d). Inasmuch as the total
generated estimation signal by the feedback-error learning structure is equal to τc− τn, the output of the T2NFS τn is
multiplied by−1 in Fig. 2(d) not to cause the reader to become perplexed. The T2NFS becomes the leading estimator
after a short time period. The output of the conventional estimation law τc becomes nonzero only during the time
intervals when the T2NFS is learning.

The adaptation of the learning rate α is shown in Fig 2(e). As seen, the initial condition on the learning rate α

is set to 0.05 and the learning rate is constant while the output of the conventional estimation law τc is equal to zero
due to the fact that learning is not required. When the disturbances are imposed on the system, the learning rate is
increasing for a short time period till τc becomes zero. Moreover, the adaptation of the parameter q is shown in Fig.
2(f). The initial condition on the parameter q is set to 0.5, which is the general case. Thanks to the adaptation rule in
(27), the proportion of the upper and lower membership functions is adjusted throughout the simulations.

Type-2 fuzzy membership functions are used in the proposed estimation structure and it is possible to downgrade
them to type-1 counterparts by equalizing the upper and lower values of parameters in (18)-(25). In literature, it is
claimed that the type-2 fuzzy logic system gives better performance than its type-1 counterpart in the presence of
noise and uncertainty in the system. The initial conditions on the states of the system are set to x(0) = [1,1]T . In order
to compare the performance of T2NFS with its type-1 counterpart under noisy conditions, the actual disturbance d
with different noise levels SNR, which are equal to 20 dB, 40 dB and 60 dB, is applied the system. The mean squared
errors for the different noise levels are given in Table 1. As seen from this table, the T2NFS gives less error than
the type-1 neuro-fuzzy structure (T1NFS) and the performance of T2NFS is more remarkable while the noise level
is increasing. Figure 3(a) shows the absolute disturbance error responses with a noise level of 20 dB for T1NFS and
T2NFS. As can be observed, T2NFS gives less disturbance error when compared to its type-1 counterpart. Moreover,
the system states under noisy condition are shown in Figs. 3(b) and 3(c). The FLC with the SLDO based on T2NFS
exhibits better control performance. These results verify previous results seen in (Mendel, 2000; Hsiao et al., 2008;
Khanesar et al., 2011). Type-2 fuzzy systems have more degrees of freedom so that they have capability of dealing
with noisy measurements and uncertainties in the system more effectively.

Table 1: Mean Squared Error.
20 (dB) 40 (dB) 60 (dB)

T1NFS 1.3112 0.0288 0.0034
T2NFS 1.2352 0.0276 0.0033
Decrease in Disturbance Error 6.14 % 4.35 % 3.03 %

The simulations are executed on the computer, which is equipped with 3.1 GHz Intel Core i7−5557U CPU and
16 GB of RAM. It is to be noted that the sampling and simulation times are set to 0.001 and 30 seconds in the
sense that total number of sample is equal to 30000. The total required computation time is calculated as 5.531993
seconds so that the required computation time for each sampling time instant is around 0.18 millisecond. The required
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Figure 2: (a) Responses of state x1(b) Responses of state x2 (c) True and estimated values of the disturbance (d) Estimation signals (e) Learning
parameter α (f) Parameter q
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with a noise level SNR = 20 db (c) Responses of state x2 when the actual disturbance with a noise level SNR = 20 db

computation time of the sliding mode learning algorithm is significantly lower than the one of the other methods,
such as gradient descent, Levenberg-Marquardt, particle swarm optimization and extended Kalman filter (Kayacan
et al., 2015a). The reason is that the sliding mode learning algorithm does not contain any high-order matrices, matrix
manipulations or calculations of the partial derivatives. Moreover, particle filter becomes infeasible in real-time due to
large number of states and moving horizon estimation requires solving nonlinear optimization problem which results
in large computation times (Daum, 2005). Recent developed numerical methods have reduced required computation
times for solving nonlinear optimization problems around 5 milliseconds. However, even this is 25 times more than
our proposed algorithms in the paper (Kayacan et al., 2015b). Therefore, it can be concluded that the proposed method
in this paper is more practical in real-time applications.

6. Conclusion

A novel SLDO is developed by benefiting from the T2NFS with online sliding mode learning algorithm in
feedback-error learning scheme. In addition to the stability of the SMC-theory learning algorithm, the stability of
the SLDO by taking the system dynamics into account and the stability of the FLC based on the SLDO are proven
by using separation principle. The simulations results show that the traditional FLC is sensitive to disturbances and
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the FLC based on the BNDO is only robust to time-invariant disturbance while the FLC based on the SLDO is robust
against any kind of disturbances by performing precise online estimation of the immeasurable time-varying distur-
bances. Moreover, the FLC based on the SLDO maintains the nominal control performance in the absence of uncer-
tainties. Thanks to online sliding mode learning algorithm, the parameters of the T2NFS are spontaneously adjusted
to learn disturbances and this makes systems robust to cope with uncertainties. Moreover, the developed SMC-theory
based learning algorithm requires significantly less computation time than the traditional ones, e.g. gradient descent
and evolutionary training algorithms, so that it is more practical in real-time applications.

Appendix A. Calculation of τ̇n

By taking the time derivative of (10)-(13), the following equations are obtained as:

µ̇
1i
(ξ1) = −2N1iṄ1iµ1i

(ξ1)

µ̇1i(ξ1) = −2N1iṄ1iµ1i(ξ1)

µ̇
2 j
(ξ2) = −2N2 jṄ2 jµ2 j

(ξ2)

µ̇2 j(ξ2) = −2N2 jṄ2 jµ2 j(ξ2) (A.1)

where

N1i =
(

ξ1− c1i

σ1i

)
, Ṅ1i =

(ξ̇1− ċ1i)σ1i− (ξ1− c1i)σ̇1i

σ2
1i

N2 j =
(ξ2− c2 j

σ2 j

)
, Ṅ2 j =

(ξ̇2− ċ2i)σ2i− (ξ2− c2i)σ̇2i

σ2
2i

N1i =
(

ξ1− c1i

σ1i

)
, Ṅ1i =

(ξ̇1− ċ1i)σ1i− (ξ1− c1i)σ̇1i

σ
2
1i

N2 j =
(

ξ2− c2 j

σ2 j

)
Ṅ2 j =

(ξ̇2− ċ2i)σ2i− (ξ2− c2i)σ̇2i

σ
2
2i

(A.2)

It is obtained from (A.2)
N1iṄ1i = N2 jṄ2 j = N1iṄ1i = N2 jṄ2 j = αsgn(s) (A.3)

By taking the time derivative of (16), the following equations are obtained as follows:

˙̃wi j =

(
µ

1i
(ξ1)µ2 j

(ξ2)
)′(

∑
I
i=1 ∑

J
j=1 wi j

)
−wi j

(
∑

I
i=1 ∑

J
j=1 µ

1i
(ξ1)µ2 j

(ξ2)
)′

(∑I
i=1 ∑

J
j=1 wi j)

2
(A.4)

Since w̃i j =
wi j

∑
I
i=1 ∑

J
j=1 wi j

,

˙̃wi j =

(
µ̇

1i
(ξ1)µ2 j

(ξ2)+µ
1i
(ξ1)µ̇2 j

(ξ2)
)

∑
I
i=1 ∑

J
j=1 wi j

−
w̃i j

(
∑

I
i=1 ∑

J
j=1

(
µ̇

1i
(ξ1)µ2 j

(ξ2)+µ
1i
(ξ1)µ̇2 j

(ξ2)
))

∑
I
i=1 ∑

J
j=1 wi j

=
−2µ

1i
(ξ1)µ2 j

(ξ2)+2w̃i j ∑
I
i=1 ∑

J
j=1 µ

1i
(ξ1)µ2 j

(ξ2)

∑
I
i=1 ∑

J
j=1 wi j

(
N1iṄ1i +N2 jṄ2 j

)
= −w̃i jK̇i j + w̃i j

I

∑
i=1

J

∑
j=1

w̃i jK̇i j (A.5)

13



where
K̇i j = 2

(
N1iṄ1i +N2 jṄ2 j

)
= 4αsgn(s)

Similarly, it is readily obtained that:

˙̃wi j =−w̃i jK̇i j + w̃i j

I

∑
i=1

J

∑
j=1

w̃i jK̇i j (A.6)

where
K̇i j = 2

(
N1iṄ1i +N2 jṄ2 j

)
= 4αsgn(s)

The time derivative of (15) is obtained to find τ̇n as follows:

τ̇n = q
I

∑
i=1

J

∑
j=1

( ḟi jw̃i j + fi j ˙̃wi j)+(1−q)
I

∑
i=1

J

∑
j=1

( ḟi jw̃i j + fi j
˙̃wi j)

+q̇
I

∑
i=1

J

∑
j=1

fi jw̃i j− q̇
I

∑
i=1

J

∑
j=1

fi jw̃i j (A.7)

If (A.5) and (A.6) are inserted into the aforementioned equation:

τ̇n = q
I

∑
i=1

J

∑
j=1

((
− w̃i jK̇i j + w̃i j

I

∑
i=1

J

∑
j=1

w̃i jK̇i j

)
fi j + w̃i j ḟi j

)

+(1−q)
I

∑
i=1

J

∑
j=1

((
− w̃i jK̇i j + w̃i j

I

∑
i=1

J

∑
j=1

w̃i jK̇i j

)
fi j + w̃i j ḟi j

)

+q̇
I

∑
i=1

J

∑
j=1

fi j(w̃i j− w̃i j)

= 4αsgn(s)

(
q

I

∑
i=1

J

∑
j=1

((
− w̃i j + w̃i j

I

∑
i=1

J

∑
j=1

w̃i j

)
fi j + w̃i j ḟi j

)

+(1−q)
I

∑
i=1

J

∑
j=1

((
− w̃i j + w̃i j

I

∑
i=1

J

∑
j=1

w̃i j

)
fi j + w̃i j ḟi j

))

+q̇
I

∑
i=1

J

∑
j=1

fi j(w̃i j− w̃i j) (A.8)

Since ∑
I
i=1 ∑

J
j=1 w̃i j = 1 and ∑

I
i=1 ∑

J
j=1 w̃i j = 1, the aforementioned equation becomes by using (26) and (27) as

follows:

τ̇n = q
I

∑
i=1

J

∑
j=1

w̃i j ḟi j +(1−q)
I

∑
i=1

J

∑
j=1

w̃i j ḟi j + q̇
I

∑
i=1

J

∑
j=1

fi j(w̃i j− w̃i j)

= −2αsgn(s) (A.9)
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