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(a)

(b)

Figure 4.2 Lag correlation of recombination and (a) entropy and (b) GC
content for window sizes 20,50, and 100.
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CHAPTER 5. REVIEW II

This chapter reviews, in detail, the statistical theory and techniques used in the fol-

lowing chapters. The final section serves as a small introduction to the model presented

in the next chapter.

5.1 Markov Chain Monte Carlo : A Brief Primer

The goal of MCMC procedures is to sample from a target distribution. Instead

of sampling directly from the target, we sample from a Markov chain constructed to

have the target distribution as its equilibrium distribution. Given enough samples and

appropriate conditions on the chain, theory guarantees that the dependent samples will

be drawn from the target distribution (Tierney, 1994).

5.1.1 Metropolis-Hastings Algorithm

It is simplest to construct a reversible Markov chain, where the transition probabili-

ties p(·; ·) and equilibrium distribution π(·) satisfy detail balance,

π(θ)p(θ; θ∗) = π(θ∗)p(θ∗; θ). (5.1)

Here, θ is a vector of model parameters. Applying principles of rejection sampling (Robert

and Casella, 2005), this transition kernel can be expressed as

p(θ; θ∗) = q(θ; θ∗)α(θ; θ∗), (5.2)
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for any arbitrary proposal distribution q(θ; θ∗), proposing θ∗ given current state θ, and an

acceptance probability α(θ; θ∗), insuring the stationary distribution π(θ) is the desired

target distribution. Hastings (1970) shows acceptance probability

α(θ; θ∗) = min

[
1,
π(θ)

π(θ∗)

q(θ∗; θ)

q(θ; θ∗)

]
(5.3)

yields the desired equilibrium distribution π(θ). To guarantee detail balance (5.1), any

transition from parameters θ to θ∗ with q(θ; θ∗) > 0 must be reversible, so q(θ∗; θ) > 0,

when the parameters are valid, i.e. π(θ), π(θ∗) > 0 (Tierney, 1994). The resulting

Metropolis-Hastings MCMC algorithm (Chib and Greenberg, 1995) samples θ1, θ2, . . .

from any target distribution π(θ) in the following procedure.

1. Start with some initial value θ0 = θ0.

2. Given the current iterate θt, repeat until convergence:

(a) Draw θ∗ ∼ q(θt; θ
∗).

(b) Draw u ∼ Unif(0, 1).

(c) Compute α(θt; θ
∗).

(d) If α(θt; θ
∗) ≥ u, accept the proposal and set θt+1 = θ∗.

5.1.2 Gibbs Sampling

Gibbs Sampling (Resnik and Hardisty, 2009) uses full conditional distributions of a

multivariate parameter to sample from their joint posterior. Suppose that we wish to

generate samples from π(θ) where now θ = (θ1, θ2 . . . θp). Without loss of generality,

let us consider a case where p = 2. The full conditionals of interest are π(θ1|θ2) and

π(θ2|θ1).

The Gibbs sampling algorithm prescribes the following procedure:

1. Start with some initial value θ0 = (θ01, θ
0
2).
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2. Given the current iterate θt, repeat until convergence:

(a) Draw θ∗1 ∼ π(θ1|θ2 = θt2)

(b) Draw θ∗2 ∼ π(θ2|θ1 = θ∗1)

Note that this scheme defines a reversible Markov chain that satisfies the detailed balance

condition and has equilibrium distribution π(θ). Each iteration of the Gibbs sampler

may be viewed as p iterations of the Metropolis-Hastings sampler (Gelman et al., 2004).

However, the proposal distribution changes every iteration.

q(θ∗, | θt) =

p(θ
∗
1 | θt2,y) if θ∗2 = θt2

0 otherwise.

Consider the acceptance probability after a proposal for θ1 has been drawn. Here,

θ∗ = (θ∗1, θ
t
2) and the current iterate θt = (θt1, θ

t
2).

α(θ∗;θt) =
p(θ∗ | y)

p(θ | y)

q(θi | θ∗)
q(θ∗ | θi)

(5.4)

=
p(θ∗1, θ2 | y)

p(θ1, θ2 | y)

p(θ1 | θ2,y)

p(θ∗1 | θ2,y)

=
p(θ∗1, θ2 | y)p(θ1, θ2 | y)p(θ2 | y)

p(θ1, θ2 | y)p(θ∗1, θ2 | y)p(θ2 | y)

= 1

Thus every proposal is accepted.

The two algorithms described above may also be combined. One such method is the

Metropolis-within-Gibbs algorithm. Here, each parameter is individually updated fol-

lowing Gibbs sampling. However, in cases where the full conditionals are intractable, pro-

posal distributions may be used and individual Metropolis-Hastings acceptance/rejection

employed to obtain updated parameters.
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5.1.3 Multiple Changepoint Models and rjMCMC

Many times we are faced with a problem where the dimension of θ is unknown and

must be estimated. To be explicit, suppose that we have a set of responses y that arise

from one of a countable number of possible models M0,M1 . . .MK . Each model Mk, k =

0, . . . , K, has a parameter vector θk and the dimensionality of θk may vary with model

k. We are specifically concerned with multiple changepoint models, where an ordered

response vector y = (y1, . . . , yn) is hypothesized to be partitioned at k changepoints

s1, . . . , sk ∈ {2, . . . , n}. Between changepoints i and i+ 1, the data ysi , ysi+1, . . . , ysi+1−1

are iid realizations of some distribution f(y;µi), say a normal with known variance σ2.

Model M0 corresponds to no changepoints, so all (y1, . . . , yn)
iid∼ N(µ0, σ

2) and θ0 = µ0.

Model M1 has one changepoint, resulting in a parameter space with two means and a

change point location, θ1 = (µ0, µ1, s1). Similarly θ2 = (µ0, µ1, µ2, s1, s2) has another

two dimensions and so on. The goal is to infer the model index as well as the associated

parameters using the MCMC scheme and due to changing dimensions of the parameter

space, the rjMCMC scheme fits our needs very well.

5.1.3.1 Model

We describe a simple change point model. The purpose is to use simulation and a

simple model to illustrate the same approach we will use to model recombination-induced

change points in sequence data.

If parameters of model Mk are θk = (µ, s), our goal is to sample from the joint

posterior

π(k,θk | y) ∝ L(y | k,θk)π(θk | k)P (k). (5.5)

Conditional on the change points and means, the data are independent draws from
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normal distributions, so our likelihood is

L(y | k,θk) =
n∏
i=1

1√
2πσ

exp

[
− 1

2σ
(yi − µ(i))2

]
(5.6)

where µ(i) = µj for all i belonging to partition j.

In the Bayesian context, we must propose a prior for all model parameters. We

assume the number of change points has a truncated Poisson prior

P (k) ∝ e−λλk

k!
, 0 ≤ k < n,

where the constant of proportionality is the Poisson probability P (k < n). Conditional

on the number of change points, the locations and heights are independent. The locations

are order statistics of discrete draws without replacement on {2, . . . , n},

π(s | k) =
k!

(n− 1) · · · (n− k)
.

The normal means µj are i.i.d. normal N(5, 1), specifically

π(µj) =
1√
2π

exp

[
−1

2
(µj − 5)2

]
.

5.1.3.2 Reversible Jump MCMC (rjMCMC)

In order to use MCMC techniques to make inference on problems with variable

dimension, Green (1995) suggested a reversible jump MCMC (rjMCMC) algorithm. As

in many MCMC procedures, rjMCMC alternates among different move types in order

to explore the parameter space. In our case, we define three possible moves types:

1. Stay (S): update parameters without changing the dimension,

2. Birth (B): addition of a change point, and

3. Death (D): deletion of a change point.
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The Birth and Death moves are trans-dimensional move types that require special pro-

posal distributions, with more involved calculation of proposal ratios, discussed in later

sections.

At each iteration of the MCMC algorithm, i.e. each transition, move S is attempted

with probability ek, B with probability bk, and D with probability dk, such that ek+bk+

dk = 1. These move probabilities depend only on the current number of changepoints

k. Since no more than n − 1 change points are allowed, we have bn−1 = 0. Otherwise,

we set

bk = c min

(
1,
P (k + 1)

P (k)

)
,

dk = c min

(
1,
P (k − 1)

P (k)

)
and

ek = 1− bk − dk,

where the constant c is chosen to be as large as possible while maintaining ek > 0.1 for

all possible values of k. Since bk + dk is maximized at k = λ , it is not hard to see that

setting

c =
0.9(λ+ 1)

2λ+ 1

guarantees the conditions.

5.1.3.3 Birth Move

The key to trans-dimensional moves in rjMCMC is a bijective map f : (θk, ξ) ↔

(θk+p) between the lower dimensional parameter vector θk to the higher dimensional

parameter vector θk+p. To define the bijection, θk must be supplemented with vector ξ

of length p. The acceptance ratio for this setup is (Green, 1995)

α(θk;θ
∗
k+p) = min

[
1,
π(θ)

π(θ∗)

q(θ∗k+p;θk)

q(θk;θ
∗
k+p)

∣∣∣∣∂θ∗k+p∂θk

∣∣∣∣] , (5.7)

where q(θ∗k+p;θk) is the proposal density for moving θk+p → θk, q(θk;θ
∗
k+p) is the pro-

posal density for moving θk → θk+p, and
∣∣∣∂θ∗k+p

∂θk

∣∣∣ is the Jacobian for the bijection.
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We demonstrate below how to choose ξ and compute the acceptance ratios α(·; ·) for

our simple change point model.

Birth moves jump between parameter spaces θk and θk+1, specifically two states

θk = (µ0, . . . , µk+1, s1, . . . , sk) ∈ θk, and

θk+1 = (µ∗0, . . . , µ
∗
j , µ

∗
j+1, . . . , µ

∗
k+2, s

∗
1, . . . , s

∗
j+1, . . . , s

∗
k+1) ∈ θk+1.

Thus, given k change points, a birth move increases the dimension from 2k+1 to 2k+3.

To match dimension, we must define two variables ξ = (s, u) to supplement parameter

vector θk. As usual, MCMC leaves a lot of choices up to the user. We choose to draw

s uniformly from the n− k− 1 locations that are not already changepoints to represent

the new change point s∗j+1. In addition u is a standard uniform random deviate used to

generate the new means (µ∗j , µ
∗
j+1) from supplemented old mean (u, µj) according to the

following bijective map

u =
µ∗j

µ∗j + µ∗j+1

(5.8)

µj =
s∗j+2 − s∗j+1

s∗j+2 − s∗j
µ∗j+1 +

s∗j+1 − s∗j
s∗j+2 − s∗j

µ∗j . (5.9)

Uniform deviate u determines the variability in new means µ∗j and µ∗j+1 and µj is mapped

as the weighted average of µ∗j and µ∗j+1. With s = s∗j+1, all other parameter are mapped

one-to-one in the full bijection.

From the above description, the birth proposal is

q(θk;θ
∗
k+p) = bkq(s, u) =

bk
n− k − 1

,

where we recognize that after choosing to attempt a birth move with probability bk and

generating the independent random variables s, u with probability 1
n−k−1 , the map is

deterministic. For the reversed death distribution, we have

q(θ∗k+1;θk) =
dk+1

k + 1
,
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where we choose to lose a change point with probability dk+1, select the change point

with uniform probability 1
k+1

, and progress deterministically from there. The important

part of the Jacobian for this bijection scheme is∣∣∣∣∣∣∣
∂µj
∂µ∗j

∂µj
∂µ∗j+1

∂u
∂µ∗j

∂u
∂µ∗j+1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
s∗j+2−s∗j+1

s∗j+2−s∗j

s∗j+1−s∗j
s∗j+2−s∗j

µ∗j+1

(µ∗j+µ
∗
j+1)

2

−µ∗j
(µ∗j+µ

∗
j+1)

2

∣∣∣∣∣∣∣ =

∣∣∣∣(s∗j+2 − s∗j+1)µ
∗
j + (s∗j+1 − s∗j)µ∗j+1

(s∗j+2 − s∗j)(µ∗j + µ∗j+1)
2

∣∣∣∣ .
(5.10)

Putting it all together, we have

α(θk;θ
∗
k+1) = min

{
1,
L(y;θ∗k+1)

L(y;θk)
×
π(µ∗j)π(µ∗j+1)

π(µj)
× k + 1

n− k − 2

× λ

k + 1
× dk+1(n− k − 1)

bk(k + 1)
×
∣∣∣∣(s∗j+2 − s∗j+1)µ

∗
j + (s∗j+1 − s∗j)µ∗j+1

(s∗j+2 − s∗j)(µ∗j + µ∗j+1)
2

∣∣∣∣−1
}

where L(; ) denotes the likelihood and π(µ) denotes the prior distribution on µ.

5.1.3.4 Death Move

The acceptance ratio in the death move is the inverse of the acceptance ratio for the

birth move from state k − 1 to state k.

α(θk;θ
∗
k−1) =

min

{
1,
L(y;θ∗k−1)

L(y;θk)
×

π(µ∗j)

π(µj)π(µj+1)− 5)

× n− k − 1

k
× k

λ
× bk−1(k)

dk(n− k)
×
∣∣∣∣(sj+2 − sj+1)µj + (sj+1 − sj)µj+1

(sj+2 − sj)(µj + µj+1)2

∣∣∣∣}

5.1.3.5 Stay Move

If neither the birth nor death move is chosen, then we update each sj and µj in a

Metropolis-within-Gibbs step (Gilks et al., 1995).

� Define s0 = 0 and sk+1 = n, then for each sj ∈ s

– Propose a new s∗j+1 uniformly in the interval (sj−1, sj+1).
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– The acceptance probability is

min

{
1,
L(y;θ∗k)

L(y;θk)

}
(5.11)

� For each µj ∈ µ

– Propose a new µ∗j ∼ π(µ).

– The acceptance ratio is

min

{
1,
L(y;θk)

L(y;θk)
×
π(µ∗j)

π(µj)

}
. (5.12)

5.2 Gaussian Markov Random Fields

Consider a random normal vector x = x1, x2 . . . xs which has, conditionally indepen-

dent components

xi⊥xj|x−ij (5.13)

i.e. xi and xj are independent conditional on all other components of x. Using a graph

G = (V,E) to represent the structure of this conditional independence, we have V as

the set of vertices, one for each xi and E as the set of edges, connecting any two vertices

that are dependent. x is now a GMRF with respect to G with mean µ and precision

matrix Q if and only if

f(x) ∼ N (µ,Q−1). (5.14)

It is easier to parametrize the GMRF in terms of its precision matrix since Qij = 0

when i⊥j and hence it is often a sparse matrix and easier to work with than a dense

covariance matrix Σ.

In some applications, the precision matrix may not be full-rank. This could be

due to the structure of G or more commonly due to linear constraints imposed on

the GMRF. GMRFs with sub-rank precision matrices are called Improper GMRFs.
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Of special interest are intrinsic GMRFs (IGMRF) that are improper GMRFs with a

precision matrix of rank n− 1 and Q1 = 0 meaning that

∑
j

Qij = 0 (5.15)

i.e. rows in the matrix sum to zero. Rue and Held (2005) illustrate the construction of an

IGMRF of first order on the line meaning that every node only has its two immediately

adjacent node, one on either side, in its neighborhood. The joint density of such a vector

x is given by

f(x) ∝ ω(n−1)/2 exp

(
−ω

2

i=n∑
i=1

(xi − xi−1)2
)

(5.16)

where ω is the multiplier for the precision matrix which has structure,

Q = ω ×



−1 1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 1


(5.17)

This prior, therefore penalizes large differences in recombination probabilities of ad-

jacent sites. The precision matrix Q as in Eq. 5.17. It follows that Pr(x|ω) ∼ N (0, Q−1)

and Q is non-full rank. Sun et al. (1999) showed that despite the improper prior, most

likelihood functions will still result in a proper posterior. The few that do not, notably,

include the binomial and Poisson distributions. In cases where our model requires use

of these distributions, we replace Q in Eq. 5.16 with a proper approximation such that

Pr(x|ω) ∼ N(0, Q̃−1) where Q̃ = Q+ εI and ε is a small positive constant and IN×N is

an identity matrix.
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Algorithm for sampling from x ∼ NC(b,Q)

1: Compute Cholesky Factorization, Q = LLT

2: Solve Lw = b
3: Solve LTµ = w
4: Sample z ∼ N (0, I)
5: Solve LTν = z
6: Compute x = µ+ ν
7: Return x

Table 5.1 Algorithm for simulation from a GMRF

5.2.1 Sampling from a GMRF

Canonical Parameterization of a GMRF For any normal random vector X,

the canonical parameterization can be obtained as follows:

X ∼ N(µ,Σ)

∝ exp

(
−1

2
XTΣ−1X + µTΣ−1X

)
= exp

(
−1

2
XTQX + bTX

)
∼ NC(b,Q)

(5.18)

where Q = Σ−1 and b = Qµ and thus the mean of the original normal is µ = bQ−1

and variance is Q−1. Such parameterization may be extended to any exponential family

distribution.

Thus, a GMRF x with mean µ, precision matrix Q and canonical parameter b =

Q−1µ is expressed in canonical parameterization as :

x ∼ NC(b,Q)

In order to simulate from this GMRF, Rue and Held (2005) prescribe the following

algorithm
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5.3 Hierarchical GMRF Models

GMRFs find a wide variety of applications, the most useful of which involve hierar-

chical models with GMRF hyperpriors. Suppose that we observe some data y that are

dependant on a GMRF x. We assume that members of y are conditionally independent

given x. Let θ denote the hyperparameters that specify the GMRF. The hierarchical

setup now looks like this:

θ ∼ π(θ) (5.19)

x ∼ π(x | θ)

yi
iid∼ π(yi | xi), i = 1, 2 . . . n

The posterior distribution is then

π(x | θ,y) ∝ π(θ)π(x | θ)
n∏
i=1

π(yi | xi) (5.20)

As a simple example, suppose that at the lower level or first stage of the hierarchical

model we observed data y = y1, y2 . . . yn that are counts of incidence of a disease in n

counties of a state. For this data we may assume a Poisson model with mean cex i.e.

yi ∼ P(ci exp(xi))

where c represents some known constant, the population in each county for example.

Let x represent the probability or incidence of the disease. The GMRF prior is placed

on x with precision ω and a Q matrix that reflects the actual spatial neighborhood of

each county (Besag et al., 1991; Rue and Held, 2005).

5.3.1 Inference Framework

Statistical inference of hierarchical models involving GMRF hyperpriors is done using

Markov Chain Monte Carlo algorithms. The choice of the algorithm used depends on

the lower level response model.
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5.3.1.1 Inference on Normal response models

Recall that in a hierarchical model setup, we wish to sample from the joint posterior

distribution (5.20). Let us consider models where the response can be modeled using

a Gaussian distribution i.e π(yi|xi) ∼ N (xi, σ
2
i ). We can now express the combined

likelihood as a multivariate normal distribution

π(y|x) ∼ MVN(x,M) (5.21)

where M denotes the precision matrix, which is this case is a N ×N matrix with entries

1/σ2
i along the diagonal and zero elsewhere. Substituting in (5.20), the full conditional

is now

π(x|y,θ) ∝ exp(−1

2
(x)TQ(x) +−1

2
(y − x)TM (y − x))

= exp(−1

2
(x)TQ(x)− 1

2
yTMy − 1

2
xTMx+ yTMx)

∝ exp(−1

2
xT (Q+M)x+ yTMx)

∼ NC(b,Q+M ) where b = My

∼ NC(b,Q+ diag(c))

(5.22)

Expressed in this form, sampling proceeds using the algorithm outlined in Table 5.1.

Since we are drawing directly from a GMRF, this may be viewed as a Gibbs step.

5.3.1.2 Inference on Non-normal response models

Often we may be interested in modeling non-normal data through hierarchical GMRF

priors. In these cases, the likelihood is non-normal leading to a joint posterior that, unlike

the normal response model, does not retain its Gaussian properties. A Metropolis-

Hastings step is used to sample from such joint posteriors. To obtain a reasonable

proposal distribution, we build a GMRF approximation of the joint posterior by replacing

the likelihood with its second-order Taylor series expansion (Rue and Held, 2005).
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Second - order Taylor expansion Suppose that we want to approximate some

function f(x) using a quadratic Taylor expansion. Upon expansion around some point

x0, f(x) can be expressed as

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2

= a+ bx− 1

2
cx2

where,

a = f(x0) + f ′(x0)x0 +
1

2
f ′′(x0)x

2
0

b = f ′(x0)− f ′′(x0)x0

c = −f ′′(x0)

(5.23)

Applying this expansion to the likelihood term in (5.20),

π̃(x|y,θ) ∝ exp

(
−1

2
(x− µ)TQ(x− µ) +

∑
i

(ai + bixi −
1

2
cix

2
i )

)

∝ exp

(
−1

2
(x− µ)T (Q+ diag(c))(x− µ) + (Qµ+ b)Tx

)
∼ NC(Qµ+ b,Q+ diag(c))

(5.24)

Sampling from this follows as before. However, we have an additional Metropolis-

Hastings acceptance step here to accept or reject the proposal drawn from the GMRF

approximation.

5.3.2 Blocking Strategies for Hierarchical GMRF Models

In a hierarchical setup with a GMRF hyperprior, precision ω is a smoothing param-

eter and may be fixed at an empirically determined value or sampled from the joint

posterior. In the later case, we may place a Γ(a, b) hyperprior on it. When ω is es-

timated, a block update strategy is employed (Rue and Held, 2005), i.e. the proposal

(ω∗,x∗) is accepted/rejected jointly. This is denoted as the one-block algorithm. The
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steps involved to are to sample

ω∗ ∼ q(ω∗ | ω) (5.25)

x∗ ∼ π(x | θ∗,y)

Further, Rue and Held (2005) suggest the use of a symmetric proposal distribution for

ω stating that the ω chain thus generated is in fact sampling from the posterior marginal

π(ω | y).

5.3.3 Extensions of the Hierarchical GMRF Model

Gaussian Markov Random Fields or Intrinsic CAR(1) priors have historically found

wide applications in spatial modeling. In a seminal paper, Besag et al. (1991) proposed

the application of standard Bayesian image restoration models to disease models. To

illustrate this model, consider the notation and example that they use. Suppose that we

want to model the risk of a disease over an area made of contiguous subunits or “zones”

(for example counties in a state, states in a country). Let ηi denote the log relative risk

in zone i ∈ (1, 2, . . . n) and yi be the corresponding observed number of cases.

We now assume that for a non-contagious and rare disease (cancer for example),

p(yi|xi) ∼ Poisson(cie
xi) (5.26)

where ci is the expected number of cases in zone i assuming constant risk. In order to

jointly model the effect of fixed covariates and error terms, we express x as

x = α + u+ v

where α relates to some known/ fixed covariates akin to the intercept term, u to a

spatially structured error term and v to random noise.
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Priors u and v are assumed to be independent and v N (0, λ2). On u we put a

GMRF prior such that

p(u|ω) ≈ ω(n−1)/2exp

(
−ω
2
σ(uj − ui)2

)
(5.27)

p(v|τ) ≈ τn/2exp

(
−τ
2
σv2i

)
(5.28)

Note that expressing (5.28) as

p(x|u, τ) ≈ τn/2exp
(
−τ

2
σ(xi − ui − α)2

)
(5.29)

yields a conditional Gaussian distribution for the (xi | ui, τ) with mean (ui + α) and

precision τ .

5.3.3.1 Ecological regression model

The BYM model (Besag et al., 1991) can be extended further to include area level

covariates Zi by expressing x as:

xi = α + ui + vi + Ziβ (5.30)

where β is the coefficient of association and Zi pertains to the model matrix for obser-

vation i. A uniform prior is applied to β. This model is especially elegant in that it

enables one to not only smooth empirical data over “geographical” areas but also to find

links or associations of this data with covariates. Bernardinelli et al. (1997) extended the

ecological regression model to allow for covariates with errors, i.e. random covariates.

This is common is cases where Zi can not be observed directly. Suppose that we observe

some wi instead, the simplest approach is to use these to get estimates of Zi, i.e. Ẑi,

and use these for calculation. However, this approach relies heavily on wi being a good

approximation of Zi. When this is not the case this can yield underestimated β values

or overestimated precision measures. Additionally, if we have reason to believe that the

Zi themselves have a spatially correlated structure, then we can obtain better estimates
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overall by applying a spatial smoothing prior to Zi as well that is parameterized by its

own precision parameter ωZ .

5.4 Quantifying Association of Recombination Probabilities

with Covariates

Minin et al. (2007) presented a pioneering model that enables inference of population

level recombination probabilities through the use of a GMRF hyperprior that is able to

combine information of recombination events inferred from individual variants (referred

hereafter as the Minin model). In Chapter 4, I presented a large-scale application of

their model to full length genomic data in order to gain insights into occurrence of

recombination hotspots in the HIV genome. In Chapter 6 we present an extension of

this model that enables inference of coefficients of association of interesting covariates.

Further, we address certain data restrictions imposed by the Minin model. We present

these here briefly. The following chapter provides details.

Mapping to HXB2-relative positions: The Minin model requires the use of a

multiple sequence alignment of all sequences in a dataset. The need for such an alignment

precludes the analysis of large datasets. We propose mapping to HXB2-relative positions

instead creating a full multiple sequence alignment. While we lose some data pertaining

to gaps in HXB2, this is a reasonable trade-off for the ability to include a large number

of sequences in the analysis.

Constraints on recombination probabilities: The Minin model applies a con-

servative constraint to the sum of recombination probabilities restricting the expected

number of breakpoints in individual sequences to 0.693. However, application of this

constraint makes the assumption that all sequences used in the dataset are of nearly the
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same length. For full genome analyses of HIV, much valuable information can be gained

from partial genome sequences added to make up for insufficient full length data. Also,

as the incidence of recombinants in the global epidemic increases, producing more and

more complex recombinants, the assumption of less than 1 recombination breakpoints

may be too conservative. In our model, we remove the use of the constraint.

Ascertainment Bias: The choice of only recombinants in the dataset can lead to

erroneous interpretation of recombination hotspots due to sampling bias. Our model

corrects for this sampling bias by weighting probabilities used by individual sequences

by their length. The following chapter provides more details and some results.
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CHAPTER 6. DETECTING ASSOCIATION OF

RECOMBINATION HOTSPOTS WITH GENOMIC

FEATURES IN HIV-1

A paper to be submitted to Genetics

Misha L. Rajaram, Drena Dobbs, Susan Carpenter, Vladimir N. Minin and Karin S.

Dorman

Abstract

We present a Bayesian framework for inferring association of genomic features with

the spatial distribution of recombination probability from multiple putative recombi-

nants. Recombination confers on retroviruses, the ability to generate chimeric molecules

that may boost the replicative fitness of the virus. Many studies have shown that the

spatial preferences of recombination breakpoints across HIV recombinants is not uni-

form, leading to the presence of recombination hotspots. However, much ambiguity

exists around the molecular mechanism of recombination and the genomic features that

may be associated with recombination hotspots. We propose a hierarchical model that

allows for simultaneous inference of locations of recombination breakpoints in multiple

sequences, spatial variation of recombination rate in the genome and its association with

specified genomic covariates. At the lower level of the hierarchy, a phylogenetic recom-

bination detection model is applied to individual sequences to infer the presence and
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location of breakpoints via changepoint processes. At the upper level, recombination

probabilities are expressed as a linear function of covariates and spatially varying error

terms. We place a spatially smoothing Gaussian Markov Random Field (GMRF) prior

on the error term to combine information from the individual sequences. We applied the

model to a dataset of 527 simple recombinant sequences covering the HIV-1 genome. We

report a putative hotspot in the RT region of the pol gene and another in the nef gene.

We also found positively significant associations of recombination rates with propensity

to form secondary structures lending support to the hypothesis that pause sites trigger

recombination.

6.1 Introduction

The Human Immunodeficiency Virus (HIV) packages its genetic material in two pos-

itive sense RNA strands. The lack of an exonuclease proof reading mechanism, high

mismatch error rate in the transcription machinery and recombination lead to a high

genetic diversity of the virus that help it escape host immune mechanisms. Recombina-

tion occurs upon template switching by the reverse transcription machinery. When the

co-packaged RNA genomes belong to diverse genomic variants, recombination results in

new genetic variants called inter-subtype or inter-specific recombinants. In HIV-1 the

frequency of template switching can be anywhere between 7 to 30 times per genome

(Levy et al., 2004). Recombinants observed at least three times are characterized as

Circulating Recombinant Forms (CRFs); there were 43 known types as of 2009 (HIV-

Database, 2010). All other recombinants are called unique recombinant forms (URFs).

CRFs have triggered many local epidemics (Frange et al., 2008), and account for an

estimated 18% of the global epidemic (Buonaguro et al., 2007) and may gradually out-

compete the pure subtypes in the global infecting pool (Tovanabutra et al., 2004; Njai

et al., 2006; Wang et al., 2007). Subtypes and CRFs differ in virulence (Baeten et al.,
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2006), drug resistance (Spira et al., 2003; Madani et al., 2004) and sensitivity to detection

assays (Swanson et al., 2005; Colson et al., 2007).

Increasing experimental evidence suggests that strand transfer events do not occur

uniformly along the genome. There have been several hints of a hotspot in the 5’ portion

of the pol gene, both in experiment (Jetzt et al., 2000) and among in vivo recombinants

sampled from patients (Magiorkinis et al., 2003; Thomson et al., 2004; Galli. et al.,

2008). Another well studied hotspot is the conserved C2 region of env (Moumen et al.,

2001; Quinones-Mateu et al., 2002) although all conserved regions in env have relatively

high recombination rates (Baird et al., 2006a) and even variable regions are believed to

become hotspots with the right donor template (Baird et al., 2006b). Many inter-subtype

recombinants observed around the world display a recombinant pattern where the vari-

able loop V3, between C2 and C3 (Renjifo et al., 1999), or the complete gp120 portion

of env is swapped with another subtype (Takebe et al., 2003). Other regions implicated

as possible hotspots are 5’ gag (Dykes et al., 2004), the gag-pol boundary (Magiorki-

nis et al., 2003), the pol-vif boundary (Derebail et al., 2003), through vif into the 5’

env (Magiorkinis et al., 2003), a GC-rich region near the tat-rev splice site (Douglas

et al., 1996), and near nef (Magiorkinis et al., 2003). Indeed, very few genomic regions

are consistently “cold” but few studies have examined the entire genome at once and

experimental protocols and reagents vary widely. Additionally, little consensus exists on

what causes the replication machinery to fall off a template and on to another. Find-

ing association of recombination hotspots with genomic features may provide important

clues to dissecting the mechanism.

Most methods for detection of topology change points use phylogenetic inference (Hein,

1990). These methods exploit the fact that if recombination has occurred in a set of

aligned sequences then their phylogenetic relationships should differ on either side of a

breakpoint. Most popular approaches, therefore, use a sliding window technique to look

for support for alternative topologies (Grassly and Holmes, 1997; McGuire et al., 1997;
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Husmeier and McGuire, 2003). This method, however, suffers from a multiple testing

problem and low resolution for detecting breakpoints (Suchard et al., 2002). More recent

advances have been in the area of a Bayesian Hidden Markov Model (HMM), where the

underlying tree topologies are considered the hidden states while the actual observed

alignment is considered as the observed state. This method is more accurate than the

sliding window methods (Husmeier and McGuire, 2003). However, it is computationally

intensive and currently can only include up to four sequences in the alignment. Addi-

tionally, it assumes that all regions of the alignment are under similar selection pressures

which may be problematic (Dorman et al., 2002; Husmeier and McGuire, 2002).

Change-point models have been used to successfully model the spatial phylogenetic

variation along an alignment. A single multiple change point model (Suchard et al., 2003)

was extended to a dual multiple changepoint (DMCP) Model (Minin et al., 2005) that

successfully de-convolutes changepoints arising from recombination breakpoints from

other types of changepoints along an alignment. The DMCP achieves this by mod-

eling changes in nucleotide substitution pressures and tree topology as two indepen-

dent changepoint processes thus providing more accuracy to the recombination detec-

tion problem by decoupling the effect of nucleotide substitution from real tree topology

change.

Minin et al. (2007) introduced a Bayesian hierarchical model to combine breakpoint

information from many individual sequences in order to infer recombination hotspots at

a genome level. This model achieves such inference by assuming a genome level recombi-

nation probability that informs on the placement of breakpoints in individual sequences.

A spatially smoothing intrinsic Gaussian Markov Random Field (GMRF) prior is placed

on the vector of recombination probabilities. This prior defines the neighborhood of each

site, sites to its immediate left and right, enabling spatial smoothing by allowing the

sharing of information between neighbors. While pioneering in its application of the

GMRF prior to the inference of recombination hotspots in HIV, assumptions made in
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the above model preclude the use of a large number of sequences as also sequences of

disparate lengths.

In the present paper we describe a Bayesian hierarchical model that simultaneously

infers recombination hotspots and their association with genomic features. The lower

lever of the model infers topology change points in individual sequences using the DMCP

model from (Minin et al., 2005). The genome level counts for site-wise topology change-

points are then used to capture the recombination probability via a binomial likelihood

function. The upper level of the hierarchy makes inference on the recombination prob-

abilities as well as the regression coefficients measuring their association with input

covariates. A one-dimensional GMRF prior (Minin et al., 2007) is placed on the recom-

bination probabilities to enable smoothing of recombination probabilities. Further, in

order to take full advantage of all the publicly available HIV sequence data, we extended

the model so it is not only able to handle a large number of sequences but also sequences

of variable length. Our model also corrects, automatically, for any sampling bias that

the input dataset may introduce.

Section 2 provides an overview of the model as well as methodology adopted in

curation of the test dataset. Section 3 presents results of simulation runs with artificial

recombinant sequences of varying lengths and inclusion of different types of covariates.

The latter part of this section presents results from application of the model to a dataset

containing known HIV-1 recombinants and their association with genomic covariates. We

included GC content and sequence similarity as well as features associated with RNA

secondary structure formation. We find that the latter have a significantly positive

association with recombination probabilities, i.e. those that have been hypothesized to

promote formation of secondary structures also seem to be associated with the presence

of recombination hotspots.
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6.2 Methods

6.2.1 Mapping Sequences to HXB2

Minin et al. (2007) map individual sequences to a population level vector by using

a multiple sequence alignment containing all sequences in the dataset along with their

putative parental sequences. However, this requirement becomes increasingly prohibitive

with larger datasets. We solve this problem by mapping individual sequences back to

HXB2 positions disallowing any gaps in the HXB2 sequence. While we lose information

about insertions relative to HXB2, the gaps are not long and this strategy does away

with the need for a multiple sequence alignment thus allowing for the inclusion of many

sequences in our dataset.

Let Y denote the data of K individual alignments, (Y1, Y2 . . . YK), each corresponding

to a multiple sequence alignment containing a putative recombinant and its parental

sequences. Note that gaps in the recombinant are removed from these alignments since

recombination breakpoints can not be placed at these gap sites. Individual sequences

may then be mapped to their corresponding HXB2-relative positions using a mapping

function:

fk : 1, 2....Lk → 1, 2...S

where Lk is the length of alignment Yk, S is the total length of the region of the HIV

genome covered by the dataset of K sequences and fk(i) is the HXB2 site corresponding

to site i in this alignment.

6.2.2 The Dual Multiple Changepoint Model (DMCP)

The lower level of the hierarchical model, infers recombination breakpoints in indi-

vidual alignments Yk via the dual multiple changepoint (DMCP) model (Minin et al.,

2005). Columns in the alignment Yk = (Y
(1)
k , Y

(2)
k , . . . , Y

(l)
k , . . . , Y

(Lk)
k ) are assumed to

evolve independently as a continuous time Markov chain with transition/transversion
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ratio κ
(l)
k , following Hasegawa et al. (1985). The stationary distribution parameters

πkN , N ∈ {A,C,G, T} are fixed to the observed proportions in the input alignment.

We complete the specification of the phylogenetic model by specifying a bifurcating tree

topology τ
(l)
k that models the evolutionary relationship of the nucleotides in column Y

(l)
k .

An exponential prior with mean µ
(l)
k is placed on the branch lengths of the tree, to re-

duce the number of free parameters (Suchard et al., 2003; Minin et al., 2005). This

specification leads to a site-wise likelihood,

L(l)
k = P (Y

(l)
k |τ

(l)
k , µ

(l)
k , κ

(l)
k ) (6.1)

A change point may occur when there is a change in the tree topology τk, a change in

the evolutionary parameters (µk,κk), or both. Let 1 = θ0 < θ1 < · · · < θMk+1 = Lk + 1

represent the locations of Mk unknown and distinct topology change points. All posi-

tions in the alignment between adjacent topology change points, i.e. l ∈ [θm−1, θm), 1 ≤

m ≤Mk +1 share a tree topology τ
(m)
k , and adjacent fragments have distinct topologies.

Let 1 = ρ0 < ρ1 < . . . < ρJk+1 = Lk + 1 be the locations of Jk distinct evolution-

ary changepoints that mark changes in evolutionary parameters. As before, all sites

of the alignment between two evolutionary changepoints share the same evolutionary

parameters.

The DMCP model is, therefore, completely defined by parameters

Φk = {Mk, Jk,θk, τk,ρk,µk,κk}.

Our interest is in the number and location of topology change points (Mk,θk). Hence,

we bundle the rest of the parameters as nuisance parameters in vector ψk. Priors on

nuisance parameters were set as described in Minin et al. (2007).

6.2.3 Prior on Location of Topology Changepoints

The upper level of the hierarchy combines information from the K recombinants

analyzed in the lower level of the hierarchy. We reconfigure the topology changepoints
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θk of recombinant k into a vector of indicator variables Bk = (Bk,1, Bk,2, . . . , Bk,Lk
)

where Bk,l = 1 if l ∈ θk, 0 otherwise. Let ps ∈ p = (p1, p2 . . . pS) be the population-level

probability that site s is a topology change point. Then, the probability of the current

configuration of topology change points in alignment k is

Pr(Bk,l = r|p) = (p
f
(l)
k

)r(1− p
f
(l)
k

)1−r, where r = {0, 1}. (6.2)

Conditional on the recombination probabilities ps, we assume that topology change

points are independent, so the joint likelihood of B is

Pr(B1,B2, . . .BK |p) ∝
K∏
k=1

Lk∏
l=1

(p
f
(l)
k

)Bk,l(1− p
f
(l)
k

)1−Bk,l . (6.3)

Denoting all recombinants that did not have a gap character at site s as Cs =
∑K

k=1{s ∈

range(fk)} and the total number of times site s was inferred to be breakpoint as Rs =∑K
k=1Bk,s, (6.3) simplifies to

Pr(B1,B2, . . .BK |p) ∝
K∏
k=1

pRs
s (1− ps)Cs−Rs (6.4)

In order to infer recombination probabilities from the likelihood in (6.4), it is imperative

to define an informative prior structure on them. An efficient prior that is also biologi-

cally relevant is the Gaussian Markov Random Field (GMRF) prior (Minin et al., 2007).

We first obtain the logit transformation of the recombination probabilities,

νs = log

(
ps

1− ps

)
(6.5)

and apply the GMRF prior to the recombination log-odds.

ν|ω ∼ ω(S−1)/2 exp

(
−ω

2

S−1∑
s=1

(νs − νs+1)
2

)
(6.6)

This prior penalizes large differences in recombination probabilities at adjacent sites.

We refer interested readers to Minin et al. (2007) for more details on the structure of

the precision matrix as well as adjustments made to ensure that the resultant posterior

is proper.
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6.2.4 Modeling Association of Genomic Features

In order to extend the current model to include covariates of interest, we express the

recombination log-odds ν as

νs = ηs +Xsβ (6.7)

where X denotes the model matrix, β, the set of regression coefficients and η is the

spatially varying component of ν. Note that ν is still a GMRF, now with mean Xβ

and dimension S + n where n is the dimension of β (Rue and Held, 2005).

We complete the Bayesian formulation of the model by specifying a non-informative

uniform prior on β and by fixing ω appropriately. In fact, ω can be viewed as a smoothing

parameter that can be adjusted to match the availability of data. Note that ω may be

inferred as well, in which case we place a Γ(ωa, ωb) prior on it where ωb is fixed at 0.02

and ωa at S − 1. For more details, we refer interested readers to Minin et al. (2007)

and Rue and Held (2005).

6.2.5 Inference via MCMC Simulation

The joint posterior distribution of all model parameters is

Pr(Φ1,Φ2 . . .ΦK ,ν, ω | Y1, Y2 . . . YK) (6.8)

∝
K∏
k=1

Pr(Yk | Φk)Pr(ψk)Pr(Rk | ν)× Pr(η | ω)Pr(β)Pr(ω).

In order to sample from (6.9), we employed MCMC simulation via the block update

scheme proposed by Rue and Held (2005) for sampling from distributions involving

GMRF hyperpriors. Model parameters were updated in three blocks. In the first block,

we updated parameters of individual alignments by sampling from their full conditionals.

Pr(Φ1,Φ2 . . .ΦK , | ν, ω, Y1, Y2 . . . YK) ∝
K∏
k=1

Pr(Yk | Φk)Pr(ψk)Pr(Rk | ν) (6.9)

Note that the Φk are conditionally independent, given ν and ω and simulation simply

involves cycling through all individual alignments. Minin et al. (2005) used an rjMCMC
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sampler to update parameters of individual alignments. In the current model, we re-

tain their sampling scheme with appropriate adjustments for the prior on locations of

topology changepoints.

At the upper level of the hierarchy, the full conditional is

Pr(η,β, ω | Y1, Y2 . . . YK ,Φ1,Φ2 . . .ΦK) ∝ Pr(R,C | ν)Pr(η | ω)Pr(β)Pr(ω) (6.10)

From (6.4) and (6.5), we may express Pr(R,C | ν) as

Pr(R,C | ν) ∝
S∏
s=1

(
eνs

1 + eνs

)Rs
(

1

1 + eνs

)Cs−Rs

(6.11)

The second block consists of the spatial parameters η and ω that are updated jointly

following a strategy proposed by Rue and Held (2005). In the current model, however,

we fix ω, thereby reducing the parameter space of this block only to η. The third block

includes the β coefficients that are updated independent of the ν or ω updates.

From (6.10), the posterior marginal distribution of ν can be denoted as

Pr(ν | R,C, ω) ∝ exp(−1

2
νTQν +

S∑
s=1

Rsνs + Csln(1 + eνs)). (6.12)

We use (6.12) to obtain full conditional for η as

Pr(η | β,R,C, ω) ∝ exp(−1

2
ηTQη + f(η;R,C)) (6.13)

where f(η;R,C) is the part of the likelihood pertinent to the full conditional of η.

Similarly, the full conditional for β can be denoted by f(β;R,C). Note that due to

the non-normal nature of the likelihood functions, these full conditionals are analyti-

cally intractable. To sample from them, we use the Metropolis-Hastings algorithm with

proposal distributions described below.

Applying the second order Taylor series expansion to f(η;R,C), we obtain a GMRF

approximation to (6.13) that may be used as a proposal distribution. Note that the

Taylor series expansion can be performed around the mode of (6.13) or the current state
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η. The proposal η∗ thus generated is accepted/rejected using the standard acceptance

ratio procedure of the Metropolis-Hastings algorithm (Hastings, 1970). In cases where

ω is also estimated, the proposals η∗ and ω∗ are jointly accepted/rejected. Arbitrary

normal proposal distributions were employed to update each of the members of β using

series of Metropolis-within-Gibbs steps.

6.2.6 Dataset

In order to study the association of recombination probability with sequence covari-

ates, we curated a dataset of 527 recombinants. To gain insight into features associated

with the mechanism itself, we curated the dataset in such a way that there were no

replicate representatives of a single recombination event. Starting with 2, 360 simple

recombinants, i.e those with only two parental genotypes, we grouped these into 544

clusters based on their profile structure. The profile structure of a recombinant refers

to the 5′ to 3′ listing of recombination breakpoints and the parental genotypes for ev-

ery segment created thereof. Rajaram et al. (2007) provides a detailed description of

the clustering algorithm. Because the HIV reference dataset used for parental genotype

does not have 5′ LTR sequences, we eliminated sequences that covered only this region

and truncated others that extend into the LTR region leading to a dataset of 527 recom-

binants. Lengths of the recombinants range between 400 and 8587 nucleotides covering

8924 nucleotides corresponding to the entire genome from the 3′ end of the 5′ LTR.

6.2.7 Correcting Ascertainment Bias

Ascertainment or sampling bias may result in erroneous inference of hotspots. In

the current context, this bias may arise when datasets are curated to contain only

recombinants and a portion of these only cover a short region of the genome. Repeated

inference of breakpoints from these recombinants may result in a posterior probability

profile that appears to have a hotspot in high coverage regions. To correct for the
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sampling bias, we use bias coefficients specific to each sequence. For recombinant k

covering region (lk, Lk) of the genome, we compute the bias corrected recombination

probabilities p∗fk(s) as

p∗fk(s) = Akpfk(s) (6.14)

where Ak, the recombinant-specific bias coefficient, is computed as

Ak =
1

1−
∏

s∈(lk,Lk)
(1− pfk(s))

(6.15)

6.3 Results

6.3.1 Simulation Study

To demonstrate the working of our model in detecting recombination hotspots and

their association with covariates, we designed a few simulation cases. We start with a

set of K simulated recombinants covering a region of 8121 sites corresponding to the

gag, pol and env genes of the HIV genome created using 80 non-recombinant full length

sequences each of the B and C genotypes. To test that the model handles sequences of

variable length, 25% randomly chosen sequences from this set were truncated so as to

cover only the gag gene and 25% others cover only the env gene. We set the “true”

recombination probability for these recombinants such that the region between sites

3500− 4500 had maximum probability of having a breakpoint, thus creating a hotspot

in the dataset. When a covariate was included, it was part of the “true” probability

profile used to create the simulated recombinants. Note that these probability profiles

are scaled so that the expected number of changepoints in a full length sequence is

0.693 so as to mimic simple recombinants (Minin et al., 2005). As a consequence, some

sequences were not recombinant and no ascertainment bias correction is needed. We

report 95% Bayesian credible intervals for the coefficients of regression of the covariates.

Coefficients whose credible interval includes 0 are said to have no association with the
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recombination probability.

We generated a dataset of 100 simulated recombinants as described above. The

probability profile used placed a hotspot in the 3500− 4500 region and had no included

covariates. The top left plot of Fig. 6.1 shows the simulated probabilities used to create

the recombinants. Solid dots on the plot mark the locations of breakpoints in the

dataset. As a control case, an unrelated covariate term was provided to the model during

inference. The top right plot in Fig. 6.1 shows the posterior inferred recombination

probabilities. It also indicates the 95% BCI for the coefficient of the unrelated coefficient,

with the middle number indicating the mean and the left and right flanking numbers

indicating the lower and upper bounds of the credible interval respectively. The use

of sequences of variable length does not affect the accurate inference of the hotspot.

Note also that BCI of the coefficient includes 0, i.e. no evidence of association with the

covariate, as is truly the case.

Next we tested a case where we included a normal random covariates in the recom-

bination probabilities used to create the test dataset. β was fixed at 1.0. The “true”

recombination probabilities still placed a hotspot in the region as above, however, the

profile of this density was not smooth as before. Fig. 6.1(c) shows the probability profile

with added covariate and the locations of breakpoints in the dataset of 100 simulated

sequences created from it. Fig. 6.1(d) shows the posterior inference of recombination

probabilities. The directionality of the β term was inferred correctly although its inferred

strength is diminished.

Finally, to test the scenario where the covariate itself may present with a continu-

ously varying structure, we used a probability profile as shown in Fig. 6.1(e). The first

“hotspot” region is created by the covariate, with β = 1.0 while the second hotspot in

the 3500− 4500 region is congruent with the ones in prior datasets and corresponds to

the spatial error term. Fig. 6.1(f) shows the inferred recombination probabilities. The

95% BCI for β was significant and positively associated. However the mean is much
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lower than the true value of β. We tested two more datasets, one with 250 sequences

and a third with 500 sequences and found that the mean of the inferred coefficient is

closer to the true value with more data.

To demonstrate the use of the ascertainment bias correction coefficients, we created

a simulated dataset of 100 recombinants. As before, 25 each of these covered the gag

and env regions and 50 were full length sequences. Here, we set the expected number

of breakpoints for each sequence, regardless of length, to 1 and these were uniformly

distributed along the genome resulting in no hotspots in the dataset. Fig. 6.3(a) shows

the posterior inference on this dataset without bias correction. Solid dots mark locations

of recombination breakpoints in the dataset. As predicted earlier, the recombination

profile shows a distinct pattern similar to the coverage pattern. Fig. 6.3(b) shows bias-

corrected posterior inference accurately reflecting the uniform distribution of breakpoints

in the dataset.

6.3.2 Analysis of Real Data

The model was used to analyze the dataset curated as described in section 6.2.6. Note

that since all the sequences were chosen to be recombinants, we applied the ascertainment

bias correction for this analysis. Figure 6.4 shows the posterior recombination probability

inferred from this dataset. The posterior mean probabilities are plotted (line) along

with the 95% credible interval (shading). Lack of parental sequence information in the

5’ LTR region caused us to exclude this region. The x-axis is numbered relative to

HXB2 positions. A hotspot occurs in the 5′ end of the pol gene coding for the reverse

transcriptase enzyme. Another hotspot occurs in the gag gene. The 3′ end of the pol

gene coding for protease is particularly cold. The env gene tends to have moderately

high recombination rate throughout. A peak is observed in the region overlapped by nef

and the 3′ LTR.

The next few sections present results of associations with various covariates. Table 6.1
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provides a summary of the mean and 95% BCI for the association coefficients. It should

be noted that all covariates were normalized before inference and as such the magnitude

of the coefficients obtained are directly comparable to each other.

Association with known recombination hotspots: Many previous studies

(Moumen et al., 2001; Dykes et al., 2004; Balakrishnan et al., 2003; Zhuang et al.,

2002; Baird et al., 2006b) have, through in vitro systems or single cell infection assays,

identified recombination hotspots along the HIV-1 genome. To test how these translate

to in vivo sequences where they face selection pressure, we included as covariate an

indicator variable that had a value 1 for any nucleotide that was part of the hotspots

identified by Moumen et al. (2001); Zhuang et al. (2002); Dykes et al. (2004) and Baird

et al. (2006b), and 0 otherwise. We found no significant association with these hotspots.

GC content and Sequence Similarity: Rajaram et al. (2007) examined the

correlation between GC content and sequence similarity with posterior recombination

probabilities. Here we included these as covariates in the model. GC content was

summarized using sliding windows of sizes 20, 50 and 100 bp. The GC content at site s

is the proportion of G and C nucleotides within a window of size n centered at site s.

Sequence similarity was summarized using Shannon’s entropy. For site s the entropy

is computed as

Hs = −
∑

i∈(A,C,G,T )

ρ(s,i)log(ρ(s,i)) (6.16)

where ρ(s,i) corresponds to the proportion of appearance of nucleotide i at site s in the

entire dataset. Further Magiorkinis et al. (2003) reported association with upstream

sequence similarity and frequency of recombination. To summarize this, we also con-

sidered entropy covariates in sliding windows of size 10, 20 and 50 bp. In this case

the entropy at site s was computed as the average positional entropy of the nucleotides

occurring in the window starting at that site.
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The association of GC content is positive and increases with increasing window

size. Site-wise entropy has a negative association with recombination probability while

window-wise entropy has a positive association. The strength of window-wise entropy

associations also increases with larger windows.

Deletions: The jumping reverse transcription complex, could introduce insertions

and deletions in the resultant recombinant. While our use of HXB2 mapping of indi-

vidual sequences prevents the analysis of insertions, we may use deletion counts to test

their association with recombination probabilities. The deletion count at site s is the

length of the gap region that follows it. The mean of the coefficient was inferred very

close to 0 with its 95% BCI including 0.

Thermodynamic stability of RNA/DNA hybrid: Sugimoto et al. (1995) pro-

vided parameters for the nearest neighbor computations to predict the thermodynamic

stability of a RNA/DNA hybrid. The covariate at site s was the total free energy,

∆G37 deg, of the 9-mer centered at site s computed using the nearest neighbor method.

The association of this covariate with recombination probability was inferred to be sig-

nificant and negative.

Covariates associated with RNA Secondary structure: Next we examined

association of some covariates that indicate formation of secondary structures by the

genome RNA. Many studies (Galetto et al., 2006; Moumen et al., 2003; Roda et al.,

2002b) have indicated association of secondary structure with recombination and hy-

pothesize that a loop may act as a pause site for the reverse transcription machinery,

encouraging it to fall off the template genome. Shen et al. (2009) showed that G-rich

stretches along the HIV genome are prone to formation of tetraloops and associated

with recombination. To include the presence of G-rich regions as a covariate we adopted

the following coding system. All nucleotides other than G were coded 0. Guanosine
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nucleotides were coded in increasing order, i.e. the first in a stretch of Gs was coded 1,

the next 2 and so on until the stretch was interrupted with a non-G nucleotide, resetting

the counter to 0. The coefficient for this covariate is positive and significant.

Watts et al. (2009) recently elucidated the secondary structure of the HIV genome

using the high-throughput selective 29-hydroxyl acylation analysed by primer extension

(SHAPE) (Wilkinson et al., 2006; Deigan et al., 2009) method. SHAPE reactivity mea-

sures the propensity of a nucleotide to be acetylated. It, therefore, provides very clear

information of whether a nucleotide is involved in a secondary structure or not. High

SHAPE reactivities indicate unstructured nucleotides or absence of secondary struc-

tures. They also use a method suggested by (Pedersen et al., 2004) to compute pairing

probabilities at each nucleotide. This algorithm does not involve chemical or thermo-

dynamic computations and has opposite directionality to the SHAPE reactivities, i.e.

high pairing probability indicates higher propensity for the nucleotide to be part of a

secondary structure. We provided the SHAPE reactivity and pairing probabilities as

covariates and found that the resultant coefficients were significant. SHAPE reactiv-

ity was negatively associated with recombination probability while pairing probabilities

were positively associated.

6.3.3 MCMC Convergence Diagnostics

At the lower level, individual scaled regeneration quantile (SRQ) plots for the total

number of inferred breakpoints Mk were examined to assess convergence. For the DMCP

model, the time evolution of Mk is a vital indicator of mixing in the reversible jump

MCMC sampler. Mykland et al. (1995) suggest that for renewal process such as the

MCMC sampler of the DMCP model, plotting its regeneration times can be used to

assess convergence. Mk has a discrete state space and we mark the state denoting the

posterior median number of breakpoints as the state of interest m. For an MCMC run

of fixed length, ti, i = 1, 2 . . . n are the time steps at which state m was visited where



99

n is the random total number of visits to state m. A plot of ti/tn vs. i/n close to the

diagonal corresponding to the y = x line indicates convergence. Fig. 6.5 shows the SRQ

plots for all 527 individual sequences in our real dataset with all lines lying very close

to the diagonal.

We employ the Geweke statistic (Geweke, 1992) to test convergence at the upper

level. The first 10% and last 50% samples were used for this test. Geweke suggests that

treating the samples as a time series, the Z-statistic for the difference of the means thus

computed is asymptotically normal. A Z-test was performed for mean ν at each position

and mean β for the two samples. No difference was found significant thus indicating

convergence.

6.4 Discussion

We presented a hierarchical model that can assess, for a set of putative recombinants,

presence of recombination hotspots and their association with covariates. Extending the

model presented by Minin et al. (2007), we are now able to deal with large datasets

that may also include sequences of varying lengths. As the simulation results indicate,

providing more information in terms of a larger number of sequences can greatly help in

achieving better resolution of the inference. Further, the model also handles bias arising

from sampling a subset of sequences. This bias becomes especially acute when sequences

with varying lengths are allowed. In trying to understand the molecular mechanism of

recombination, care must be taken to ensure that recombinants chosen do not represent

replicates of the same recombination event. Covariate associations found in datasets

with replicates while informative on replicative fitness of a recombinant, do not provide

insights into the mechanism itself. Abundance of a particular recombinant in the dataset

will result in heightened recombination probabilities in areas near its breakpoints leading

to spurious hotspot inference. The bias correction included in the current model handles
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this by weighting the recombination probabilities at the lower level by the length of the

individual sequence.

We used a carefully curated dataset to find associations with sequence features. Anal-

ysis of this dataset reveals that considerable spatial variation in recombination probabil-

ity along the HIV genome. Galli. et al. (2008) hypothesized the presence of a recombi-

nation hotspot through a computational study that compared frequency of breakpoint

occurrence to frequency of occurrence of hairpin loops in the pol gene. The advent of

drug therapy and the subsequent drug resistance mutations that have accumulated in

regions that are drug targets, such as RT could be a cause for this hotspot (Charpentier

et al., 2006; Nora et al., 2007). However, drug therapy itself is not very prevalent in

poorer sections of the world (WHO, 2007) and may not fully explain the hotspot. A

hotspot in the gag gene was reported in an experimental study (Shen et al., 2009). Minin

et al. (2007) also reported a putative hotspot in the gag gene from the application of

the hierarchical GMRF model to a set of A/G recombinants. The peaks in the env gene

occurred at the edges of the gp120 coding region. The surface glycoprotein, gp120, is the

first line of attack for the virus and switching it out with that of a different genotype may

confer evolutionary advantage. Indeed, in some A/E recombinants from Thailand, the

gp120 coding region is from subtype E while the rest of the virus is subtype A1 (Sabino

et al., 1994). This is also a highly successful recombinant and one of the major infecting

types of the region. Evidence of recombination in the nef gene was earlier reported in

in vitro studies of SIV. More recently, inter-subtype env-nef recombinants have been

reported in India (Bhanja et al., 2007).

6.4.1 Quantifying Associations with Genomic Features

We performed a series of experiments with simulations to test our model for most

plausible scenarios. β was underestimated when a random covariate is included. This

may be attributed to the spatial term accounting for some of the random noise added by
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the covariate. Estimates for covariates of this nature are thus bound to be conservative.

Further, we found that adding more sequences to the dataset results in more lucid

posterior inferences. An advantage our model has over previous models is its ability to

test a large number of sequences simultaneously.

Much debate exists on the molecular mechanism of recombination, specifically the

triggers that prompt the replication machinery to fall off a donor template, the “sig-

nals” that help it anneal to a receptor template and the many interactions involved in

between. Galetto and Negroni (2005) provide an extensive review of evidence to sup-

port the copy choice model for recombination (Hu and Temin, 1990). Magiorkinis et al.

(2003), through a combination of in vitro and computational studies, provide evidence

that they interpret as support for strand displacement-assimilation model. Many other

in vitro studies have found association of recombination with RNA secondary struc-

tures (Galetto and Negroni, 2005; Moumen et al., 2003; Roda et al., 2002b), GC rich

regions (Klarmann et al., 1993) etcetera. However, how these forces act in vivo, if at

all, has been difficult to measure. This model provides a paradigm for simultaneous

inference of recombination hotspots and coefficients of association.

Recent studies have demonstrated the presence of recombination hotspot along the

HIV-1 genome (Zhuang et al., 2002; Balakrishnan et al., 2003; Dykes et al., 2004; Galetto

et al., 2006; Moumen et al., 2001). However, these studies were performed using recon-

stituted in vitro systems or using single infection assays in vivo. It must be noted that

sequence data available from patients constitutes viruses that have undergone selection

pressure and hence these may not exhibit the hotspots found in the studies above. In-

clusion of a covariate that measures association of recombination hotspots identified

by (Moumen et al., 2001; Zhuang et al., 2002; Dykes et al., 2004; Baird et al., 2006b)

results in a coefficient with no effect. This suggests that selection plays a role in the

evolution of the virus within infected individuals.

GC content is one of the simplest features summarizing the genome. In the current



102

study we find a positive and significant association of recombination probability with

GC content and it is found to increase with larger windows. However, this association

may possibly reflect the varying GC content across the genome itself. Klarmann et al.

(1993) reported that the transcription machinery pauses at GC rich stretches and this

correlation may be indicative of the association of pauses and recombination.

Entropy is also found to have significant association with recombination probability.

Per-site entropy had a negative association, supporting the theory that some amount of

homology is necessary at recombinogenic regions. However, we find that window-wise

entropy had the opposite effect. While it is possible that variability may be associated

with high recombination rates, a more plausible explanation is that these reflect the

mechanism of inference of breakpoints rather than a true association. The lower level

DMCP model, by virtue of being a phylogenetic recombination detection model requires

some amount of variation to be able to place recombination breakpoints in a region.

The strength of the RNA/DNA hybrid may contribute towards keeping the transcrip-

tion machinery on the donor template, thus preventing recombination. The significant

negative association to this covariate supports this hypothesis. This effect is orthogonal

to the effect of secondary structures. Secondary structures have been hypothesized to

cause the transcription machinery to pause or sometimes prevent it from moving fur-

ther (Dykes et al., 2004; Lanciault and Champoux, 2006). Such pause sites may provide

an impetus to recombination events (Roda et al., 2002a, 2003; Zhuang et al., 2002). We

summarized the propensity for secondary structure formation using three covariates.

Shen et al. (2009) hypothesized that the presence of guanosine rich runs may promote

the formation of secondary tetra-guanosine loops. A significant positive association of

this covariate with recombination probability was observed. Watts et al. (2009) provide

details of SHAPE reactivities and pairing probabilities of the HIV-1 genome. Regions

with high SHAPE reactivities are considered to be unstructured loops while those with

medium- to low-random reactivities may be members of a loop. Similarly, pairing proba-
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bilities measure the propensity of a nucleotide to be part of a secondary structure. Lower

pairing probabilities indicate unstructured regions. Significant negative and positive as-

sociations were observed with SHAPE reactivity and pairing probabilities respectively.

The factors promoting recombination in vivo are largely unknown (Negroni and Buc,

2001). This model provides a unified framework to infer these associations. The covari-

ates in turn augment the recombination hotspot prediction by infusing more data into

the model. Overall, our model is superior to previous efforts that use phylogenetic

recombination detection to infer spatial variation of recombination probability and its

association with sequence features (Magiorkinis et al., 2003; Zhang et al., 2005). Using

the hierarchical setup it is able to integrate over all recombination breakpoints inferred

at the lower level.

The model may also be used to comment on epidemiological impact of recombina-

tion. Using datasets representative of specific time periods in the evolution of the virus,

comparative studies can be carried out to examine if and how the spatial variation of

recombination rates differs between the two time periods. Covariates such as presence

of drug resistance mutations may be included to test if they share a significant associ-

ation with the change in recombination probability profile. Finally, the model may be

extended to include covariates at the level of the individual sequence. This extension

will enable testing of some very interesting temporal and geographical hypotheses such

as, how the spatial recombination profile has changed over time, how recombinants from

one geographic region compare with those from another in propensity to recombine and

placement of hotspots, how genotypes differ in these aspects and so on.
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Figure 6.1 (a) Recombination probability profile with no included covari-
ate (b) Posterior inference for dataset generated in (a) analyzed
with an unrelated covariate. (c) Recombination probability pro-
file with including a randomly varying covariate (d) Posterior
inference for dataset generated using profile in (c).
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Figure 6.2 (a) Recombination probability profile with spatially structured
covariate (b-d) Posterior inference for dataset with 100,250 and
500 simulated recombinants respectively, generated using profile
in (a).
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Figure 6.3 Results from simulation dataset to test correction of ascertain-
ment bias (a) Posterior inference before bias correction. Solid
dots indicate locations of breakpoints in the dataset. (b) Poste-
rior inference after applying bias correction
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Figure 6.5 MCMC convergence diagnostics: SRQ plots for individual
DMCP samplers
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Covariate Mean coefficient 95% BCI
in vitro hotspots 0.1261 (−0.0131, 0.3587)
GC content (20) 0.2760 (0.1817, 0.3805)
GC content (50) 0.3185 (0.1932, 0.4404)
GC content (100) 0.3489 (0.2120, 0.4595)
Entropy (sitewise) −2.5561 (−2.9151,−1.9041)

Entropy (10) 1.8577 (1.4276, 2.3050)
Entropy (20) 1.9109 (1.505, 2.301)
Entropy (50) 2.4460 (1.9691, 2.9172)

Deletions 0.0081 (−0.0281, 0.0162)
Thermal Stability −0.2014 (−0.3729,−0.0590)
G-rich stretches 0.7361 (0.6269, 0.8428)

SHAPE reactivity −2.3934 (−2.6328,−2.1549)
Pairing probability 2.3896 (2.0642, 2.6857)

Table 6.1 β coefficients inferred from full length HIV-1 genome analysis
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CHAPTER 7. ALTERNATE HIERARCHICAL GMRF

PRIOR SPECIFICATION IN BINOMIAL RESPONSE

MODELS

7.1 Introduction

In this chapter we motivate the use of the alternatives to the model described in

earlier chapters. Briefly, in the hierarchical setup described hitherto, the upper level

placed a GMRF prior on the population-level recombination probabilities p. The lower

level of the hierarchy inferred recombination breakpoints in individual sequences and

these were communicated to the upper level through count data. This setup resulted in

a binomial likelihood,

π(R | p) ∝
S∏
s=1

pRs
s (1− ps)Cs−Rs (7.1)

where Rs is the number of time site s was a inferred to be a breakpoint at the lower level,

C tracks the total number of times site s was represented in the dataset and S is the

total length of the genome covered by the dataset. Placing a GMRF prior on the logit

transformed recombination probability vector ν, Bayesian inference requires sampling

from the density

π(ν) ∝ exp

(
−1

2
νT (Q+ diag(c))ν + bTν +

∑
fs(νs)

)
(7.2)

where fs refers to the likelihood function at site s. With a binomial likelihood, Rue

and Held (2005) suggest approximating the likelihood using a second-order Taylor se-
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ries expansion and using the resultant GMRF approximation density as the proposal

distribution in the Metropolis algorithm.

In the model discussed in this section, we apply an arcsin transformation on the count

data such that the site-wise likelihood is asymptotically normal instead of binomial.

This in turn results in the density (7.2) remaining a GMRF enabling direct sampling in

a single Gibbs step as described in Chapter 5. This setup increases the speed of inference

twofold. However, the proposed transformation method results in range restrictions on

the inference that may limit its use to large datasets. We discuss the model setup , its

merits and demerits in detail in the following sections.

7.2 Methods

We propose a toy example to illustrate the current model. At each site of the

“genome” covered by the dataset the input data is in the form of normal random variates

instead of sequence data. Each input vector was generated from a series of normal

distributions thus creating changepoints in it. These changepoints are detected by the

lower level of the hierarchical model. The upper level models the probability of a site to

be a changepoint.

Suppose that we start with a dataset comprised of K individual data vectors of

lengths L1, L2 . . . LK respectively. Each data vector, yk = (yk,1, yk,2 . . . yk,Lk
) is a set of

Lk observations that are piecewise i.i.d.. Further, each vector has J changepoints such

that observations in partition j ∈ (1, 2, . . . J + 1) are random variables from a N (µj, σ
2
j )

distribution.

7.2.1 Multiple Changepoint Model

At the lower level of the hierarchy our goal is to infer the number and location of

the changepoints in individual data vectors. Denoting the model under J changepoints
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as MJ , the corresponding parameters are θJ = (µJ ,σ
2
J) where µJ = {µ1, µ2 . . . µJ+1}

denotes the means of normal variates in the J+1 partitions and σ2
J denotes the respective

variances. The goal is to sample from the joint posterior

π(J,θJ | yk) ∝ L(yk | J,θJ)π(θJ | J)P (J). (7.3)

Conditional on the change points and means, the data are independent draws from

normal distributions, so the likelihood is

L(yk | J,θJ) =
n∏
i=1

1√
2πσ

exp

[
− 1

2σ
(yk,s − µ(s))2

]
(7.4)

where µ(s) = µj for all s belonging to partition j.

7.2.1.1 Prior Specification

We assume the number of change points has a truncated Poisson prior

P (J) ∝ e−λλJ

J !
, 0 ≤ J ≤ Lk,

where the constant of proportionality is the Poisson probability P (k < n). Conditional

on J , the locations of change points and means for the partitions created thereof, are

independent. The locations are order statistics of discrete draws without replacement

on {2, . . . , n},

π(s | J) =
J !

(n− 1) · · · (Lk − J)
.

We define normal priors on the means µj ∈ µJ ∼ N (µµ, σ
2
µ), specifically

π(µj) =
1√

2πσ2
µ

exp

[
− 1

2σ2
µ

(µj − µµ)2
]
.

where µµ is the mean and σ2
µ is the variance of the hyper-distribution. These are fixed

at arbitrary values. The variance σ2
j for data in each partition is also fixed.
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7.2.2 GMRF Prior on Changepoint Probabilities

At the upper level of the hierarchy, we analyze the entire dataset of K data vectors.

We summarize the information from the lower level inference in the form of two vectorsR

and C. Rs is the count of the number of times site s was inferred to be a changepoint by

the lower level analysis of the K data vectors. Cs is the number of trials/opportunities

site s had to be a changepoint. In other words, it is the number of times site s is

represented in the dataset.

7.2.2.1 Arcsin data transformation

So far, the current model is identical in setup to the model described in previous

chapters. However, instead of using the data directly in the form of counts R and C,we

now turn to the arcsin transformation of count data in order to use a normal likelihood

model.

Zs = arcsin

√
Rs

Cs

When transformed thus, the distribution of Z is N (arcsin(
√
ps), 1/4Cs) asymptotically.

Applying this transformation, the likelihood may now be expressed as,

π(Zs | ps) ∝ N (νs, 1/4Cs) (7.5)

Implying ,

π(Z | p) ∝ N (ν, I/4C)

where νs = arcsin(
√
ps). A simple GMRF with precision matrix as described in previous

chapters is placed on the vector ν with precision ω.
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7.2.3 Inference via MCMC Simulation

We sample from the joint posterior of all model parameters, (7.6), using MCMC

simulation.

Pr(θ1,θ2 . . .θK ,ν, ω | y1,y2 . . .yK) ∝
K∏
k=1

Pr(yk | θk)Pr(θk)×Pr(Z | ν)Pr(ν | ω)Pr(ω).

(7.6)

As before, we use a Metropolis-within-Gibbs scheme to update the model parameters in

two major blocks. In the first block we simulate from the full conditional distribution

of the lower level parameters

Pr(θ1,θ2 . . .θK | ν, ω,y1,y2 . . .yK) ∝
K∏
k=1

Pr(θk|ν, yk) = Pr(yk | θk)Pr(Rk|ν)Pr(ψk)

(7.7)

The second block of parameters consists of the ν vector and the precision ω.

Pr(ν, ω) ∝ Pr(Z|ν)Pr(ν | ω)Pr(ω) (7.8)

Unlike the scheme described in previous chapters, sampling from (7.8) may be achieved

in a single Gibbs step when ω is fixed. The distribution we wish to sample from is of

the general form as given in (7.2). Since the likelihood is normal, this remains a GMRF

that we may directly sample from with methods described by Rue and Held (2005).

When ω is not fixed it may be updated as described in Minin et al. (2007). However,

the acceptance ratio should pertain only to ω in this case.

7.3 Results

7.3.1 Simulated Dataset

To test the working of current model we generated a simulated dataset of K = 100

data vectors each of length L1 = L2 = . . . = Lk = 100 sites. For each dataset, the

number of changepoints J was fixed at four with locations fixed at positions 21, 41, 61
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and 81. Normal random variates within each of the five partitions created thereof, were

generated from N (µj, 1) distributions. Each µj, in turn, was generated from a N (5, 1)

distribution. Fig. 7.1 provides a schematic view of the simulation of a data vector.

We generated 11000 samples from the joint posterior, discarding the first 1000 as

burn-in and sub-sampling the rest at every 10 samples to generate 1000 posterior sam-

ples. At the lower level, the sampler identified the 4 changepoints in all 100 data vectors

accurately. Fig. 7.2 shows the posterior mean of the GMRF µ with ω fixed at a value

of 10.0.

MCMC convergence diagnostics were performed at the lower level, at the number

of changepoints and at the upper level on the inferred vector ν as described in the

preceding chapter and the sampler was found to have converged at both levels (result

not shown).

7.4 Discussion

We presented an alternative to the binomial likelihood representation of count data

in hierarchical GMRF models. The arcsin transformation is advantageous in the case

where a GMRF prior is applied to the upper level parameters since it specifies a normal

likelihood. For normal response models, a sample may be drawn directly from the

full conditional as described in (7.2) that remains a GMRF. When ω is fixed, the Gibbs

algorithm may be employed to generate new MCMC samples. When ω is to be estimated,

we use a Metropolis-within-Gibbs approach, updating ν in a Gibbs step as described

above followed by a Metropolis step for ω.

Finding the GMRF approximation of a non-normal likelihood is computationally

intensive and relates directly to the length S of the region being analyzed. Doing away

with this step increases the speed of inference twofold. The previous chapter discusses

the advantages to adding a large number of sequences to the input dataset. Indeed
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the model described in the previous chapter is also able to handle a large number of

sequences. However, with the increase in speed afforded by the current model, even

larger datasets may be analyzed in a reasonable length of time.

The arcsin transformation stabilizes the variance of the data. However, it restricts

the range of the parameter to (−π/2, π/2) which is further restricted to (0, π/2) when

dealing with probabilities. In a simple input data case such as the one presented in this

example, this is not a problem. However, as the real probability goes closer to zero, as

may be the case in sequence data, especially in regions that are conserved “cold spots”

for recombination, the inference produces negative values that are outside the allowable

range (data not shown).

Several solutions are currently being explored for this problem, including fixing a

mean level and increasing the number of sequences. Once this problem has been ad-

dressed, the current model will be powerful in that it combines all the advantages of

previous models with faster inference.
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1 ~ N(5,1) 2 ~ N(5,1) 3 ~ N(5,1) 4 ~ N(5,1) 5 ~ N(5,1)

Changepoints

… … … Y20Y1 Y2 Y3 … … …

Figure 7.1 Schematic representation of data generation
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Figure 7.2 Posterior mean of µ in the hierarchical changepoint model
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CHAPTER 8. GENERAL CONCLUSIONS AND FUTURE

WORK

The genetic diversity of HIV has long been a challenge in efforts of developing pre-

ventive therapies against the pathogen. Adding to the diversity are chimeric molecules

produced by recombination. The genetic variants thus formed, along with the existing

non-recombinant forms results in a wide range of host-pathogen interactions. Efficient

clinical management of the disease necessitates, as a first step, the ability to identify the

infecting genotype effectively. Further, a stepping stone towards effective therapeutic

intervention of infection and subsequent progression of the disease is, veritably, better

understanding of the mechanism of recombination. In this thesis, I described a rapid

HIV genotyper based on supervised learning algorithms, a hierarchical model for simul-

taneous inference of spatial variation of recombination probabilities and covariates of

interest and the application of this model to curated HIV datasets to gain insights into

the mechanism of recombination.

8.1 HIV Genotyping

Application of machine learning algorithms to the problem of genotyping HIV se-

quences proved to be very successful. Compared to current genotyping tools, it is able

to better classify complex recombinants. The success of the HIV genotyper can be aug-

mented by providing many pre-made classifiers. Towards this, the short-term goal is

to make the web tool a community-based effort, encouraging users to train classifiers
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specific to sequences of their interest and share these with the community. Further,

this genotyping method could find valuable application in the classification of bacterial

sequences as well as classification of other retroviral sequences. In fact, when provided

with a relevant training set, the genotyper may be able to classify retroviral sequences

efficiently with the current feature sets. Bacterial sequences, on the other hand, may

require more calibration in terms of optimized feature sets as well as the most suited

supervised learning algorithm.

8.2 Hierarchical GMRF Model

We found, through analyses presented in this thesis, evidence supporting the hypoth-

esis that propensity to secondary structures is directly correlated with high recombina-

tion rates. The framework provided by this model can be exploited to further dissect

the molecular mechanism of recombination. In the future, I plan to extend the current

model to include covariates at the level of the individual sequence. Such analyses can

provide valuable insights into evolution of the virus. Covariates associated with recom-

bination probabilities in such a set up will provide evidence for selection pressures acting

on various regions of the virus. Further, epidemiological evidence can also be gathered

through association of recombination rates with geographic location, time of infection

and the interaction of these covariates with genotypes.
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