
Kathleen Delate
Iowa State University, kdelate@iastate.edu

Heather Friedrich
Iowa State University

Andrea McKern
Iowa State University

Robert Burcham
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports
Part of the [Agricultural Science Commons](https://lib.dr.iastate.edu/agricultural_science_commons), and the [Agriculture Commons](https://lib.dr.iastate.edu/agriculture_commons)

Recommended Citation
http://lib.dr.iastate.edu/farms_reports/1314

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

Abstract
The increasing demand for organic products from consumers has resulted in continuous growth in the organic industry. Organic wheat is an indispensable ingredient in many processed organic products. This variety trial evaluated the production of soft red, hard red, and soft white wheat in southwest Iowa.

Keywords
Horticulture, Agronomy

Disciplines
Agricultural Science | Agriculture
Evaluation of Wheat Varieties for Certified Organic Production—Neely-Kinyon Trial, 2003

Kathleen Delate, assistant professor
Heather Friedrich and Andrea McKern, research associates
Departments of Horticulture and Agronomy
Bob Burcham, ag specialist

Introduction
The increasing demand for organic products from consumers has resulted in continuous growth in the organic industry. Organic wheat is an indispensable ingredient in many processed organic products. This variety trial evaluated the production of soft red, hard red, and soft white wheat in southwest Iowa.

Materials and Methods
Varieties selected for the 2003 organic wheat variety trial included the following: Kaskaskia (soft red), Wahoo (hard red), Pioneer 25W33 (soft white), and P25W60 (soft white). Plots measuring 20 × 40 feet were laid out in a completely randomized block design with 4 replications. Wheat was planted with a small grain drill on October 18, 2002, at 75 lb/acre, with crimson clover frost-seeded into wheat plots at 10 lb/acre on March 27, 2003. Clover was planted in keeping with the requirement for a soil-building cover crop within the crop rotation scheme for certified organic production. A disease rating (1 = minor disease pressure, 4 = severe pressure) was assigned on June 19, 2003. All wheat varieties were harvested on July 25, 2003.

Results and Discussion
Kaskaskia had significantly greater disease pressure compared with Wahoo and P25W60 (Table 1). The Pioneer variety P25W33 was intermediate in disease pressure. There were no significant yield differences among varieties, with organic wheat averaging 65 bushels/acre (Table 1).

Acknowledgments
We would like to thank the Leopold Center for Sustainable Agriculture, the Wallace Foundation, Noreen Wantate, Katie Schroeder, Amy Freiburger, Valente Forte, Paolo Sambo, and Matt Rohrig for their support and help on production and analytical aspects of this project. We also thank Heartland Organic Marketing Cooperative, Pioneer Hi-Bred, and Ames Best Hybrids for their support and seed trade.

Table 1. Organic wheat variety trial, Neely-Kinyon, 2003.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (bu/acre)</th>
<th>Disease rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaskaskia</td>
<td>57.18</td>
<td>3.19b</td>
</tr>
<tr>
<td>Wahoo</td>
<td>68.19</td>
<td>1.63a</td>
</tr>
<tr>
<td>P25W33</td>
<td>66.71</td>
<td>2.50ab</td>
</tr>
<tr>
<td>P25W60</td>
<td>66.48</td>
<td>1.79a</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>NS</td>
<td>1.03</td>
</tr>
</tbody>
</table>

a = Minor disease; 4 = Severe disease.