The Proof-of-the-Concept of Application of Pelletization for Mitigation of Volatile Organic Compounds Emissions from Carbonized Refuse-Derived Fuel

Thumbnail Image
Date
2019-05-24
Authors
Białowiec, Andrzej
Micuda, Monika
Szumny, Antoni
Łyczko, Jacek
Koziel, Jacek
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Koziel, Jacek
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Food Science and Human NutritionCivil, Construction and Environmental EngineeringAgricultural and Biosystems EngineeringToxicology
Abstract

Waste can be effectively reused through the production of carbonized refuse-derived fuel (CRDF) that enables further energy recovery. Developing cleaner production of CRDF requires consideration of practical issues of storage and handling. Thus, it needs to be ensured that CRDF does not pose an excessive risk to humans and the ecosystem. Very few studies indicate a wide variety of volatile organic compounds (VOCs) are present in CRDF, some of which are toxic. During handling, storage, transportation, and use of VOC-rich CRDF, workers and end-users could be exposed to emissions that could pose a health and safety hazard. Our recent study shows that CRDF densification via pelletization can increase the efficiency of storage and transportation. Thus, the following research question was identified: can pelletization mitigate VOCs emissions from CRDF during storage? Preliminary research aiming at the determination of the influence of CRDF pelletization on VOCs emission during storage was completed to address this question. The VOCs emissions from two types of CRDF: ground (loose, torrefied refuse-derived fuel (RDF)) and pelletized, were measured. Pelletization reduced the VOCs emissions potential during the four-day storage by ~86%, in comparison with ground CRDF. Mitigation of VOCs emissions from densified CRDF is feasible, and research is warranted to understand the influence of structural modification on VOCs emission kinetics, and possibilities of scaling up this solution into the practice of cleaner storage and transportation of CRDF.

Comments

This article is published as Białowiec, Andrzej, Monika Micuda, Antoni Szumny, Jacek Lyczko, and Jacek A. Koziel. "The Proof-of-the-Concept of Application of Pelletization for Mitigation of Volatile Organic Compounds Emissions from Carbonized Refuse-Derived Fuel." Materials 12, no. 10 (2019): 1692. DOI: 10.3390/ma12101692. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections