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Abstract Abstract 
Nutrients excreted from animals affect the nutritive value of manure as a soil amendment as well as the 
composition of gases emitted from manure storage facilities. There is a dearth of information, however, 
on how diet type in combination with dietary particle size affects nutrients deposited into manure storage 
facilities, and how this subsequently affects manure composition and gas emissions. To fill this 
knowledge gap, an animal feeding trial was performed to evaluate potential interactive effects between 
feed particle size and diet composition on manure characteristics and manure‐derived gaseous 
emissions. Forty eight finishing pigs housed in individual metabolism crates which allowed for daily 
collection of urine and feces were fed diets differing in fiber content and particle size, with their urine and 
feces collected and stored in 446 L stainless steel containers over a period of 49 d. There were no 
interactive effects between diet composition and feed particle size on any manure or gas emission 
parameter measured. In general, diets higher in fiber content increased manure nitrogen (N), carbon (C), 
and total volatile fatty acid (VFA) concentrations, and increased manure VFA emissions, but decreased 
manure ammonia emissions. Decreasing the particle size of the diet lowered manure N, C, VFA, phenolics, 
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particle size had an impact on manure greenhouse gas emissions (GHG). 
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Abstract 

Nutrients excreted from animals affect the nutritive value of manure as a soil 

amendment as well as the composition of gases emitted from manure storage 

facilities. There is a dearth of information, however, on how diet type in combination 

with dietary particle size affects nutrients deposited into manure storage facilities, and 

how this subsequently affects manure composition and gas emissions. To fill this 

knowledge gap, an animal feeding trial was performed to evaluate potential 

interactive effects between feed particle size and diet composition on manure 

characteristics and manure-derived gaseous emissions. Forty eight finishing pigs 

housed in individual metabolism crates which allowed for daily collection of urine 

and feces were fed diets differing in fiber content and particle size, with their urine 

and feces collected and stored in 446 L stainless steel containers over a period of 49 d. 

There were no interactive effects between diet composition and feed particle size on 

any manure or gas emission parameter measured. In general, diets higher in fiber 

content increased manure nitrogen (N), carbon (C), and total volatile fatty acid (VFA) 

concentrations, and increased manure VFA emissions, but decreased manure 

ammonia emissions. Decreasing the particle size of the diet lowered manure N, C, 
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VFA, phenolics, and indole concentrations, and decreased manure emissions of total 

VFA. Neither diet composition nor particle size had an impact on manure greenhouse 

gas emissions (GHG). 

 

Core Ideas 

 Increasing dietary fiber increases swine manure N, C, and total VFA concentrations. 

 Reducing dietary particle size reduces swine manure N, C, and total VFA 

concentrations. 

 Neither dietary fiber content nor particle size affect swine manure GHG emissions. 

 10% and 16% of C intake is lost in the manure and gas emissions, respectively. 

 28% and 37% of N intake is lost in the manure and gas emissions, respectively. 

 

Abbreviations: 

ARISA, automated ribosomal intergenetic spacer analysis; C, carbon; CH4, methane; CO2, 

carbon dioxide; CSBM, corn-soybean meal; DistLM, Distanced-based Linear Model; DDGS, 

distillers dried grains with solubles; FFAP, free fatty acid phase; GC, gas chromatography; 

GHG, greenhouse gas; H2S, hydrogen sulfide; MS, mass spectrometer; N, nitrogen; N2O, 

nitrous oxide; NH3, ammonia; NH4-N, ammoniacal nitrogen; S, sulfur; SBM, soybean meal; 

SH, soybean hulls; TDS, thermal desorption; VFA, volatile fatty acids; VOC, volatile organic 

compounds; VSC, volatile sulfur compounds 
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Introduction 

Feed represent approximately 70% of the cost of pork production (Schnept, 2011; Iowa State 

University Extension, 2018). As a consequence, diet formulation is an important component 

of economically viable swine production, where various feedstuffs are combined based on 

their total and digestible energy, as well as their nutrient contents, to meet energy and nutrient 

needs for animal maintenance and growth. Processing methods (e.g., grinding, extruding or 

roasting) and additives (e.g., enzymes) can improve the digestibility of feedstuffs for swine; 

however, diets fed to growing pigs are not fully digested in the animal’s gastrointestinal tract 

even when feed additives or processing methods have been used to improve their digestibility 

(NRC, 2012). As a result, these undigested feed components are excreted as feces and urine 

and allowed to accumulate in manure storage systems (Kerr, 2003; Le et al., 2005). Within 

manure storage structures, undigested feed components undergo microbial degradation, 

which may be aerobic (mineralization) or anaerobic (fermentation) depending on the manure 

storage conditions, which results in emission of numerous gases over time (Trabue et al., 

2016a). These gases include greenhouse gases (GHG; methane (CH4); nitrous oxide (N2O), 

ammonia (NH3), hydrogen sulfide (H2S), and volatile organic compounds (VOC) that cause 

malodor. Characterizing the impact of diet composition on manure characteristics and gas 

emissions has been an ongoing research theme (Canh et al., 1998a,b,c; Mroz et al., 2000; 

Otto et al., 2003; Shriver et al., 2003; Portejoie et al., 2004; Clark et al., 2005; Le et al., 2005; 

Panetta et al., 2006; Leek et al., 2007). However, little attention has focused on the impact of 

dietary particle size on swine manure composition and gas emissions, despite the fact that 

processing (e.g., grinding) improves the digestibility of many dietary components (Hancock 

and Behnke, 2001; Richert and DeRouchey, 2010). Therefore, an animal feeding trial was 
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conducted to determine potential interactive effects of diet composition and diet particle size 

on manure carbon (C), nitrogen (N), and sulfur (S) contents, manure characteristics (i.e., pH, 

ammoniacal nitrogen (NH4-N), sulfide, volatile sulfur compounds (VSC), and VOC), and gas 

emissions (NH3, VSC, VOC, and GHG) when fed to finishing pigs using an experimental 

manure storage system. 

 

Materials and Methods 

Diets and Experimental Design 

The experiment was approved by the Iowa State University Animal Care and Use 

Committee. Two groups of 24 gilts (initial body weight = 119.5 ± 8.0 kg) were randomly 

allotted to individual metabolism crates (1.2 × 2.4 m) that allowed for total but separate 

collection of feces and urine. Crates were equipped with stainless steel feeders and nipple 

waterers, which allowed the pigs unlimited access to fresh water. Ambient temperature in the 

metabolism room was maintained at approximately 18°C, and lighting was provided 

continuously. Gilts were fed twice daily (0700 and 1900 h) an amount of feed that 

approximated 3% of their body weight for 49 d, which is considered near full feed. Gilts were 

fed one of three corn-based diets in a 3 × 2 factorial arrangement, with the 3 diet formulations 

consisting of: (1) a low fiber, corn--soybean meal (CSBM) diet, (2) a high fiber diet 

containing corn and 35% corn-distillers dried grains with solubles (DDGS), or (3) a high 

fiber diet containing corn and 21% soybean hulls (SH). Each diet was formulated to meet or 

exceed the energy, amino acid, and mineral needs according to NRC (2012) 

recommendations. Composition of the three experimental diets is presented in Table 1. Total 

intake of dietary C, N, and S was calculated based on diet nutrient analyses data and actual 

feed intake (feed offered less feed not consumed), which was subsequently used to calculate 

output of nutrients in manure and volatilized gases as a percent of nutrient intake. Diets were 

fed either in their originally milled form or a ground to a reduced particle size using a 

hammer mill. The analyzed geometrical mean of particle size for the coarsely ground diet 

was 631 ± 35 µm and 374 ± 29 µm for the finely ground diet, as determined using a 13 sieve 

stack with automatic shaker (Tyler RoTap, Mentor, OH) as described by Baker and Herrman 

(2002). 

Each group of gilts was fed for a 49-d period. After each of the twice-daily feedings, 

the total amount of feces and urine from each metabolism crate was collected from under the 
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metabolism crate and added in totality to its assigned enclosed manure storage container (one 

crate assigned to its corresponding storage container). Each stainless steel manure storage 

container measured 61 cm high and was 96.5 cm in diameter. The lid on each container was 

fitted with threaded couplers to accompany fittings and piping from which to add manure and 

take air samples. Each sealed container contained an individual fan system that pulled a 

constant stream of air over the manure surface (approximately 2.95 m
3
/min) for 2 wk prior to 

the end of the trial. At the end of the trial (d 49), the gilts were removed from the room, the 

room cleaned with water and thethe tank manures allowed to sit for 2 d (no urine or feces 

added) between the end of the feeding trial (d 49) and air sampling (d 51) to reduce the 

influence of any animal-generated gases. Following air sampling, manure samples for 

analysis were obtained (d 54) after mixing each tank with a polyvinyl paddle to obtain a 

homogenous manure sample. After manure sampling from the first group of gilts, the manure 

in the tanks was mixed and drained to leave 10 cm of manure, which served as a fermentative 

seed stock for the second group of animals, prior to moving the gilts into the room. 

Diet and Manure Analyses 

Diets and manures were analyzed for C, N, and S by thermocumbustion (VarioMAX, 

Elementar Analysen Systeme GmbH, Hanau, Germany). Immediately after manure mixing, 

manure temperature was measured using a thermocouple thermometer (Fluke 51-Series II, 

Fluke Corp., Everett, WA) and pH using a pH meter (Corning Model 530, probe #476436, 

Corning Inc., Corning, NY). Manure total ammoniacal nitrogen (NH4-N) was analyzed using 

an ammonium probe (Thermo Orion Meter 290A+, probe #9512) that was previously 

described in Trabue and Kerr (2014). In brief, 3 g of manure was weighed into a 100-mL 

beaker, after which 99 mL of deionized water and a stir bar were added. While mixing, 2 mL 

of ionic strength adjuster solution (Orion 951211, Thermo Fisher Scientific Inc.) were added. 

The pH of the mixture was maintained at ≥11 in order for the probe to accurately measure 

NH4-N. The probe was inserted into the beaker, and the concentration was recorded. For 

manure sulfide, a sulfide probe (Thermo Orion Meter 290A+, probe #9616) was used to 

quantify sulfide levels as previously described in Trabue and Kerr (2014). In brief, 2 g 

manure was weighed into a 100 mL beaker, followed by 38 mL of degassed deionized water, 

40 mL of SAOB solution (a glycine-ascorbic acid mixture used to prevent sulfide oxidation; 

Thermo Fisher Scientific Inc.), and a stir bar. The calibrated probe was inserted into each 

beaker and the sulfite concentration was recorded. 

Manure volatile fatty acids, phenols, and indoles were analyzed as discussed in Weber 

et al. (2010). In brief, 4 g of manure was placed into a 15-mL polypropylene centrifuge tube 

and centrifuged at 21,000 × g for 23 minutes at 4°C. One mL of supernatant was removed and 

added to a 20 mL headspace vial (Agilent Technologies, Inc., Santa Clara, CA) in which it 

was acidified with 145 µL of o-phosphoric acid to a target pH of 2.0 to 2.5, salted with 0.3 g 

of NaCl, and then sealed with a screw-on cap with an injectable septum port (Part No. 5188-
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2759, Agilent Technologies, Inc.). Samples were incubated at 70C for 15 min on a robotic 

autosampler (MPS2, Gerstel, Inc.) and headspace contents sampled for 5 min using solid 

phase microextraction fibers (Cat No 57354-U, Supelco, Inc, Bellefonte, PA). Fibers were 

desorbed at 230°C for 300 s in the gas chromatography (GC) system inlet (Model 7980, 

Agilent Technologies, Inc.) equipped with a flame ionization detector and free fatty acid 

phase (FFAP) column (30 m × 0.25 mm × 0.25 μm; Agilent Technologies, Inc.). The GC 

parameters were as follows: splitless mode; inlet temperature, 230°C; inlet pressure, 24.56 

psi; septum purge flow, 30 mL min
1

; constant column flow 1 mL min
1

 (helium); and 

detector temperature, 300°C. The GC oven temperature program was: initial temperature, 

100°C, 2 min hold; ramp of 10°C min
1

 to the final temperature of 240°C, hold for 2 min. 

Air Analyses 

Sampling occurred over a 3-d period, with the 3-d average used as headspace gas 

concentration for data analyses. Concentrations of NH3, H2S, CH4, carbon dioxide (CO2), and 

N2O were measured from ambient room air and from exhaust air for each manure storage 

tank using a photoacoustic multi-gas analyzer (Model 1312, INNOVA AirTech Instruments 

A/S) and an H2S analyzer (API Model 101E, Teledyne Technologies, Inc.). Sampling details 

are discussed in Trabue and Kerr (2014). Concentrations of odorous VOC were measured 

from samples taken from ambient room air and exhaust air from each manure storage tank. 

Air samples were collected on sorbent tubes for thermal desorption (TDS) gas 

chromatography analysis as detailed in Trabue et al. (2010). In brief, air samples were 

collected on sorbent tubes at 100 mL min
1

 for approximately 12 L using individual personal 

gas samplers (Models 220 or AirCheck 2000, SKC, Inc.). Sorbent tubes were analyzed by 

TDS (model TDSA, Gerstel, Inc.) using a GC system (model 6890N GC, Agilent 

Technologies, Inc.) equipped with a mass spectrometer (MS) detector (5973N Inert MSD, 

Agilent Technologies). The TDS/GC/MS system was equipped with a programmed 

temperature vaporizer inlet (CIS 4, Gerstel, Inc.) and 30 m × 0.25 mm × 0.25 mm FFAP 

column (J&W Scientific, Inc.). The TDS, programmed temperature vaporizer inlet, and GC 

oven program were previously described in Trabue et al. (2010). The MS was operated in 

selective ion monitoring/scan mode. Compounds were identified using mass spectra and 

retention times of reference standards. External standard curves were used for quantitation of 

samples. Greenhouse gas equivalence was determined based on the global warming potential 

of each gas measured as: GHGeq = CO2 + (CH4 × 25) + (N2O × 298) (IPCC, 2007). 

Concentrations of volatile S compounds were measured from samples taken from 

ambient room air and exhaust air from each manure storage tank. Air samples were collected 

as grab samples (less than 10 min) in evacuated glass canisters as previously reported in 

Trabue et al. (2008, 2010). Analysis of canister headspace was performed using a canister 

system (Entech Instrument, Inc., Simi Valley, CA) that was coupled to a GC system (Agilent 

6890N, Agilent Technologies, Inc.). The GC was equipped with gas separation column (30 m 
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× 0.32 mm × 0.25 µm) (GS-Gaspro, Agilent Technologies, Inc.) using helium gas at a 

constant flow of 0.7 mL min
1

, and equipped with a MS detector (5973 Inert MSD, Agilent 

Technologies). For determining concentrations of target VSC, the following molar mass 

values were monitored: 34 (hydrogen sulfide); 48 (methanethiol); 60 (carbonyl sulfide); 76 

(dimethyl sulfide); 62 (dimethyl sulfide); and 94 (dimethyl disulfide). External standard 

curves were used for quantitation of samples. Total gas emissions of C, N, and S were 

determined based on specific gas emissions and their respective elemental composition (i.e., 

C, N, and S). 

Calculations and Statistical Methods 

Data were analyzed as a randomized complete block design with the group used as the 

block. The dietary treatments were arranged in a 3 × 2 factorial design with the main effects 

being diet type (CSBM, DDGS, SH) and particle size (coarse or fine). The individual pig 

(i.e., manure tank) was used as the experimental unit for all reported data, resulting in 8 

observations per diet × particle size treatment combination (48 pigs/tanks across 6 

treatments). Data were subjected to analysis of variance using Proc GLM (SAS Inst. Inc., 

Cary, NC) with treatment means reported as LSMEANS. Because no interactions were noted 

between diet type and particle size (P ≥ 0.10), the interaction term was omitted from the 

statistical model, with only the main effects of diet type or particle size reported along with 

their corresponding SEM. Differences among means were considered significant at P ≤ 0.10. 

While the effect of diet type and particle size on manure microbial community composition 

has been previously reported (van Weelden et al., 2016a), it was of interest to examine the 

relationship between manure C, N and total VOC, and the microbial community structure. To 

accomplish this, the automated ribosomal intergenetic spacer analysis (ARISA) data reported 

by van Weelden et al. (2016a) was reanalyzed using a Distanced-based Linear Model 

(DistLM) on the square root transformed ARISA abundances and the S17 Bray-Curtis 

similarity matrix, looking more specifically at the relationships among the microbial 

population and measured manure parameters (Bray and Curtis, 1957; Anderson, 2001). 

 

Results 

There was no effect of diet type or particle size on average daily feed intake by growing 

pigs (Table 2). Pigs fed the SH diet were more efficient in feed conversion (gain:feed) 

compared to pigs fed the CSBM or DDGS diets (P ≤ 0.05), but average daily gain was 

unaffected (P = 0.35). Pigs fed the diets in a reduced, fine particle size were more efficient in 

feed conversion and grew at a faster rate than pigs fed the diets in coarse form (P ≤ 0.01). 
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Manure NH4-N and sulfide was highest in pigs fed the DDGS diet compared to pigs fed either the CSBM 

or SH diet (P ≤ 0.05), and manure pH and S content (g L1
) were higher in pigs fed the CSBM and DDGS diets 

compared to pigs fed the SH diet (P ≤ 0.05) (Table 3). Manure N and C content was highest in pigs fed the 

DDGS diet, intermediate for pigs fed the SH diet, and lowest for pigs fed the CSBM diet (P ≤ 0.05). Pigs fed 

coarse particle size diets had greater manure NH4-N, N and C content, but lower pH, compared to pigs fed the 

finely ground diets (P ≤ 0.02). 

Total VFA content in the manure was greatest in pigs fed the high fiber diets (i.e., DDGS and SH) 

compared to pigs fed the CSBM diet, and manure total phenolics were greatest in pigs fed the DDGS diet (P ≤ 

0.05) (Table 4). Manure total indoles were greatest in pigs fed the SH diet, least in pigs fed the DDGS diet, and 

intermediate in pigs fed the DDGS diet (P ≤ 0.05). Pigs fed the coarse diets had the greatest concentrations of 

total VFA, phenolics, and indoles compared to pigs fed the finely ground diets (P ≤ 0.08). 

Major gas emissions are presented in Table 5. Ammonia emissions from manure of pigs fed the CSBM 

diet was greater than from manure of pigs fed the DDGS diet, and lowest from manure of pigs fed the SH diet 

(P ≤ 0.05). Manure from pigs fed the SH diet had the highest emission of total VFA compared to manure from 

pigs fed the CSBM diet (P ≤ 0.05), with pigs fed the DDGS diet being intermediate. In contrast, total phenol 

emissions were highest in manure from pigs fed the DDGS diet, lowest in manure from pigs fed the SH diet, 

and intermediate in manure from pigs fed the CSBM diet (P ≤ 0.05). Manure from pigs fed the coarse diets had 

slightly lower emissions of NH3, but higher emissions of VFA and VOC, compared to pigs fed the finely ground 

diets (P ≤ 0.06). Neither diet type nor particle size had an effect on greenhouse gas emissions (Table 6). 

Total manure and nutrient output in gaseous emissions, as a percent of nutrient intake, are presented 

in Table 7. Pigs fed the high fiber diets (i.e., DDGS and SH), had greater amounts of manure C and N as a 

percent of N and C intake compared to pigs fed the CSBM diet (P ≤ 0.05). Pigs fed the CSBM or DDGS diets had 

greater manure S as a percent of S intake compared to pigs fed the SH diet (P ≤ 0.05). Feeding a larger particle 

size increased manure C, but decreased manure S, as a percent in C or S, respectively, compared to pigs fed 

the finely ground diets (P ≤ 0.03). Diet type affected gaseous losses of N as a percentage of N intake, where 

pigs fed the CSBM diet had the greatest loss of intake N, while pigs fed the SH diet had the lowest loss of 

intake N and pigs fed the DDGS diet had intermediate gaseous N losses (P ≤ 0.05). Pigs fed the coarse particle 

size diets had reduced amounts of N and S losses in the air relative to N and S intake, respectively, compared 

to pigs fed the finely ground diets (P ≤ 0.01). Diet particle size did not influence the percentage of C intake that 

was lost in gaseous forms (P = 0.39). 

Irrespective of the relationship between diet and particle size to the microbial community structure, as 

reported by van Weelden et al. (2016a), it was of interest to determine if manure VOC, C or N were related to 

the manure microbiome. Based on this analysis, both manure C and VOC affected the microbial community 

structure (P ≤ 0.01), where manure C content described 7.4% of the variability in the microbial community and 

manure VOC described 4.5% of the observed variability in the microbial community (data not shown). Manure 

N was similar to manure C in affecting manure community. 
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Discussion 

Performance data (gain,, feed intake, and feed efficiency) are not typically reported in balance-type 

trials because animals are not fed ad libitum and performance data from individually-fed pigs does not 

accurately mimic pen-reared pig performance. Nevertheless, performance data in the current trial are 

presented to demonstrate that animal nutrition was supportive of positive body weightFge gains over the 49-d 

experiment and did not greatly affect how the gilts responded to the dietary treatments (Table 2). It is 

noteworthy to state, however, that pigs fed the finer-ground diets exhibited greater rates of gain and better 

feed efficiency compared to pigs fed the coarser-ground diets. This is supported by previously published 

research on diet particle size and pig performance (Hancock and Behnke, 2001; Liu et al., 2012). The current 

data is also in agreement with others (Kerr et al., 2006, 2015, 2017, 2018; Trabue and Kerr, 2014), indicating 

that if diets with a moderate amount of fiber are balanced for energy, pigs will perform comparably to pigs fed 

a low-fiber diet. 

It is well known that manure composition, properties, and microbial ecology can be affected by diet 

composition (Canh et al., 1998a,b,c; Mroz et al., 2000; Le et al., 2005; Panetta et al., 2006; Kerr et al., 2006, 

2018; Ziemer et al., 2009; Trabue and Kerr, 2014; Trabue et al., 2016b; van Weelden et al., 2016ab). Increasing 

dietary fiber in swine diets is generally thought to lower manure pH and NH4-N concentrations (Kerr et al., 

2006, 2018; Trabue and Kerr, 2014; van Weelden et al. 2016b), but this is not always a consistent observation 

(van Weelden et al., 2016b). The current data was no exception to this lack of consistency. In the current 

experiment, manure from pigs fed the DDGS diet had higher manure NH4-N, but no change in manure pH, 

compared to pigs fed the CSBM diet; while pigs fed the SH diet produced a manure with similar NH4-N, but 

lower pH, compared to manure from pigs fed the CSBM diet (Table 3). 

The impact on manure C and N from pigs fed different dietary fiber levels was more consistent (Table 

3). Kerr et al. (2006) reported that increasing dietary fiber by adding 16% SH to a diet resulted in increased 

manure C, but not manure N. In contrast, Trabue and Kerr (2014) and Kerr et al. (2018) reported that 

increasing dietary fiber by adding 35% and 30% DDGS, respectively, resulted in increased manure C and N. 

While there were some differences in manure C and N between pigs fed the DDGS or SH diets in the current 

experiment, C and N concentrations of these higher fiber diets were greater than in manure obtained from 

pigs fed the CSBM diet. Swine diet composition has been shown to impact manure S contents (Trabue et al., 

2019ab). Relative to increasing dietary fiber, adding SH has been shown not to impact manure S (Kerr et al., 

2006), while adding DDGS has been show to increase manure S (Kerr and Trabue 2014, Kerr et al., 2018) due to 

the higher S content of DDGS compared to a CSBM diet (Kerr et al., 2008; Andersen et al., 2012). This, 

however, was not noted in the current trial, where the S content of manures from DDGS and CSBM diets were 

both ~0.094 g L
1
, and SH contained only 0.07 g S L

1
. The impact of diet particle size on manure composition 

has not been thoroughly studied, but it would be assumed that any diet composition or diet processing 

method that increased nutrient digestibility by an animal would increase nutrient retention, thereby reducing 

its “input” in the manure storage system (Kerr et al., 2017, 2018). As previously reported in pigs fed the same 

diets as used in the current study (Saqui-Salces et al., 2017), decreasing particle size resulted in an increase in 

the digestibility of DM (used as a surrogate for C), and N,and S, which in the data reported herein 

corresponded to a decrease in manure NH4-N, C, and N, but not manure sulfide or S. 

Similarly to observations on diet effects on manure nutrient composition, diet composition also 

affected manure VOC concentrations (Table 4). Increasing dietary fiber through the addition of DDGS or SH 

resulted in an increase in manure total VFA. This increase in total VFA was expected as others have shown that 
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adding SH (Kerr et al., 2006) or DDGS (Trabue et al., 2016b; Kerr et al., 2018) increases manure total VFA 

concentrations. The effects of increasing dietary fiber on total phenolic and indole concentrations in the 

manure were significant but difficult to interpret. Pigs fed DDGS had increased manure phenolics, but not 

manure indoles, while the addition of SH resulted in increased manure indoles, but not phenolics. In a similar 

inconclusive manner, Kerr et al. (2006) reported that adding SH to the diet had little to no effect on phenol or 

indole concentrations in the manure. Furthermore, Trabue et al. (2016b) reported that adding DDGS to the 

diet had variable effects on phenols and indoles, depending upon which specific compound was evaluated. 

Lastly, Kerr et al. (2018) reported that adding DDGS to the diet increased manure phenolic, but not indole, 

concentrations. No previous data could be found that described the relationship between diet particle size and 

manure VFA, phenolic, or indole concentrations. In the current trial it was observed that when diets were fed 

in a finer particle size, manure VFA, phenolics, and indoles were all reduced (Table 4), suggesting that finer 

diets were more digestible and resulted in lower levels of nutrient inputs for the formation of these volatile 

compounds in the manure. 

Diet composition had variable effects on the emissions of major gases, where it was observed that 

increasing dietary fiber reduced NH3 emissions, tended to increase VFA emissions and had variable impacts on 

phenol emissions (Table 5). However, diet composition did not affect H2S, VSC, or indole emissions; such that 

total VOC emissions were not affected by the type of diet fed to the pigs. By in large these dietary effects were 

similar to that reported by others (Trabue and Kerr, 2014; Trabue et al., 2016b; Kerr et al., 2018), who 

reported addition of DDGS decreased manure NH3 emissions, while VFA, phenol, and indole emissions were 

increased and H2S and total VOC emissions were variable. A finer feed particle size resulted in higher emissions 

of NH3 but decreased VFA and total VOC emissions (Table 5). No comparative data were found within the 

literature, so this represents a novel reporting of the effects of particle size on malodorous gases produced by 

swine facilities. There was no effect of diet composition or particle size on GHG emissions (Table 6). This agrees 

with Trabue and Kerr (2014) and Kerr et al. (2018) who reported that when 35 and 30% DDGS, respectively, 

were added to finishing pig diets, no differences in GHG emissions were observed compared to pigs fed a 

CSBM diet. Although Kerr et al. (2006) reported that manure N2O emission was increased from pigs fed a diet 

supplemented with 16% SH, they reported no effect of diet on CH4 emissions. 

Beyond the specific impacts of diet or particle size on manure composition and gas emissions, the 

current trial is unique in that it partitioned nutrient flow in an animal feeding system. Using an estimated pig 

whole body composition of 24.02% C, 3.05% N, and 0.18% S (B. J. Kerr, personal communication), and 

respiratory losses of C (respiration of N and S from non-ruminants is negligible, Kerr et al., 2003; Trabue and 

Kerr, 2014), it is possible to estimate the flow of C, N, and S through an animal system. In the current 

experiment, whole body C retention was calculated to be 18% of intake and animal respiration of CO2 was 

approximately 56% of C intake, which were within the ranges reported by others (Kirchgessner et al., 1991; Li 

et al., 2011; Trabue and Kerr, 2014). As presented in Table 7, estimates of C retention in the manure were 8 

and ~12% of C intake for pigs fed the CSBM and the high fiber diets (i.e., DDGS and SH diets), respectively; with 

C emissions from the swine manure averaging 16% of C intake across all diets. This suggests there is a slight 

increase in manure C due to feeding pigs a higher fiber diet, but this shift in C flow could not be picked up by a 

change in gas emissions. It is worthy to note that approximately 74% of the C flow was animal-related, with 

only 26% related to manure excretion and gas emissions, Figure 1. 

For N, whole body retention was calculated to be 35% of N intake, with no N assumed to be lost 

through animal respiration. As presented in Table 7, estimates of N retention in the manure were 21 and 30--

32% of N intake for pigs fed the CSBM and the high fiber diets (i.e., DDGS and SH diets), respectively. Nitrogen 
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emissions from the swine manure appeared to be inversely related to manure N, where it was observed that N 

emissions accounted for 49% of N intake for pigs fed the CSBM diet and 14--33% of N intake for pigs fed the 

high fiber diets. Consequently, there appears to be a clear shift in N partitioning when pigs were fed higher 

fiber diets, with an increase in manure N and a decrease in gas N emissions. Taken together, 35% of the flow of 

N was animal-related use for maintenance and growth, and approximately 65% was related to manure 

excretion and gas emissions, Figure 1. 

For S flow, whole body S retention was calculated to be 41% of intake, with no S assumed to be lost by 

animal respiration. As presented in Table 7, S retained in the manure averaged 55% of S intake across all diets 

while gas S emissions averaged 4% of S intake across all diets. Unlike for C and N, there appeared to be no shift 

in S partitioning with 41% of S flow being animal related and approximately 59% was related to manure 

composition and gas emissions, Figure 1. Nutrient shifting relative to particle size was not as clear. Feeding pigs 

the diets in a finer particle size did not impact on manure N excretion, but increased N emissions. In contrast, 

feeding pigs the diets in a finer particle size resulted in a reduced manure C output, but did not change 

gaseous C emissions (Table 7). 

For S flow, a smaller diet particle size appeared to result in increases in both manure S concentration 

and gas S emissions. 

Using manure storage model systems, it has been concluded that the diet type fed to the pigs and the 

age of the manure affects microbial ecology (Ziemer et al., 2009; Trabue et al., 2016a; van Weelden et al., 

2016b; Kerr et al., 2011, 2018). In manure samples obtained from this experiment, the microbial community 

was distinctly different among manure samples obtained from pigs fed CSBM, DDGS, and SH diets, with the 

assumption that this was due to the amount of C and N deposited into the manure due to the type (cellulose 

versus hemicellulose) and amount (low versus high) of dietary fiber the pigs consumed (van Weelden et al., 

2016a). In addition, diet particle size also caused a distinct impact on microbial community, albeit a smaller 

impact than diet type, within each diet. Because “diet” or “particle” size is ambiguous relative to inputs for 

microbial growth, disassociating these two classifications from the microbial community assessment and to 

relate manure characteristics (i.e., manure C, N, and total VOC) to bacterial community automated ribosomal 

intergenic spacer analysis (Yannarell and Triplett, 2005; Kent et al., 2007) seems relevant. While a significant 

relationship was found, the fact that only 7.4% and 4.5% of the variability in microbial community could be 

described by the variation in manure C and VOC content, respectively, indicates that more research is needed 

to determine how diet composition impacts manure microbial community. 

 

Conclusion 

Manure composition and gas emissions were impacted by diet composition and feed particle size fed to 

growing pigs. Increasing dietary fiber or increasing dietary particle size, each of which reduce digestibility, 

resulted in increased manure N, C and total VFA concentrations, and tended to increase total VFA; but neither 

had an effect on manure GHG emissions. In general, 20% of dietary C was retained in the body, 10% was 

excreted in the manure, and 15% was lost via gas emissions; while for dietary N, 33% was used for growth and 

maintenance of the animal, 24% was excreted in the manure, and 43% was lost as gas emissions. 
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Figure 1. Relative flow, percentage of consumption, of nutrients in finishing pigs fed corn-

soybean meal or corn soybean meal diets with added fiber. Data represents an average of 48 

pigs, 120 to 160 kg bodyweight, fed diets of two different particle sizes for 49 d. Urine and 

feces were collected, combined, and added daily into a manure tank for manure composition 

and gas emission evaluation. 

 

 

Table 1. Experimental diet formulation, as-fed basis 

Ingredient, % CSBM
1
 DDGS SH 

Corn, ground 79.72 62.51 57.34 

Soybean meal 17.99 - 16.80 

Distillers dried grains with solubles - 35.11 - 

Soybean hulls - - 20.75 

Soybean oil 0.30 - 3.32 

Monocalcium phosphate 0.41 0.10 0.49 

Limestone 0.87 1.15 0.60 

Sodium chloride 0.35 0.35 0.35 

Vitamin mix
2
 0.20 0.20 0.20 
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Trace mineral mix
3
 0.15 0.15 0.15 

L-lysine·HCl - 0.39 - 

L-threonine - 0.03 - 

L-tryptophan - 0.03 - 

TOTAL 100.00 100.00 100.00 

    

Calculated composition    

Metabolizable energy, kcal/kg 3,325 3,325 3,325 

Crude protein, % 15.15 15.15 15.15 

Standardized digestible lysine, %
4
 0.62 0.62 0.62 

Calcium, % 0.46 0.46 0.46 

Phosphorus, % 0.42 0.39 0.41 

Standardized digestible P, % 0.21 0.21 0.21 

Sulfur, % 0.18 0.32 0.18 

Neutral detergent fiber, % 8.7 19.0 19.0 

    

Analyzed composition    

Carbon, % 39.86 41.10 41.04 

Nitrogen, % 2.33 2.48 2.37 

Sulfur, T 0.19 0.21 0.19 

Neutral detergent fiber, % 6.39 12.33 17.96 

1
Abbreviations: CSBM = corn-soybean meal based diet, DDGS = diet containing corn-

distillers dried grains with solubles, SH = diet containing soybean hulls. Average diet particle 

size, μm: C-SBM, 615 -coarse and 364 fine; C-SBM-DDGS, 603-coarse and 352 fine; C-SBM-

SH, 675-coarse and 408 fine. 

2
Provided per kilogram of complete diet: 6,125 IU of vitamin A; 700 IU of vitamin D; 50 IU 

of vitamin E; 3.0 mg of vitamin K; 56 mg of niacin; 27 mg of pantothenic acid; 11 mg of 

riboflavin; 0.05 mg of vitamin B12. 

3
Provided per kilogram of complete diet: Zn, 165 mg as ZnSO4; Fe, 165 mg as FeSO4; Mn, 
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39 mg as MnSO4; Cu, 16.5 mg as CuSO4; I, 0.3 mg as Ca(IO3)2; and Se, 0.3 mg as Na2SeO3. 

4
Diets formulated to a minimum of 0.59 sulfur amino acids:lysine, 0.66 threonine:lysine, 

0.18 tryptophan:lysine, 0.54 isoleucine:lysine, 0.67 valine:lysine. 

 

Table 2. Pig performance as affected by diet composition and particle size
1
 

 Pig performance 

Diet Average daily gain, g Average daily feed intake, g Gain:Feed 

CSBM
2
 0.813 2.832 0.286

b
 

DDGS 0.806 2.853 0.282
b
 

SH 0.861 2.777 0.308
a
 

SEM 0.029 0.037 0.008 

P value 0.35 0.34 0.05 

    

Particle size    

Coarse 0.781 2.795 0.278 

Fine 0.871 2.846 0.306 

SEM 0.024 0.030 0.006 

P value 0.01 0.24 0.01 

1
Initial body weight = 119.5 kg, SD = 8.0 kg; final body weight = 160.0 kg, SD = 10.2 kg. 

Each trial lasted 49 d with 8 observations for each of 2 groups of gilts, resulting in 16 

observations per diet and 24 observations per particle size. Feed intake and gain:feed ratio 

based on as-fed basis. 

2
Abbreviations: CSBM = corn-soybean meal based diet, DDGS = diet containing corn-

distillers dried grains with solubles, SH = diet containing soybean hulls. 

Values in a column not connected by the same letter within a column are significantly 

different at α = 0.05. 
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Table 3. Manure characteristics as affected by diet composition and particle size
1
. 

   M/g manure  Composition, g/L 

Diet Vol., L T,°C NH4-N Sulfide pH N C S 

CSBM
2
 195 16.5 357

b
 0.33

b
 8.15

a
 0.43

c
 2.67

c
 0.093

a
 

DDGS 211 16.4 446
a
 0.48

a
 8.01

a
 0.62

a
 3.99

a
 0.094

a
 

SH 210 16.9 344
b
 0.35

b
 7.72

b
 0.53

b
 3.36

b
 0.074

b
 

SEM 7 0.3 13 0.02 0.07 0.02 0.13 0.003 

P value 0.20 0.49 0.01 0.01 0.01 0.01 0.01 0.01 

         

Particle size         

Coarse 202 16.5 406 0.41 7.87 0.57 3.80 0.089 

Fine 209 16.7 358 0.37 8.05 0.48 2.88 0.085 

SEM 6 0.2 11 0.02 0.06 0.02 0.11 0.002 

P value 0.38 0.60 0.01 0.19 0.02 0.01 0.01 0.21 

1
Initial body weight = 119.5 kg, SD = 8.0 kg; final body weight = 160.0 kg, SD = 10.2 kg. 

Each trial lasted 49 d with 8 observations for each of 2 groups of gilts, resulting in 16 

observations per diet and 24 observations per particle size. 

2
Abbreviations: CSBM = corn-soybean meal based diet, DDGS = diet containing corn-

distillers dried grains with solubles, SH = diet containing soybean hulls. 

Values in a column not connected by the same letter within a column are significantly 

different at α = 0.05. 
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Table 4. Major manure volatile compounds as affected by diet composition and particle size
1
. 

 Fatty acid, mmol/g wet wt. mol/g of wet wt. 

Diet Acetic Propionic Butyric Total
3
 Phenolics

3
 Indoles

3
 

CSBM
2
 111

b
 11

c
 7

c
 136

b
 1.3

b
 3.3

ab
 

DDGS 183
a
 18

b
 12

b
 222

a
 1.6

a
 2.4

b
 

SH 180
a
 24

a
 17

a
 232

a
 1.3

b
 5.0

a
 

SEM 15 1 1 16 0.1 0.7 

P value 0.01 0.01 0.01 0.01 0.03 0.03 

       

Particle size       

Coarse 188 22 16 237 1.5 4.3 

Fine 128 13 8 156 1.3 2.9 

SEM 12 1 1 13 0.1 0.6 

P value 0.01 0.01 0.01 0.01 0.01 0.08 

1
Initial body weight = 119.5 kg, SD = 8.0 kg; final body weight = 160.0 kg, SD = 10.2 kg. 

Each trial lasted 49 d with 8 observations for each of 2 groups of gilts, resulting in 16 

observations per diet and 24 observations per particle size. 

2
Abbreviations: CSBM = corn-soybean meal based diet, DDGS = diet containing corn-

distillers dried grains with solubles, SH = diet containing soybean hulls. 

3
Total volatile fatty acids (acetate, propionate, butarate, isobutyrate, isovalerate, valerate, 

isocaproic, caproic, and heptanoic), phenols (phenol, cresol, ethylphenol, and propylphenol), and 

indoles (indole and skatol). 

Values in a column not connected by the same letter within a column are significantly 

different at α = 0.05. 
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Table 5. Major gas emissions, g d
1

 AU
1

, from manure as affected by diet composition and 

particle size
1
. 

Diet NH3 H2S VSC
3
 VFA

4
 Phenols

4
 Indoles

4
 VOC

5
 

CSBM2 200
a
 0.69 1.72 1.36

b
 0.25

ab
 0.001 1.61 

DDGS 148
b
 0.61 1.76 2.19

ab
 0.30

a
 0.001 2.50 

SH 55
c
 0.54 1.63 2.89

a
 0.14

b
 0.001 3.04 

SEM 18 0.08 0.36 0.47 0.04 0.001 0.48 

P value 0.01 0.42 0.97 0.08 0.02 0.85 0.12 

        

Particle size        

Coarse 114 0.55 1.41 2.88 0.23 0.001 3.11 

Fine 154 0.67 2.00 1.42 0.24 0.001 1.65 

SEM 15 0.07 0.29 0.39 0.03 0.001 0.40 

P value 0.06 0.20 0.16 0.01 0.84 0.94 0.01 

1
Initial body weight = 119.5 kg, SD = 8.0 kg; final body weight = 160.0 kg, SD = 10.2 kg. 

Each trial lasted 49 d with 8 observations for each of 2 groups of gilts, resulting in 16 

observations per diet and 24 observations per particle size. 

2
Abbreviations: CSBM = corn-soybean meal based diet, DDGS = diet containing corn-

distillers dried grains with solubles, SH = diet containing soybean hulls. Data reported in g d
1

 

AU
1

, with animal unit (AU) defined as 500 kg of animal weight. 

3
VSC, volatile sulfur compounds: sum of hydrogen sulfide, methanethiol, carbonyl sulfide, 

dimethyl sulfide, dimethyl sulfide, dimethyl disulfide. 

4
VFA, volatile fatty acids (acetate, propionate, butarate, isobutyrate, isovalerate, valerate, 

isocaproic, caproic, and heptanoic), phenols (phenol, cresol, ethylphenol, and propylphenol), 

and indoles (indole and skatol). 

5
VOC, volatile organic compounds = sum of VFA, phenols, and indoles. 

Values in a column not connected by the same letter within a column are significantly 

different at α = 0.05. 
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Table 6. Greenhouse gas emissions, g d
1

 AU
1

, from manure as affected by diet composition 

and particle size
1
. 

Diet CH4 N2O CO2 GHG-eq
3
 

CSBM2 27.9 1.45 2,629 3,759 

DDGS 30.7 1.27 2,293 3,437 

SH 33.5 1.42 3,031 4,291 

SEM 5.6 0.26 484 530 

P value 0.78 0.87 0.56 0.52 

     

Particle size     

Coarse 31.8 1.49 2,482 3,722 

Fine 29.5 1.27 2,819 3,936 

SEM 4.6 0.21 395 433 

P value 0.73 0.47 0.55 0.73 

1
Initial body weight = 119.5 kg, SD = 8.0 kg; final body weight = 160.0 kg, SD = 10.2 kg. 

Each trial lasted 49 d with 8 observations for each of 2 groups of gilts, resulting in 16 

observations per diet and 24 observations per particle size. 

2
Abbreviations: CSBM = corn-soybean meal based diet, DDGS = diet containing corn-

distillers dried grains with solubles, SH = diet containing soybean hulls, AU = animal unit 

defined as 500 kg of animal weight. 

3
GHG-eq, green house equivalence; = CO2 + (CH4 × 25) + (N2O × 298). 
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Table 7. Total manure and gas nutrient output, % of nutrient intake, as affected by diet 

composition and particle size
1
. 

 Manure nutrient Gas nutrient 

Diet N C S N C S 

CSBM2 21.2
b
 8.0

b
 57.4

a
 49.0

a
 16.5 4.8 

DDGS 32.2
a
 12.4

a
 57.1

a
 32.5

b
 13.7 4.1 

SH 29.9
a
 11.3

a
 52.1

b
 13.7

c
 18.7 4.6 

SEM 1.1 0.5 1.3 3.6 2.9 0.7 

P value 0.01 0.01 0.01 0.01 0.49 0.73 

       

Particle size       

Coarse 28.6 11.5 53.9 25.9 14.9 3.5 

Fine 26.9 9.6 57.2 37.7 17.8 5.5 

SEM 0.9 0.4 1.0 2.9 2.4 0.5 

P value 0.18 0.01 0.03 0.01 0.39 0.01 

1
Initial body weight = 119.5 kg, SD = 8.0 kg; final body weight = 160.0 kg, SD = 10.2 

kg. Each trial lasted 49 d with 8 observations for each of 2 groups of gilts, resulting in 16 

observations per diet and 24 observations per particle size. 

2
Abbreviations: CSBM = corn-soybean meal based diet, DDGS = diet containing corn-

distillers dried grains with solubles, SH = diet containing soybean hulls. 

Values not connected by the same letter within a column are significantly different at α = 

0.05. 
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