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Abstract: This paper summarizes the findings of an extensive review of literature that was conducted
to understand the historical state of the food, energy, and water nexus in the Lake Atitlan basin
and to recommend incentive-based, long-term sustainable policies to become a significant driver to
Guatemala’s tourism industry and GDP growth. The SWAT (Soil and Water Assessment Tool) was
implemented in the basin to work towards the goal of simulating nutrient loading. A key conclusion
of this review study is for the local population to have advocacy for the “zero wastewater discharge
to Lake Atitlan” initiative to bring long-term benefits to lake water quality. One of the recommended
policy decisions is to seek external financing from international agencies like the World Bank at
low-cost interest (IDA Loans) to implement waste management systems and pay this external debt
by putting a small but affordable tax on tourists visiting the lake. Once a culture of zero municipal
effluent discharge to Lake Atitlan is adopted by the local population, the livelihood of residents
will become sustainable and the standard of living will increase because of improved water and air
quality, making Lake Atitlan a haven of tourism for Guatemala and lifting its economy.

Keywords: algae; eutrophication; food security; water quality; policy; SWAT

1. Introduction

Lake systems are massively important for the surrounding environment and have
been the scene of human development since the dawn of time, providing communities
with ample supply of fresh water for consumption, agriculture, and as a habitat for re-
newable sources of food [1–3]. Today, the ecosystem services provided by lakes have been
documented and are largely understood, comprised of categories including the benefits
of biodiversity, climate change mitigation, fisheries, recreation, tourism, and nutrient and
sediment sequestration [4–7]. Moreover, the economic value of the ecosystem services
make them an important asset for a nation’s economy [8–10]. These systems make up
some of the most prized resources for a nation but are often exploited without considering
consequences [11–13]. A rising demand of ecosystem services because of rapidly increasing
populations, greater expected quality of life, and increasing anthropogenic activity has
put increasing pressure on lake sustainability, where many lake systems have experienced
decreasing water quality and quantity [14,15]. Forio and Goethals [16] concluded that
the continual monitoring of surface water is a key factor to understanding ecological
contributions to meeting sustainable development goals.

Lake degradation has been observed around the globe, many with different sets of
challenges depending on a myriad of external and internal factors. A common situation
of how a lake becomes impaired is from the input of excessive amounts of phosphorus
and nitrogen from wastewater, agricultural runoff, sediment bound nutrients, and other
various sources, causing eutrophication [17–19]. The excess nutrients stimulate algae
growth leading to uncontrolled algal blooms that dominate the ecosystem. Consequences
of algal blooms include stress on aquatic life due to dissolved oxygen depletion, negative
impacts on tourism, and some cyanobacteria species, such as Microcystis sp. and Anabaena
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sp., can produce harmful toxins [20]. The progression of a lake becoming impaired because
of accumulating nutrients occurs over time and can generally be sped up by increasing
human activity within a lake basin. For example, a case study by Chen et al. [21] of Lake
Biwa in Japan describes a history of untreated sewage and agricultural runoff into the lake,
causing eutrophication since 1975. There, a governmental initiative to treat 100% of the
domestic sewage began in the mid-1970s and recently met its goal after forty years, showing
significant water quality improvement in the lake. Another case study of Lake Erie in the
United States depicted how difficult it can be to address eutrophication, documenting that
after extensive governmental policies of limiting total phosphorus input into the lake in
1983, the lake experienced its worst ever cyanobacterial bloom in 2011 [22]. Eutrophication
rates are also influenced by land use alterations within a drainage basin [23,24]. For
example, Lake St. Lucia in South Africa has experienced increased loads of sediment
due to the removal of upstream wetlands for sugar cane cultivation, resulting in elevated
phosphorus associated with sediment [25,26]. Eutrophication is largely a human-caused
problem and can be remedied by removing or limiting anthropogenic inputs of nutrients
into the lake system.

In drier regions, such as the Middle East, natural lakes are the main source of irrigation
for agriculture [27]. One of the largest human-caused ecological disasters is the draining
of the Aral Sea between the border of Kazakhstan and Uzbekistan [28]. High levels of
extraction from the lake water for agricultural irrigation accompanied by no regulations
led to a 90% decrease in water volume, which had a massive ecological impact on native
species because salinity levels increased 10-fold [29]. A more recent study by Ahmadaali,
Barani, Qaderi, and Hessari [14] documented a similar trend occurring in Urmia Lake,
Iran, noting that human impact on the drying of the lake is the driving factor, rather than
climate change. The socioeconomic impacts of degrading lake resources are compounded
when occurring in regions already suffering from poverty, food insecurity, and water
stress [30]. The increasing demand on natural resources since the turning of the century has
put immense pressure on lake bodies, primarily due to quickly increasing populations. For
example, this sudden increase in pressure has been highlighted in case studies from Mexico,
where Lake Xaltocan provided life for surrounding communities for over 2500 years but
completely dried out in the 1940s due to diversions for agricultural irrigation [11], and
from Chad, in the Lake Chad Basin, where the endorheic lake has diminished to 95% of
its original volume from 1963 because of overconsumption [12]. In general, many lake
authorities are implementing basin-wide policies to help restore the lake systems, with
the damage seemingly done. Panagopoulos and Dimitriou [31] described the Lake Karla
restoration initiative in Greece to renew the drained lake, emphasizing the need for the
investors, mainly governmental authorities, to not only enforce policy and set regulations,
but to also continually invest in local lake management groups for the continual monitoring
and maintenance of the lake, calling for cooperative water management.

Invasive species can also drastically impact lake ecology, throwing off the balance
of the ecosystem by disrupting the food web. For example, Aloo et al. [32] documented
the deleterious impacts of introducing Nile Perch (Lates niloticus) into Lake Victoria in
the mid 1900s, with the goal of enhancing the fishing industry. The process led to the
extinction of multiple native species, a shift of socioeconomic reliance on the exotic fish
from the native fish yields, and degrading food security because the local community
could not compete with the fisheries industrialized for catching and processing the Nile
Perch. Invasive species are not always fish—Walsh et al. [33] analyzed the economic costs
of the invasive Spiny Water Flea (Bythotrephes longimanus) in Lake Mendota, Wisconsin
USA. When considering ecosystem services associated with water clarity impacted by the
flea, the cost for restoration was at least 86.4 million USD, while the monetized ecosystem
services would generate around 140 million USD, economically justifying restoring the lake
and protecting lake ecosystems from invasive species at all costs. Moreover, the United
States has experienced widespread consequences of invasive zebra mussels (Dreissena
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polymorpha), still today grappling with long-term consequences of the alien species with
economic impacts exceeding $100 million USD [34].

Lakes lie at the center of the food, energy, and water nexus. They are the foundation
of many communities, for example, as in Lake Kinneret in Israel where the country’s only
freshwater lake provides drinking water to 25–30% of the country, food, and religious
importance [35]. Additionally, Erhai Lake in China, known locally as “Mother Lake”,
supports hydroelectric power, tourism, and resources [36]. The impact of anthropogenic
activity on each important lake needs to be understood for a sustainable future. Each
situation is unique with unique solutions that will be most effective. Lake Atitlan, located
in the western highlands of Guatemala, is a unique case study that has an extensive history
with degrading water quality due to challenges with invasive species and eutrophication.
As with the previously discussed case studies, the importance of creating sustainable plans
to preserve the ecosystem services is of the utmost importance.

1.1. Guatemala

Guatemala is the third largest country in Central America with the tenth largest GDP
of Latin America at $78.5 billion USD [37]. The population of more than 17 million people
of Guatemala is the fastest growing in Central America [38]. A large proportion of the
population consists of indigenous Maya, making up 41.7%, while the majority population
demographic is Mestizo, from Spanish descent, at 56% [39]. Guatemala has struggled with
poverty alleviation, which is largely seen in the Maya demographic. Nearly 59.3% of the
total population lives in poverty, and 40% of indigenous Maya live in extreme poverty [39].
The United Nation’s number one sustainable development goal is to eliminate poverty in
the world, a goal Guatemala is working towards. Presently, the economy of Guatemala is
dominated by the service economy at 63.2%, followed by industry at 23.4% and agriculture
at 13.3%, as of 2017 [40]. The World Bank states about Guatemala:

“Guatemala has experienced continued economic stability, but this has not translated
into growth acceleration to close the income gap with rich countries. In fact, poverty and
inequality in the country are persistently high, with Indigenous Peoples continuing to be
particularly disadvantaged”.

This summary from the World Bank reflects on the improvement of Guatemala’s
economy, but that inequality between the indigenous and the wealthy populations remain
a challenge that may hamper further economic growth.

Guatemala is a country of contrasts, where one may find themselves walking through
an impoverished neighborhood and subsequently walk into a luxurious three-story mall
with escalators and dozens of stores selling expensive designer brand accessories (Personal
Experience 2019). Since tourism and services are the top economic drivers for Guatemala,
it is important for the national government, the local governments, and the local people
to protect and preserve natural attractions. Of all the tourist attractions in Guatemala,
Lake Atitlan is at the top of the list [41]. Nestled among three towering volcanoes in
the western highlands of Guatemala, Lake Atitlan not only draws thousands of tourists
every year, but also provides livelihood for the more than 380,000 people surrounding the
lake [42]. The lake is the food, energy, and water nexus for the surrounding population. It
provides drinking water, fish as source of daily food, and irrigation water for agriculture
that sustains livelihoods of people by providing profitable services like tourism, restaurants,
and transportation, all of which require reliable energy resources.

1.2. Lake Atitlan

Lake Atitlan (14.6907 N, 91.2025 W) formed around 84,000 years ago when a volcano
erupted and the caldera that was left behind was filled with water from the San Francisco and
Quiskab rivers that still today flow into the lake [43]. The three surrounding volcanoes are
named Atitlan, San Pedro, and Toliman. The volume of the lake is 24 cubic kilometers, with a
maximum depth of 300 m [44] and a drainage area of 426 square kilometers, as delineated in
ArcMap version 10.4 using SWAT 2012 (Soil and Water Assessment Tool) shown in Figure 1.
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Figure 1. Lake Atitlan watershed in the western highlands of Guatemala. The purple outline is the
watershed boundary.

It is the third largest freshwater lake in Guatemala [45]. There are no main outflows of
this endorheic lake [46], with the main discharges of water being evapotranspiration and
percolation. Due to the fact that the lake has no primary discharge outlet, the hydraulic
retention time is unusually high at 80 years [46]. The low nutrient oligotrophic lake has
naturally pristine water quality, which has gradually decreased because of human im-
pact [47]. The average annual precipitation of this area is some of the highest in Guatemala
at 3203.5 mm per year, computed using data collected from 1979 to 2014 by two local
weather stations [48], and presumably contributes greatly to the water recharge of the lake.

Lake Atitlan is home to a large diversity of natural flora and fauna, yet a low diversity
of fish species, likely due to the lake having no significant outlet for fish to enter from
downstream [49]. It is home to 798 different plant species, 116 different reptile, and
amphibian species, 236 different bird species, and 141 different mammal species such as
the Black-handed Spider Monkey (Ateles geoffroyi) [50]. Of the different species, there are a
handful of endemic species that are unique to the basin. Due to its ecological importance,
the lake is protected as a Reserve of Multiple Uses of Basin Lake Atitlan and as of the
year 2002, is listed as a world heritage site by UNESCO, who recognizes the lake’s natural
beauty, ancestral importance, and archaeological sites [51].

There are fifteen municipalities surrounding the lake with a total population of 380,400
as of 2017 [42]. Around 70% of these inhabitants live in poverty, and of those in poverty,
32% live in extreme poverty [42]. The largest municipality in the basin is Santiago, a
population of 42,267 in 2018 with a growth rate of 2.67% since 2008 [52]. The main economy
in the lake is tourism, followed by agriculture and livestock. Coffee, corn, beans, wheat,
potatoes, sugar cane, and vegetables are grown in the lake basin. The native Maya are alive
and well around the lake, although many live in poverty. There are three Maya groups
living in the lake basin, the K’iche’e, Kaqchikel, and the Tz’utuiil. These Maya groups have
great influence in the society surrounding the lake, as much of the population have roots
connected to these groups. The Maya culture is very important to the people not just near
the lake, but in all of Guatemala.
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2. Energy Security Challenges

The energy security of a sustainable society is very important to the livelihoods of
the citizens and for secure operations of day-to-day services [53,54]. The energy security
challenges associated with impoverished communities, like those surrounding Lake Ati-
tlan, are the supply of fuel for transportation, fishing, and tourism, and a reliant supply
of electricity for lighting, cooking, and tourist activities [55,56]. Many of the economic
boosting activities and services rely on a secure energy source, without which, tourism
would decrease, and locals would face unemployment [57]. The benefits of improving
energy security range from more affordable energy prices, increased employment, poverty
alleviation, and environmental improvement, among others [58].

Data on the primary sources of electricity in the Lake Basin are limited. However, the
national usage of energy relies on 41% from fossil fuels, 31% from hydroelectric power,
and 28% from renewable energies [39]. Much of the literature on hydraulic electricity
generation focuses on reservoirs equipped with hydroelectric power [59–61], which cannot
be applied to Lake Atitlan because of its feature of having no overland outlet. Electricity
in the Atitlan basin is primarily from the public electricity grid managed by municipal-
ities [62]. The average electricity cost in Guatemala is 0.244 USD/kWh for households
and 0.160 USD/kWh for businesses, above the world average of 0.140 USD/kWh and
0.120 USD/kWh, respectively [63,64].

Fortunately, energy harvesting technologies for lake applications are in development,
which have the potential to benefit Lake Atitlan if invested in when available. Examples of
these are sediment microbial fuel cells tested in Taihu Lake, China, a process of generating
electricity from carbohydrate and protein-rich cyanobacteria [65]; a technology added to a
wastewater treatment plant to treat dissolved organic matter from raw lake water while
simultaneously generating electricity using a microbial fuel cell [66]; or thirdly, a study
in Skadar Lake, Montenegro, testing the potential use of floating photovoltaic cells for
renewable electricity supply [67]. Another promising renewable energy in the basin is
geothermal energy, a resource yet to be exploited, and the Atitlan basin is indicated as an
area of interest for investment in the renewable energy [68]. Innovations and opportunities
such as these would provide Lake Atitlan with a stable and reliable renewable source of
electricity and significantly increase energy security within the basin [69]. Furthermore,
Guatemalan legislators must enact policy that complements the efforts made towards
energy security to ensure success of innovative strategies, either through governmental
subsidies or other incentive programs to offset up-front costs [58].

The energy characteristic in the food, energy, and water nexus is the driver of the
other two characteristics. Without energy, crops could not be cultivated, or fish efficiently
caught from the lake, and water quality would rapidly decline if wastewater treatment
plants (WWTPs) were unpowered by electricity. The importance of energy in the food,
energy, and water nexus is interwoven in the solutions to a sustainable future [70,71].

3. Water Quality Challenges

Primarily before the 1900s, the water in Lake Atitlan was of exceptional quality.
The low nutrient lake made for crystal clear water with documented measurements of
secchi depth reaching nearly 18 m [72]. With a growing population surrounding the
lake, it was only a matter of time before man-made nutrient loading into the lake would
increase. Presently, the estimated sewage produced in the basin is around 45,500 cubic
meters per day, 80% of which is untreated [42], and is primarily responsible for the total
nutrient and pathogenic bacteria contamination to the lake [73]. The rapid decrease in
water quality of the lake was accelerated in 1958 due to the introduction of the black bass
(Micropterus salmoides) to the lake in an effort by the local townships to increase tourism
and attract anglers from around the world [74]. Sadly, the effects the black bass had
on the lake ecosystem were traumatic. The aggressive bass outcompeted native fish for
resources, severely decreasing the lake’s biodiversity. In addition, the endemic Atitlan
grebe (Podilymbus gigas) was declared extinct in 1989 because the black bass depleted the
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supply of crab, which the grebe was dependent on [74]. With the food web thrown off
balance and an increasing amount of nutrient buildup from inputs of wastewater and
agricultural runoff, the growth of algae and bacteria were left unchecked. In 2009, the
lake experienced a bloom of phytoplankton that covered 38% of the lake’s surface at its
peak [75] (Figure 2).
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tory, NASA [76].

The lake experienced another significant bloom of phytoplankton in 2015, but not as
large as the 2009 algal bloom [77]. These blooms are not only unaesthetic and hurtful to
tourism, but certain phytoplankton blooms can consist of cyanobacteria, which produce
toxins dangerous to human contact [78]. The algae blooms observed in the lake are
primarily made up of Limnoraphis robusta, a non-toxin forming cyanobacteria [79], yet
continue to negatively affect tourism and disrupt the lake ecology [80]. Cyanobacteria
in the lake has been detected since the 19700s, however it has been present in the lake at
considerable levels since the largest bloom in 2009 [81–83].

The water quality issues surrounding the lake are the greatest hurdles to solve Lake
Atitlan’s challenges for long-term sustainability within the food, energy, and water nexus.
The lake itself serves as an untreated source of drinking water for more than 70,000 people,
even when the levels of harmful cyanobacteria are known, potentially causing unreported
illnesses within local communities [46]. The residents in poverty around the lake have
no other choice than to use the water for consumption and for washing. Poorer water
quality due to wastewater inputs have widespread impacts on the overall economy of the
lake, losses in tourist attraction, reduced biodiversity, and increased health risks for those
consuming the water [46].

The primary contaminants in the lake are nutrients and pathogens [46]. For Lake
Atitlan, that means addressing wastewater management. The wastewater treatment plants
(WWTPs) in the surrounding municipalities of Lake Atitlan exist, but are in poor condition.
There are 12 WWTPs in the basin, however, 80% of the sewage is left untreated, which ends
up discharged directly into the lake [42]. The direct inputs into the lake are further leading
to the cyanobacteria blooms, which is even more of a concern because of the endorheic
nature of the lake with the 80-year hydraulic retention time. As a result of the long retention
time, nutrients can stay in suspension in the water column for an extended period of time
and mix into the overall upper layer during a natural event like a hurricane or tropical
storm and create a eutrophication event, known as cultural eutrophication [84]. Due to this,
the need to reduce the input of raw sewage into the lake is more important than ever.

Soil and Water Assessment Tool (SWAT) Assessment

The Soil and Water Assessment Tool 2012 (SWAT) is used for predicting land man-
agement practice effects on water quantity and quality in a basin and could be useful in
addressing the water quality issues impacting Lake Atitlan [85,86]. The model could predict
where the phosphorus contributing to eutrophication is coming from and the effectiveness
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of best management practices that can minimize it [87]. For example, the SWAT model
can determine where installing a wastewater treatment plant would have the most impact
on reducing phosphorus loading to Lake Atitlan. It could also be used to understand the
contribution of sediment from the drainage basin to eutrophication in the lake [88]. A
first step towards evaluating these goals is to make a hydrologic assessment of the water
balance in the basin.

The SWAT model incorporates various input parameters that can either be from
directly measured data from the study location or simulated by generalized internal
databases [85]. The input parameters unique to the Lake Atitlan basin added to the model
were elevation [89], soil type [90], land use [91], and weather data [92]. The elevation data
were a Shuttle Radar Topography Mission 90 m digital elevation map, providing enough
resolution to effectively delineate the basin and create flow pathways. The soil in the
basin was generalized to a eutric cambisol soil type with 48% sand, 36% clay, 2% organic
matter, and a saturated hydraulic conductivity of 150 mm/hr [93]. The land use layer area
is detailed in Table 1. The weather data are from two local weather stations (14.831 N,
91.250 W and 14.5186 N, 91.250 W), providing daily time-step precipitation, wind speed,
temperature, solar radiation, and relative humidity data [48]. The slope classification was
set to 0–5%, 5–15%, 15–25%, and 25%+ (Figure 3).
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Table 1. Land use classification and areal extent.

Label Name Area (m2)

FRST Forest-Mixed 50.06

WATR Water 24

URMD Residential-Medium Density 12.36

RNGB Range-Brush 10.26

RNGE Range-Grasses 3.14

FRSD Forest—Deciduous 0.18

The SWAT model was simulated for a 36-year period, 1979–2014. The water balance
of annual water yield is displayed in Figure 4, showing an average annual water yield of
1736.32 mm. The predicted average annual precipitation was 3203.5 mm. The large portion
of outflow from lateral soil simulated is likely higher than realistic due to the generalized
saturated hydraulic conductivity for the entire basin. A more detailed analysis of the soil
properties and land use description specific to the region would provide more fidelity to
the model. This first analysis was done to understand the limitations of the available data.
The SWAT assessment has computed a water balance for the basin that next needs to be
calibrated and validated using existing monitoring data [94]. When optimized with field
data, the model can serve as a tool to predict how land use change will impact nitrate,
phosphorous, sediment, and bacteria loading into the lake [95]. This tool would serve as a
cost-effective way to justify management projects before major investment [96].
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4. Food Security Challenges

The food security in the food, energy, and water nexus is a critical component for a
sustainable system. Food security needs to meet four requirements for a region to be totally
food secure: availability, accessibility, use, and stability [97]. Most of the agricultural land in
the basin is owned by Mestizos, nonindigenous people, while the local Maya tend to land
less than half one acre [98]. The main crops grown by the larger Mestizo monocultures are
grains, vegetables, coffee, and avocadoes, using green revolution inputs such as fertilizers
and pesticides [98]. These inputs have a direct negative impact on lake water quality when
eventually drained into the lake, contributing to eutrophication and fish toxicity [99,100].
The SWAT model could prove useful here to help better inform the fate and transport of
these pollutants and evaluate the overall impact of agricultural inputs in the lake.

The future of agriculture and food security in the basin may need to look to the past
for clues on how to be sustainable. Native Maya used terracing, irrigation, tree culture,
and intensified shifting of cultivation, which are unlike those techniques implemented
by intensive monocultures today [101]. Moreover, an argument can be made that the
introduction of large food chains can reduce food security because locals may rely on
fast food more than producing fresher food closer to home that is likely more sustainable,
especially in a poverty struck area. It is important for the local people to continue to
cultivate their land for nutritious food to sell in the local markets, rather than rely on
big businesses to provide food that can lead to worsening health effects [102]. The food
challenges associated with the lake itself are whether it can supply enough and healthy fish
for selling and consumption. The aversion to eating fish from the lake can hurt tourism
and may leave the local people searching for protein elsewhere [103]. Improving the water
quality of the lake will lead to sustainable and good quality fish that will subsequently
assure a stable food supply to the local population and serve the tourism industry.

5. Policy-Related Issues of Past and Current Work, and Recommendations for the Lake
Atitlan Basin

The challenges of the food, energy, and water nexus in Lake Atitlan are imminent, and,
the local population, local government, and federal government are aware of the situation,
understanding the science of the challenges needing addressed. Many solutions to the food,
energy, and water challenges discussed above would theoretically work, however, finding
a source of funding for it is difficult. For example, to manage the accumulating trash, a
project was implemented to create a garbage disposal system [82] for solid waste. These
systems are generally very expensive and cost money to maintain the use of trucks and
other needed infrastructure. The garbage disposal system remains in business, however, it
is lacking sufficient services to keep up with the increasing rates of trash build-up [46]. With
the rapid growth of the population around the lake, the need for a solid waste treatment
program is high and investments are needed in solid waste management to improve the
living environment for local population and tourists visiting the lake [82]. This certainly
will improve the air and water quality in and around the lake due to decreased trash
burning and solid waste pollution to the lake.

As far as sewage management is concerned, two proposed solutions have been rec-
ommended in the past to clean up the lake’s wastewater. A study by Chandra et al. [104]
recommended complete raw sewage to be exported out of the basin, for zero contamination
to the lake, modeled after a successful case study of Lake Tahoe in California. Another
proposed solution was to treat 100% of the wastewater before it was discharged into the
lake [98]. The solution to treat 100% of the wastewater was deemed unfeasible because
of the limitations to WWTP capacity and the technical maintenance required for the treat-
ment plants. However, funding was available from the Guatemalan government in 2015
to upgrade existing WWTPs, although bureaucracy and clearance issues have slowed
the process [77]. The recommendation to export the sewage outside of the watershed
is currently being advocated by the governmental group Authority for the Sustainable
Management of the Lake Atitlan Basin and its Surroundings (AMSCLAE). The AMSCLAE
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is the leading organization for monitoring and protecting Lake Atitlan. Unfortunately, the
export project is viewed unfavorable within the local community. Aside from the cost,
the wastewater is planned for export outside of the watershed to irrigate a monoculture
production in the southern region of the country [83], rather than being used as fertilizer
for local crops. Additionally, locals are worried about the potentiality for a malfunction
with the sewage line, in which the locals would experience the brunt of the negative effects,
not the managers of the project [98].

The Guatemalan government has addressed concern about the raw sewage input
into the lake. They proposed a multipart plan in 2009 after the large cyanobacteria bloom,
to cut all phosphorous entering the lake [81]. Phosphorous is typically the culprit for
episodes of eutrophication. The plan called for the construction of multiple new WWTPs
in the basin, and a switch to organic farming, meaning without the use of pesticides
and fertilizers. The plan was to raise 350 million USD, but the funding goals were not
met and the project came to a halt. Likewise, the government protection group for Lake
Atitlan, AMSCLAE, provides recommendations for businesses on how to treat wastewater
independently to minimize impact to the lake. Whether this strategy will be successful
in convincing independent parties to invest in wastewater treatments is uncertain. For
example, AMSCLAE recommended a restaurant owner to build a biodigester system,
but AMSCLAE would not help subsidize any of the expenses and the business owner
simply could not afford the capital costs or loss of business during construction [103].
Nevertheless, the AMSCLAE group continues to do important work monitoring water
quality and implementing conservation practices. They hold workshops on sustainability,
collect information about population-dense areas that would benefit most from a WWTP,
and they create proposals for the management of water in the lake basin.

Two notable pieces of AMSCLAE’s strategy are to increase water treatment facilities
and advocate for the “zero wastewater discharge to Lake Atitlan” project [105]. The
problems in the lake are well known to the government and local people, however, finding
the money to implement and maintain projects is the major hurdle. Options to seek
financing without hurting local communities could be quickly adopted, for example,
initiating a small tax on tourists visiting the lake to create a source of income used to
pay off borrowed money from international agencies like the World Bank at low-cost
interest (IDA Loans). The funding from international organizations could be allocated
to local community projects or to help subsidize federal projects targeted at improving
water quality.

The most successful initiatives so far have arisen from initiatives by local communities
surrounding the lake, out of necessity to improve conditions quickly without bureaucratic
roadblocks. A clearly positive example is the decision by the community in San Pedro La
Laguna to ban all single-use plastic in 2016. The town’s tourism increased by 40% in 2018
because of this locally led initiative [106,107]. Since then, ten other municipalities around
the lake have adopted this practice, resulting in an increase in water quality because of the
reduced plastic waste entering the lake. There are other nongovernmental organizations
(NGO) that have tried to implement lake restoration programs in the lakeside communities,
such as Tul planting by the Ati’tAla’ NGO. Their goal was to install strips of the plant Tul
(Scirpus californicus) to facilitate the filtering of nutrients before entering the lake, as well
as providing cultural importance of the plant, which was used in sacred rituals by the
Maya [108]. The local communities have also come together to clean buildups of algae on
the surface of the lake [83]. Funding in the hands of the local community may lead to the
most effective change.

6. Conclusions

Lake Atitlan is the food, energy, and water nexus for the communities living within
its basin. It is the lifeblood of many locals who live off the water, fish, crabs, and restoring
properties of the lake [83]. It is more than important for the country of Guatemala to
protect and restore their most beautiful lake that draws in numerous tourists every year
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who spend money on venders, restaurants, and services all across the lake, bringing an
unmatched economic stimulus to the country. The locals and local experts are fully aware
of the water quality issues in the lake. It is only a matter of developing a unified approach
backed by secure funding from the national government to make lasting positive and
sustainable change.

It is highly recommended for the Guatemalan federal government to recognize Lake
Atitlan as one of their country’s top priorities to market and invest in. The need for
enforceable but incentive-based policies to limit the use of pesticides, fertilizers, and
sewage waste around the lake and garbage disposal entering the lake continues to grow.
Presently, there are no enforceable policies on lake cleanup and little to no maintenance
for existing WWTPs [83]. National and international funding must be sought to address
sewage management and maintenance for a unified approach to balance the food, energy,
and water nexus in Lake Atitlan. The limited data and formal scientific investigation in
the lake basin make it challenging to make informed decisions about balancing the food,
energy, and water nexus. There are currently little to no data on food security indicators or
on electricity consumption in the surrounding towns. Monitoring of water quantity and
quality in the basin would help develop water quality models like SWAT to inform better
decision making. Consistent data collection and data availability will be key in making
progress towards improving water quality.

As one of the main reasons why Lake Atitlan is polluted, the consistent functioning
of local WWTPs must be prioritized. Focusing on small-scale treatment of wastewater
may have a better result than attempting to treat all wastewater from around the basin at
once. Investing in the sewage wastewater cleanup and solid waste management will lead
to immeasurable benefits to the Guatemalan economy and boost the quality of life for all
living in poverty or extreme poverty within and around the lake basin.
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