2003

Long-term Tillage and Crop-Rotation Effects on Soil Carbon and Soil Productivity

Mahdi Al-Kaisi
Iowa State University, malkaisi@iastate.edu

Mark A. Licht
Iowa State University, lichtma@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports

Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation

http://lib.dr.iastate.edu/farms_reports/1461

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Long-term Tillage and Crop-Rotation Effects on Soil Carbon and Soil Productivity

Abstract
Tillage system and crop rotation significantly affect long-term soil productivity and soil quality components such as soil carbon and other soil physical and chemical properties. In addition, both tillage and crop rotation affect weed and soil disease control. There is a definite need for well-defined, long-term tillage and crop rotation studies across the different soil and climatic conditions in the state. The objective of this study is to evaluate the long-term wide range of effects of different tillage systems and crop rotations on soil productivity.

Keywords
Agronomy

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences

This mcnay research and demonstration farm is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/farms_reports/1461
Long-term Tillage and Crop-Rotation Effects on Soil Carbon and Soil Productivity

Mahdi Al-Kaisi, assistant professor
Mark Licht, program specialist
Department of Agronomy

Introduction
Tillage system and crop rotation significantly affect long-term soil productivity and soil quality components such as soil carbon and other soil physical and chemical properties. In addition, both tillage and crop rotation affect weed and soil disease control. There is a definite need for well-defined, long-term tillage and crop rotation studies across the different soil and climatic conditions in the state. The objective of this study is to evaluate the long-term wide range of effects of different tillage systems and crop rotations on soil productivity.

Materials and Methods
This study was conducted on eight Iowa State University Research and Demonstration Farms in 2002. Treatments included five tillage systems (no-till, strip-tillage, chisel plow, deep ripper, and moldboard plow) and two crop rotations of corn-corn-soybean and corn-soybean across five tillage systems and several soil associations. Initial soil samples were collected from sites that were ready to implement tillage treatments during the spring of 2002. Sites that did not implement tillage treatments in fall of 2002 were planted to bulk corn and were soil sampled in fall 2002 prior to implementing tillage treatments. The soil samples, collected from all sites for depths of 0–6, 6–12, 12–18, and 18–24 inches, will be analyzed for total carbon and total nitrogen. The experimental design was a randomized complete block design with four replications. Plots were from 30–50 ft in width (depending on the location) and were about 90 ft long.

Yield will be determined from the center rows (number of rows will vary by location). The long-term effects of tillage and crop rotation on total soil carbon and total nitrogen will be monitored biyearly or more frequently. Seasonal measurements such as nitrogen use efficiency, soil bulk density, infiltration rate, etc., may be conducted on selected sites (depending on availability of funding).

Results and Discussion
Because the study began with fall tillage implementation in 2002 and will be planted in the spring of 2003, the results for the first year will be available next fall.