Forage Crop Research: Evaluating Forage Species in Iowa for Productivity during Drought Conditions

M. H. Wiedenhoeft
Iowa State University

R. L. Hintz
Iowa State University

P. Patrick
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports

Part of the [Agricultural Science Commons](http://lib.dr.iastate.edu/farms_reports), [Agriculture Commons](http://lib.dr.iastate.edu/farms_reports), and the [Agronomy and Crop Sciences Commons](http://lib.dr.iastate.edu/farms_reports)

Recommended Citation

http://lib.dr.iastate.edu/farms_reports/1467

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Forage Crop Research: Evaluating Forage Species in Iowa for Productivity during Drought Conditions

Abstract
Drought often results in greater agricultural damage in southern, western, and northeastern Iowa than in the rest of the state. Slight to severe slopes are prone to erosion, and soils high in clay content are slow to drain excess moisture during wet periods and have low amounts of available moisture during periods of drought. The land is predominantly used for livestock production because of the factors that limit the level of productivity in row crop production. Pastures/hayfields typically used in these areas contain cool-season grasses with little tolerance for drought and warm climatic conditions. Even in years of normal temperatures and rainfall, forage productivity in Iowa is often limited by low productivity of cool-season grasses during the summer. Sorghum, sudangrass, and sorghum-sudangrass hybrids are adapted to environments with limited rainfall and high temperatures. Unfortunately, new varieties have not been tested for Iowa conditions.

Keywords
Agronomy

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences

This mcnay research and demonstration farm is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/farms_reports/1467
Forage Crop Research: Evaluating Forage Species in Iowa for Productivity during Drought Conditions

M. H. Wiedenhoeft, associate professor of agronomy
R. L. Hintz, assistant scientist
P. Patrick, research associate
Department of Agronomy

Introduction
Drought often results in greater agricultural damage in southern, western, and northeastern Iowa than in the rest of the state. Slight to severe slopes are prone to erosion, and soils high in clay content are slow to drain excess moisture during wet periods and have low amounts of available moisture during periods of drought. The land is predominantly used for livestock production because of the factors that limit the level of productivity in row crop production. Pastures/hayfields typically used in these areas contain cool-season grasses with little tolerance for drought and warm climatic conditions. Even in years of normal temperatures and rainfall, forage productivity in Iowa is often limited by low productivity of cool-season grasses during the summer.

Sorghum, sudangrass, and sorghum-sudangrass hybrids are adapted to environments with limited rainfall and high temperatures. Consequently, sudangrasses and sorghum-sudangrass hybrids are more easily cured for hay than forage sorghums.

Summarized in Table 1 are the dry matter yields (tons of DM/A) from 2001 and 2002. In general, the sorghum-sudangrass hybrids produced more dry matter per acre compared with the sorghum and sudangrass varieties. It will be important to compare the forage quality of the plant material harvested.

Materials and Methods
Small plots of pure stands of various forage species were seeded at a rate of 20 lb/acre with 30-in. row spacing in a randomized complete block design at three ISU research farms (Nashua, McNay, and Ames) during the 2001 and 2002 growing seasons. Plant materials used were: Forage sorghum, GX-BMR (Wolf River); sudangrass, True Hybrid (Cenex) and Trudan 10 (NK); and sorghum-sudangrass hybrid, Nutri+Plus BMR (Wolf River), Sweet Sioux (Cargill), and STE6 (Dekalb). The established forage plots were harvested at dough stage in 2001 and at grain stage in 2002. Forage yields were determined, and nutritional quality is being analyzed.

Results and Discussion
Sudangrasses have smaller, finer stems than sorghum-sudangrass hybrids, which have finer stems than forage sorghums. Consequently, sudangrasses and sorghum-sudangrass hybrids are more easily cured for hay than forage sorghums.

Acknowledgments
This research is being funded by a grant from the U.S. Dept. of Commerce Economic Development Administration.
Table 1. Dry matter yields for six different sorghum and sorghum-sudangrass hybrids in 2001 and 2002 at McNay.

<table>
<thead>
<tr>
<th>Plant material</th>
<th>Plant type</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>GX-BMR</td>
<td>Sorghum</td>
<td>2.86</td>
<td>5.10</td>
</tr>
<tr>
<td>True Hybrid</td>
<td>Sudangrass</td>
<td>2.77</td>
<td>4.49</td>
</tr>
<tr>
<td>Trudan 10</td>
<td>Sudangrass</td>
<td>2.96</td>
<td>5.05</td>
</tr>
<tr>
<td>Nutri+Plus BMR</td>
<td>Sorghum-sudangrass</td>
<td>3.31</td>
<td>5.14</td>
</tr>
<tr>
<td>Sweet Sioux</td>
<td>Sorghum-sudangrass</td>
<td>2.66</td>
<td>6.42</td>
</tr>
<tr>
<td>STE6</td>
<td>Sorghum-sudangrass</td>
<td>3.22</td>
<td>6.59</td>
</tr>
<tr>
<td>LSD (p=0.05)</td>
<td></td>
<td>0.74</td>
<td>1.24</td>
</tr>
</tbody>
</table>