1-1-1999

Forest Products Society Off To The F.P.L

Craig Wilson
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/amesforester
Part of the Forest Sciences Commons

Recommended Citation
Available at: https://lib.dr.iastate.edu/amesforester/vol86/iss1/12

This Article is brought to you for free and open access by the Journals at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Forester by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
n Sunday, April 18, 1999, the ISU Forest Product Society Chapter embarked for the spring meeting held by the Midwest section of the Forest Products Society. We traveled to the Forest Products Laboratory in Madison, Wisconsin. Art Brauner, Executive Vice President of the Forest Products Society, hosted the visit.

Historically, the U.S. Department of Agriculture Forest Service in 1910 established the FPL in Madison, Wisconsin and it remains there to this day. The lab's purpose is to serve as a centralized wood research laboratory and to focus on the nation's forest resources in order to provide the greatest good for all.

The FPL's earliest work consisted of finding the best preservative for railroad ties, telegraph poles, and mine timbers. As a major issue in the development of the national laboratory, preservation and protection is still at the center of research today.

Monday began with a hearty continental breakfast and we then set off for the Forest Products Laboratory. Experts in the fields of wood anatomy, fungi, preservation, properties, uses, hazards, and finishing filled the morning with lectures.

The afternoon included a tour of the laboratory with the purpose of learning the ongoing projects in the several research areas of the FPL. The tour began at the Center for Wood Anatomy Research, which holds the largest collection of wood species in America. After learning a few tricks with ultra violet light in identification we moved on to the Fungal Herbarium. Here we learned some of how and why fungi attack wood. With this knowledge the ability to stop wood decay may be recognized.

Other projects included producing a mar-ketable mushroom grown on unusable wood. From there we migrated to the Engineering Mechanics Laboratory where tests ranging from vibration to mechanical stress (bending, compression, etc.) could be preformed. For example, projects consisted of testing wood from 200 year old Alaska-cedar previously used in old military buildings in the early 1900s and testing the actual beams used in the construction of the warship "Old Ironsides". The air laid, or mat forming, and the melt blend made up the two sections of the composite lab which finished off the tour. In the air laid section various substances are combined with wood fiber. These substances range from corn and straw fibers to old shredded money. The combination of melted plastics and wood resins and fibers in the melt blend section of the lab was just as fascinating. Here the technicians could make virtually any molded product desired. For instance, shovel handles to dashboards for automobiles.
Wood composite products made with a combination of wood fibers and other recyclable materials.

From left to right (standing): Elif Semen, Doug Stokke, Jeremy Moore, Craig Wilson, Kevin Burds, Todd Helander. From left to right (kneeling): Tim Romans, In Yang.