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Figure 14: Object selection is done with the wand pointer.  Increasing the model’s 
scale provides visual feedback to the user. 

 

 

Figure 15: Grabbing an object transfers it to the wand so that it may be viewed 
individually. 

 

3.2.3 Editor 

 After a part has been grabbed by the wand, certain characteristics can be edited by the 

user. The editor board displays the options available as different buttons which will uniquely 

affect the model (Figure 16). The scale editor will appropriately increase or decrease the size 

of a model when the user presses the up or down arrow buttons. Similar interactions will 

affect the weight associated with the current model when using the weight editor. Initial 
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weight is read in from a text file. This information is used later when providing the user with 

quantitative assessment data. 

 

 

Figure 16: The editor board provides a method for altering different aspects of the 
selected model. 

 

3.2.4 Assembly Area 

The final marker board is the assembly area. Objects can be placed at any position or 

orientation as long as this board is in frame. If the wand is holding an object, pressing the 

circular button will drop it as shown in Figure 17. The model now belongs to the assembly. 

At any time, the user can clear the most recently dropped object with the down arrow button. 

The up arrow button will completely clear the entire assembly. Once completed, the concept 

can be viewed interactively according to the user’s manipulations. This qualitative 

assessment capability is pictured in Figure 18. 
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Figure 17: Copies of grabbed objects can be placed on the assembly board at any 
orientation. 

 

 

Figure 18: Completed concept assemblies can be easily visualized. 
 

 The assembly board is also where the user can obtain quantitative feedback from the 

model he or she has just created. Along the lower edge of the physical board are two virtual 

buttons. The first button reads “Toggle CG”. In order to click this virtual button, the user 

must point near it with an empty wand and press the circular button. This will cause the 

application to calculate and display the center of gravity of the specific model on the 

assembly board.  The CG is simply calculated as the average position of all the parts on the 

board weighted by their respective mass or weight values. This position is represented as a 
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red sphere. In order to assist in viewing this sphere, all models become semi-transparent 

when the CG is being displayed (Figure 19). The second and final assessment tool included 

in the application is wheel loading. To use this feature, the user must first activate the wheel 

loading button. Then, he or she must click to select four “wheel” points in the assembled 

model. Once these four points have been selected, the loading distribution is calculated and 

displayed on the board. This calculation is done using metamodels that were developed as 

another component of this research. Specific information regarding these models can be 

found elsewhere in this paper. The visual result of the wheel loading calculation is provided 

using colored arrows (Figure 20). These arrows shift from white to red as the loading 

becomes more severe. In this way, a user can very quickly determine the loading distribution 

on the specified wheel elements. 

 

 

Figure 19: When the CG button is activated, the models become transparent and the 
center of gravity is represented by a small red sphere. 

 

 



47 

 

 

Figure 20: Users can obtain wheel loading feedback using the built in assessment 
tool. 
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4 METAMODEL DEVELOPMENT 

 When discussing the motivation for this research, the need for conceptual assessment 

tools was established. In addition, this assessment should be real-time and available within 

the same application as other design functions. Through the previously described augmented 

reality framework, users have access to a great deal of qualitative assessment. The center of 

gravity feature also provides a level of quantitative evaluation. In order to provide a higher 

level of analysis, metamodels were developed to approximate more complicated systems. 

Though a considerable amount of time was involved in creating these models, the final result 

is a set of polynomial equations that can be evaluated by a computer almost instantaneously. 

This time investment was mostly due to the fact that the source data for these models needed 

to be generated through FEA. Every single data trial required the adjustment of a CAD model 

followed by several minutes of waiting for the analysis results. Models were then fit to the 

resulting data. This is one situation where the use of legacy data would offer time savings. 

One of the advantages of legacy data, as discussed in the introduction, is the necessary data 

trials would already exist and be ready for model fitting. However, such data is often 

proprietary and was unavailable for use in this research. Thus, two example cases were 

created in a CAD environment, evaluated using FEA, and approximated with metamodels. 

The first case studied a generalized wheel loading situation, and the second case analyzed 

stresses and deformation in the support frame of a bucket truck. 
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4.1 Wheel Loading Test Case 

4.1.1 Problem Description 

 One assessment tool built into the previously mentioned ASDS system is wheel 

loading. The term wheel loading is derived from initial work on ground vehicles, but “wheel” 

simply refers to any support point. If three or less support points are chosen, a statically 

determinant problem is created. The solution can be found by summing the forces in the y-

direction and the moments in both the x and z-directions. While this is very useful, many 

vehicle concepts consist of more than three wheels. Such a situation is called a statically 

indeterminate problem. A simple set of closed form equations is insufficient to solve this 

system since there are too many unknowns. However, there are alternative methods that can 

provide a solution. One way to determine the loads at each support is to use an FEA 

simulation. These simulations then formed the basis for an approximation of a wheel loading 

system. An experiment was created to generate and test varying wheel loading conditions. 

First, a testing rig was constructed in ABAQUS57 which consisted of four arms each with a 

support block (Figure 21). These supports can be placed at any location along the length of 

the arm, up to a maximum of four meters and a minimum of zero distance from the CG. A 

minimal load of 100 lbf was applied to the central block of the structure to simulate the CG 

of a concept vehicle. By varying the support-to-CG distances, different reaction forces were 

measured in each support, providing 4 variables and 4 outputs upon which to build a model. 

 Next, the DOE was formulated to specify the trials that would need to be run. Being 

that the final goal of this research is rapid concept evaluation, it was decided that the required 

number of trials be kept to a minimum. Initially, orthogonal arrays were used to sample the 
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design space. The L-49 array was chosen, requiring 49 test runs and 7 levels for each 

variable. While results from this sampling scheme were acceptable, orthogonal arrays were 

abandoned in favor of a basic random sampling scheme for two reasons. One, the PCE 

method is built to handle inputs which follow a normal, random distribution. In order to draw 

comparisons between the methods, the source data must be identical. Two, trials cannot be 

easily removed from an L-49 array without destroying its orthogonal properties; random 

samples can be simply removed without fundamentally affecting the sampling scheme. In 

total, four data sets were generated. Two of these contained 50 trials each and were used as 

source data.  The other two were used as validation data sets with 30 trials apiece. Every 

distance value in this source data was distributed about a mean value of 2, half of the full leg 

length. The trials in one source set and one validation set were randomly generated using a 

standard deviation of 1.  The remaining two sets used a deviation of 0.5. Details regarding 

this method of data generation will be discussed in Section 4.1.3 of this thesis. 

 

Figure 21: Screenshot of the loading rig created and analyzed using ABAQUS. 
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4.1.2 Model Formulation 

 Using the values obtained from the DOE, a series of ABAQUS analyses were 

performed to generate the source data upon which the metamodel is built. In every trial, the 

total load for each support was calculated and then represented as a percentage of the total 

load. For example, if all four supports were equidistant from the CG, the value at each 

support was 0.25, or 25%. Once all analyses were completed, metamodels were built to 

approximate the results. Regardless of the modeling technique used, one model was 

generated for each leg, using all four support distances as variables. Every loading situation 

was then modeled by four equations. Like the FEA results, the results of these models are 

formatted as a percentage of the total load. Equations (9) and (10) show the general forms of 

the models for the PRS and PCE methods, respectively.  

 

 

   

 

(9) 
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The above equations both calculate the predicted value, ŷ1.  The ‘1’ notation indicates that 

this is the response for the first leg of the loading rig.  The form of the equation for the other 

three legs is identical. Different observed values are used for the regression, however, 

resulting in different solutions for the coefficients, β. The values in X are normalized to the 

largest individual value. Θ is comprised of standard Gaussian variables calculated using 

Equation # and the original values generated by the DOE. With these equations formulated, 

the modeling methodologies can be studied within the context of the wheel loading 

experiment. 

 

4.1.3 Experimental Setup 

 Equations (9) and (10) only represent only one feasible configuration for the 

polynomial response surface and polynomial chaos expansion methods. There several factors 

that can be altered which affect model performance. The primary goal of this segment of 

research was to not only build a working metamodel but also to compare many different 
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approaches in order to find the most robust but efficient model possible. In the following 

sections, these factors are explained and the approaches toward studying them are outlined. 

 In conceptual design, the design space for potential concepts can involve a great deal 

of uncertainty. Radical new ideas may be well outside the traditional understanding of a 

problem. Another concept may combine elements from several existing but diverse products. 

Modeling for both these situations involves building an approximation with source data from 

a design space that may be significantly different from that of the new set of concepts being 

evaluated. It was for this reason that two distinct sets of source and validation data were 

created. By altering the standard deviation of the distributions for support distances, one data 

set represents a larger design space, which includes more radical loading configurations. The 

opposite set is smaller and more conservative. This creates four possible test setups. Models 

can be both built and tested on data generated using the same distribution, large and small. 

An interpolative case is created when a model is fit to the large set and validated using the 

small. The reverse of this situation is the extrapolative case. Using these variations, model 

accuracy can be gauged when subjected to varying design spaces. 

 A large factor in the accuracy of any model is the number of known system responses 

available for fitting. Generally speaking, increasing the amount of source data will result in a 

better model. Unfortunately, obtaining these known values can be quite time consuming. 

Large amounts of existing data are not always available. The goal should be to generate 

reasonably accurate models with limited amounts of data. Higher error is acceptable at early 

stages in the design process since many issues remain undecided. The question then becomes 

how much the data can be limited. For this study, each set of source data contains a 
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maximum of 50 trials. This number was sequentially reduced to 40, 30, and 20 trials, and 

models were fit to each of these four situations.  

 While the textbook definitions of the various modeling methodologies provide a 

general form to be followed, the decision of which terms to include or exclude is that of the 

individual and the system he or she wishes to approximate. The term “interaction effects” 

deals with terms that in some way involve two or more variables (i.e. multidimensional). 

Examples of such terms are provided in Equations (9) and (10). It should be noted that 

interaction effects seen in Equation (10) are not true multi-dimensional Hermite polynomials. 

Rather, they are an alternate set of effects styled after the interaction terms in the PRS model. 

Adding variable interaction is not a guaranteed method to increase model accuracy. It is 

possible that these additional terms will capture more of the target process’s behavior; 

however they may also have a minimal or negative effect on model performance. This 

experiment was limited to second order effects, the interaction of two first order variables. 

Including higher order interactions would have added too many terms to the equation and 

affected additional components of the study. 

 Similar to the option of including interaction effects, model order is another choice to 

be made. The degree of a system’s response is not always known. Higher order models are 

capable of capturing more complex behavior. However, such flexibility in the model may be 

unneeded and result in weaker performance. Models were created that included one-

dimensional terms up to the third power. The results from these will be compared to 

approximations built with no term higher than second order. 
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 Finally, the two modeling methodologies will be compared. Every experimental 

factor explained above will be studied using both techniques. Different behaviors between 

the two methods may highlight certain advantages or disadvantages. Perhaps, one method 

performs better in all situations. Making these comparisons will not only lead to better wheel 

loading approximations but also provide insight into future analyses as well. 

 

4.2 Bucket Truck Support Frame Test Case 

4.2.1 Problem Description 

 The analyses described in the previous section focus on a generalized wheel loading 

situation. While such a tool is useful, the modeling challenges are relatively minimal. The 

loading rig has little to no complexity, and the four design variables are very similar in 

nature. In order to more fully assess the capability of metamodeling for conceptual design, an 

additional case was studied. The analysis problem was chosen to be the design of the support 

frame for a bucket truck. Figure 22 shows an example of this type of vehicle. The base of the 

arm is anchored to a custom frame in the rear of the truck. This frame is then fixed to either 

the vehicle itself or to outriggers that rest on the ground. Bucket trucks are manufactured in a 

variety of different sizes. The base vehicle used can range from medium sized, consumer 

level trucks all the way up to heavy duty, commercial class vehicles. Dimensions of the 

support frame are dependent upon vehicle choice. Boom arm length depends on the desired 

application; the weight to be supported at the end of the arm is also variable. Each of these 

conditions plays a role in the loading on the support frame. The nature of this loading is 

important to the designer and was chosen to be the focus of this analysis.  
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Figure 22: An example image of a bucket truck used for the second analysis case. 
 

 Like in the wheel loading case, no legacy data was available for use in this research. 

Thus, the source data was generated from finite element analysis of a CAD model. The 

support frame was modeled in SolidWorks58, as shown in Figure 23. All joints in the model 

are assumed to be perfect; no welding assumptions were made. The outrigger plates at either 

end of the frame are fixed, and the loads are applied to the square plate on top. The nature of 

these loads was kept as simple as possible in order to stay within the confines of a useful 

conceptual design tool. While a potential designer will not have every detail figured out, he 

or she will at least know a few basic requirements such as overall dimensions and the 

intended usage. The five design variables were chosen based upon this assumed knowledge: 

length and width of the frame; length and weight of the boom arm; weight of the object to be 

supported at the end of the boom arm. The design of experiments for this case was done 

similarly to that of the wheel loading analysis. Mean values and standard deviations were set 

for each variable (Table 1), and data was generated through a random sampling process. 
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Loading was applied to the FEA model based upon these values. The sum of the two weights 

created a downward force. The second loading component was a moment created by the two 

weights. The moment caused by the boom arm alone was assumed to act at half of its length. 

A second moment was generated by the weight in the boom’s basket and was calculated at 

the full length of the boom. Initial investigation of the problem determined that the maximum 

loading occurred with a forward facing, fully extended boom. All simulation runs were 

performed in CosmosWorks59 at this maximum loading scenario. A total of 90 trials were 

simulated; sixty to be used as training data and an additional thirty for validation purposes. 

The magnitudes of the maximum stress and maximum displacement along with their 

respective locations would be interest to a designer. Thus, these eight different outputs were 

recorded for each of the FEA trials. The maximum stress was measured in pounds per square 

inch (p.s.i.) while the displacement and location values were measured in inches. 
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Figure 23: The support frame structure was generated in SolidWorks and simulated 
using CosmosWorks. 

 

 

Table 1: The parameters used to generate the simulation trials for the support frame 
test case. 

Overall 

Length 

(in)

Overall 

Width (in)

Boom 

Length 

(in)

Boom 

Weight 

(lbs)

Basket 

Weight 

(lbs)

Mean 180 35 600 19000 500

St. Dev. 24 2 175 5000 150  
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4.2.2 Experimental Setup 

Generating the models was again very similar to the model fitting done in the wheel 

loading case. Several terms were added to Equations (9) and (10) in order to accommodate a 

fifth design variable. The source data from the support frame analyses, both inputs and 

outputs, were normalized to the same ranges as the wheel loading data. This was done to 

allow for an accurate comparison once results were obtained. Similar experimental factors 

were also altered such that their effects could be studied in this new test case. Data was not 

generated using different distributions, however, so no investigation into interpolation or 

extrapolation could be performed. 
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5 RESULTS AND DISCUSSION 

5.1 Metamodeling Results 

5.1.1 Evaluation Procedure 

 A large number of models were created according to the procedure laid out in the 

development chapter. It was necessary to choose a method for measuring these metamodels 

so that relative performance could be determined. Though the various models were all built 

upon different sets of source trials, each was evaluated on common sets of validation data. As 

previously mentioned, each of these validation sets contained 30 data points. The reason for 

this additional series of trials was to assure that fair comparisons were being made. 

Performance metrics can be calculated to show how well a model fits the data from which it 

was generated. In practical applications however, models are used to approximate responses 

other than those used in their training. For instance, a model built on a small set of 

uncomplicated data may fit those points very well, but when applied to a real problem the 

model may fail entirely. By comparing a model’s predicted responses with actual observed 

values in an independent data set, it is possible to obtain an unbiased assessment of the 

approximation.  

 Three performance metrics were calculated from results of the metamodeling 

experiments. Maximum absolute difference was the first of these. As shown in Equation (11), 

this value is defined quite simply as the largest difference between the predicted value, ŷi, 

and the observed value, yi, in absolute terms over n samples. The second metric was root 

mean square error (RMSE), as defined by Equation (12). Finally, the R2 statistic was used to 



61 

 

gauge a model’s performance. This metric is calculated according to Equation (13), where 

ymean is the average value of the observed responses. 

 

(11) 

 

 

(12) 

 

 

(13) 

 

Using these calculations, the results from experimenting with various model factors will be 

compared to one another. The following two sections will present results from the two cases 

separately. 

 

5.1.2 Wheel Loading Results 

 In total, 192 different models were generated in this study. Each model was then run 

with two distinct sets of validation data. Thus, results can be obtained from 384 different 

configurations. The nature of the experiment does allow the data to be condensed somewhat. 

Four models were generated for each test, one model for each leg on the loading rig. Since 

the outputs of these models are fundamentally similar (i.e. percentage of total load), they 

were considered as one single response for the purpose of error calculations. Comparisons 
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could then be made using a more manageable pool of 96 values for the RMSE and maximum 

absolute error metrics. The R2 values were obtained for each regression performed. For the 

wheel loading case, all of these values were between 0.95 and 1.0 indicating an accurate fit 

of the source data. This metric, however, does not necessarily provide a good means of 

comparison between the various modeling configurations for reasons already explained. In 

order to best view the effects of the experimental factors put forth in the method development 

chapter, this section will present a series of charts. While both RMSE and maximum absolute 

error were used for analysis, only RMSE values will appear in the figures. Both metrics 

revealed similar trends, but RMSE is a better measure of a model’s overall performance. 

 The first factor to be analyzed is a model’s performance in situations with varying 

distributions of source and validation data. Figure 24 displays these results. For this 

configuration, 3rd order models were generated using 50 points of source data. The two 

columns on the left side of the chart represent models that were tested using the same 

validation data, generated with a 1.0 standard deviation. However, the models were fit to data 

of both distributions. Here, the extrapolation case has slightly higher error but still compares 

favorably to the models built and tested on the same data distribution. Similar results are seen 

on the other half of the chart. While the interpolating models are not quite as accurate, they 

perform nearly as well as the other models. A considerable difference in RMSE is seen 

between the two halves of the figure. This result is not surprising, however. The tighter, more 

conservative data set has fewer extreme loading conditions that are more difficult to predict.  
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Figure 24: This chart presents an example case of model performance in 
interpolating and extrapolating conditions. 

 

 For every modeling configuration that was investigated, models were fit to varying 

levels of input data. The general trend was for error to increase as fewer data points were 

used for regression, as evidenced by Figure 25. For the most part, this increase was modest 

down to as few as 30 data points. In the chart, the error for the PCE model is still relatively 

low when only 20 trials were used. However, the PRS model had a noticeable reduction in 

accuracy. Though the error for the PRS model is not so bad as to render the approximation 

unusable, this behavior does indicate that more volatility can be expected when the source 



64 

 

data is reduced. There will be more discussion later regarding the differences in performance 

between the two methodologies. The point to be made here is that with minimal input data, 

otherwise acceptable models may no longer provide adequate results.    
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Figure 25: Models can exhibit unstable behavior when presented with only a 
minimum of source data. 

 

 The impact of including interaction effects in the model expression was examined. As 

discussed in the chapter on methodology development, the addition of these terms does not 

guarantee a better model. The results from this experiment affirm that claim. In Figure 26, 
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interaction effects provide a noticeable improvement in error at all levels of input data. 

However, in Figure 27, the same terms have a negative impact on model performance. The 

difference between these two cases is the distribution of both the source and validation data. 

Interaction effects appear to be beneficial in situations with more densely sampled, smaller 

design spaces. The additional control perhaps serves as a way to fine tune the approximation. 

Over larger design spaces with less dense sampling, this control becomes a drawback rather 

than an advantage. 
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Figure 26: In this modeling configuration, interaction effects had a positive impact 
on model performance. 
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Figure 27: Interaction effects were not beneficial in this example. 
 
 

Comparisons were also drawn between approximations that did or did not include 

third order terms. For models that were fit to all 50 data points, Figure 28, the addition of 

third order terms did yield a slight increase in accuracy. However, when the amount of 

source data was reduced to 20 trials, some second order models outperformed their third 

order counterparts, Figure 29. The reason for this behavior is similar to the explanation given 

when discussing the impact of interaction effects. For minimal sampling situations in a large 

design space, the gaps between regression points are much wider. Within these gaps a higher 

response is more likely to exhibit radical behavior than a more simple approximation. 
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Figure 28: With high levels of source data, 3rd order models offer a small 
improvement in model accuracy. 
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Figure 29: With minimal input data, 2nd order models often outperform those with 3rd 
order terms. 

 

 In many of the modeling configurations examined as part of this research, PRS and 

PCE models performed nearly identically. This was especially true when the models were fit 

to larger numbers of source data points. Differences did become apparent, however, when the 

models were only presented with a minimal number of data points. Figure 30 highlights these 

variations. The PRS model outperformed the PCE approach in both cases where the source 

data was distributed over a larger design space. When a smaller distribution was used as the 

input data, the PCE model was more accurate. 
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Figure 30: PCE performs better when fit to smaller distributions of data. Source 
data with a greater distribution is better modeled by PRS. 

 

 

5.1.3 Support Frame Results 

 For the support frame test case, 48 different models were generated for analysis. 

Since each output response represented a very different measurement, the results were not 

combined to provide a single error value. Though eight different responses were recorded 

from the simulation runs, models were only constructed for six of those outputs. The y and z 
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location coordinates of the maximum stress location never changed, so no approximation was 

necessary. As before, models were built at varying levels of input data: 60, 50, 40, and 30 

trials. The increase in possible data was done to accommodate the additional terms required 

by a five design variable problem as opposed to four. 

 The R2 values for the models in this case were not as consistently high as for the 

wheel loading problem. The values were effectively identical between the PRS and PCE 

methods, however. Table 2 presents these values for 3rd order models that included 

interaction effects. R2 values for 2nd order models with no interaction effects are presented in 

Table 3. Both tables share the general trend of increasing R2 values as source data is 

removed. The values for the x-position of the maximum stress are always 1. In the previous 

paragraph, it was explained that y and z positions of this location never changed. While the 

value of the position does indeed change, it remains in relatively the same position. Its 

position is directly related to the overall dimensions of the frame and is thus easily predicted. 

Another feature to note is that the R2 values for the x and y positions of the maximum 

displacement are considerably lower in the 2nd order case. This will come more into play as 

other results are presented. 
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Table 2: R2 values for 3rd order models at different levels of input data. 

# of 
trials in 
source 

data

R-squared

Maximum Stress Maximum Displacement

Magnitude x-positionMagnitude x-position y-position z-position

60 0.7722 1 0.7792 0.8411 0.8477 0.9909

50 0.7673 1 0.7749 0.8794 0.8951 0.9928

40 0.995 1 0.9952 0.9073 0.9168 0.9967

30 0.9983 1 0.9986 0.9769 0.981 0.9975
 

 

Table 3: R2 values for 2rd order models at different levels of input data. 

# of 
trials in 
source 

data

R-squared

Maximum Stress Maximum Displacement

Magnitude x-positionMagnitude x-position y-position z-position

60 0.757 1 0.7621 0.6094 0.6254 0.9648
50 0.7492 1 0.7546 0.6303 0.6508 0.9693
40 0.9823 1 0.982 0.6805 0.6915 0.9718

30 0.9858 1 0.9842 0.6578 0.6909 0.9762
 

 

 Again, RMSE values will be used to compare the models as it is a better overall 

measure than maximum absolute error. Similar trends are visible in all the outputs, so only 

two will be presented here for discussion. The maximum stress magnitude represented some 

of the best modeling performance while the y-position of the maximum displacement was 

one of the most challenging responses to approximate. Figures 31 and 32 depict the results 

from these two responses for both PRS and PCE modeling approaches. In each situation, 

PCE outperforms PRS, but the errors in general are considerably higher than those seen for 
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the simpler wheel loading situation. The errors observed for the maximum displacement y-

position approximation are so high as to render the model ineffective. Thus, the R2 values 

were more than a little misleading. Another approach should be followed if adequate results 

are to be realized. 
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Figure 31: Error values are noticeably higher than those seen in the wheel loading 
analysis. 
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Figure 32: The position of the maximum displacement is difficult to approximate. 
This modeling configuration did not perform well. 

 

 The next series of charts shows a comparison between two different configurations of 

PCE models. The first models were built using only 2nd order effects and no interaction 

between variables. These are compared to the PCE models from the above charts. Figure 33 

actually shows a slight trend for reduction in error as input data is removed. Moderate 

improvements in accuracy over the 3rd order PCE models are seen as well. Much more 

drastic reductions in error were observed when applying the simpler model to maximum 

displacement y-position response (Figure 34). Accuracy was increased to the point where the 
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model may be useful for rough design estimates. Recall that the R2 values for this model type 

were significantly lower than for the previous one. This result indicates a situation of over-

fitting the source data. The 3rd order model was able to better approximate the input data 

points.  However, in doing so, it lost its generality and was unable to accurately predict the 

response elsewhere in the design space. 
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Figure 33: Simpler, 2nd order models offered better performance than 3rd order. 
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Figure 34: Large improvements were obtained when 2nd order models were used to 
approximate maximum displacement position. 
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6 CONCLUSIONS AND FUTURE WORK 

6.1 Summary and Conclusions 

 The research presented in this thesis has described the development of a new 

engineering design tool. Specifically created to serve the needs of conceptual design, the 

application contains several features, including: 

• A 3D augmented reality environment. 

• Intuitive methods for object creation, manipulation, and editing. 

• Quantitative assessment for user created concepts. 

 

Augmented reality provides a new way to develop applications. Instead of the 

software environment existing only on a display screen, virtual elements coincide with the 

real world. Through the use of a video see-through HMD, a 3D environment was developed 

in which the user’s hands are the primary mode of interaction. This creates a very direct 

mapping that is easily learned by most anyone.  

Because of the capabilities of AR, the common tasks found in traditional design 

software were applied in a new, more intuitive form. Custom elements, both real and virtual, 

were created to develop this new interaction. A wand device became the equivalent of a 3D 

mouse. Various marker boards were created, each performing functions specific to the 

board’s purpose. Virtual objects can be picked up and inspected almost as if they were 

actually in the user’s hand. These same objects can be altered and then placed into assemblies 

in a similar way that one sets down a real object. These capabilities provide the user a very 

flexible work space to create and visualize a concept. 
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Within the same design environment, two quantitative analysis tools are available to 

provide instant feedback of a concept. Based upon the position and weights of each 

component on the board, a virtual button will display the center of gravity of the assembled 

concept. Similarly, the wheel loading button will be display the load distribution after 

selecting four support points. These evaluation tools aid the designer by providing more 

technical data at an early phase in the design process. 

In support of the development of the wheel loading analysis, additional research was 

done to investigate the application of metamodels for use in the context of conceptual design. 

Two methods were studied in different case studies: polynomial response surface and 

polynomial chaos expansion. The first test case was the analysis situation applied in the 

design application, wheel loading. For both methods, error was found to be less than 10%, 

according to the calculated RMSE metric, when provided as few as thirty input data points. 

In certain test configurations, acceptable results were observed with twenty points of source 

data. However, model performance in these conditions was considerably more volatile and 

unpredictable. The inclusion of interaction effects and third order terms was found to provide 

a small improvement in accuracy in more densely sampled data sets. These effects had a 

negative impact when input data was reduced. Performance differences between the two 

methods were not substantial, except when only a minimum of source data was used. Based 

on the presented results, PRS models performed better when fit to large data distributions.  

PCE was better suited to modeling smaller distributions and then extrapolating. 

The second case to be studied was that of the support frame for a bucket truck. This 

design problem was found to be considerably more difficult to model, with certain outputs 
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containing more non-linear behavior than the previous problem. Even for the simpler 

responses, third order models were only moderately sufficient for rough approximation with 

error values between 10% and 20%. The models for outputs that were more difficult to 

predict were so inaccurate as to be useless for approximation. Second order models, however, 

improved these numbers drastically. Prediction error for the maximum stress magnitude was 

much closer to 10% across all the input data conditions. Similarly, errors for the maximum 

displacement y-position fell to 20%, only rising to 35% at the minimum input data condition. 

While certainly not exact, these approximations may be able to provide rough performance 

estimates without the need for costly analysis. 

 

6.2 Future Work 

 Continuing work for this research will advance along many paths. First and foremost, 

the presented application must become an official part of the ASDS project mentioned in 

Chapter 2. The future goals of this project are to offer a variety of interface and display 

options to users that are all capable of functioning as a single framework; augmented reality 

plays a role in this vision. Aside from this, there are a great deal of possibilities for future 

research in the field of metamodeling for conceptual design. This thesis has only presented 

two methods for consideration. A colleague is currently performing similar analyses using 

the radial basis function (RBF) and Kriging methods. Adaptive learning algorithms such as 

neural networks and support vector regression (SVR) may hold promise in building better 

approximations. The test cases being modeled must also be expanded. More challenging 

design problems will be found to better analyze the various methods. There is also a need to 
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better legitimize the approximations with more real world data. This can be done in a number 

of ways. First, the use of legacy data needs to be pursued more vigorously. In this project, 

legacy data was simulated by generating results from randomly chosen FEA run. However, it 

would be interesting to generate models using industry data from a real world product. 

Approximation results from the generic models could also be better validated. This could 

take the form of comparing the predicted model outputs to high fidelity simulation results of 

actual industrial models or even to physical testing of the product itself. 

 Advancement of the augmented reality interface is another avenue for continued 

research. While the theoretical benefits of AR have been proposed in this thesis, no official 

user studies were performed. Such testing would help validate the use of 3D interfaces as 

well serve as a baseline for future studies using updated hardware and software. For instance, 

additional methods of visual feedback could be explored to provide additional dimensions of 

information. Though powerful and indispensable to this project, the OSGART framework is 

not perfect. Even in the best conditions, the tracking results have a fair amount of noise. This 

could be mitigated by applying a Kalman filter, or similar method, to this data. Other 

problems may not be so easily solved. As more markers are used, misrecognition of markers 

becomes a greater issue. Sub-optimal lighting conditions cause the application to become 

unstable. It may become necessary to move to another tracking method. AR has many 

alternative solutions. Particularly, marker-less tracking holds great promise. Using infrared, 

depth sensing technology, it is possible to track the location and orientation of a user’s hands 

as well as detect gestures. In this way, AR applications would no longer be tied to physical 

markers or sensors. With this depth information, virtual objects can be made to “hide” behind 
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real objects. Dual camera devices and stereoscopic displays can bring 3D vision to AR 

systems. Combining all these concepts, the capability exists to enhance the illusion the AR 

presents to a user. As this technology becomes better and smaller, the 3D AR interface may 

one day replace the notion of computing being confined to a desktop. 
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