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Figure 14: Object selection is done with the wandginter. Increasing the model’s
scale provides visual feedback to the user.

Figure 15: Grabbing an object transfers it to the vand so that it may be viewed
individually.
3.2.3 Editor
After a part has been grabbed by the wand, cecteanacteristics can be edited by the
user. The editor board displays the options aviglab different buttons which will uniquely
affect the model (Figure 16). The scale editor aflpropriately increase or decrease the size
of a model when the user presses the up or dovawabuttons. Similar interactions will

affect the weight associated with the current masleén using the weight editor. Initial
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weight is read in from a text file. This informatics used later when providing the user with

guantitative assessment data.

Figure 16: The editor board provides a method for lering different aspects of the
selected model.

3.24 Assembly Area

The final marker board is the assembly area. Objeah be placed at any position or
orientation as long as this board is in frameh# tvand is holding an object, pressing the
circular button will drop it as shown in Figure IIhe model now belongs to the assembly.
At any time, the user can clear the most recentbppled object with the down arrow button.
The up arrow button will completely clear the emtaissembly. Once completed, the concept
can be viewed interactively according to the usaranipulations. This qualitative

assessment capability is pictured in Figure 18.
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Figure 17: Copies of grabbed objects can be placeoh the assembly board at any
orientation.

Figure 18: Completed concept assemblies can be dgsiisualized.

The assembly board is also where the user camatpiantitative feedback from the
model he or she has just created. Along the lowge ef the physical board are two virtual
buttons. The first button reads “Toggle CG”. In @rdo click this virtual button, the user
must point near it with an empty wand and pressciheular button. This will cause the
application to calculate and display the centergrdvity of the specific model on the
assembly board. The CG is simply calculated asatteeage position of all the parts on the

board weighted by their respective mass or weiglites. This position is represented as a
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red sphere. In order to assist in viewing this sphall models become semi-transparent
when the CG is being displayed (Figure 19). The@séand final assessment tool included
in the application is wheel loading. To use thiat@ee, the user must first activate the wheel
loading button. Then, he or she must click to gelear “wheel” points in the assembled
model. Once these four points have been seledtedpading distribution is calculated and
displayed on the board. This calculation is donaegisnetamodels that were developed as
another component of this research. Specific in&diom regarding these models can be
found elsewhere in this paper. The visual resuthefwheel loading calculation is provided
using colored arrows (Figure 20). These arrowst dhifm white to red as the loading
becomes more severe. In this way, a user can wecklyg determine the loading distribution

on the specified wheel elements.

Figure 19: When the CG button is activated, the moels become transparent and the
center of gravity is represented by a small red spare.
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Figure 20: Users can obtain wheel loading feedbacalsing the built in assessment
tool.
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4 METAMODEL DEVELOPMENT

When discussing the motivation for this reseatieh,need for conceptual assessment
tools was established. In addition, this assessisiemild be real-time and available within
the same application as other design functionsoddir the previously described augmented
reality framework, users have access to a gredtadepialitative assessment. The center of
gravity feature also provides a level of quanttatevaluation. In order to provide a higher
level of analysis, metamodels were developed tacqomate more complicated systems.
Though a considerable amount of time was involvedréating these models, the final result
is a set of polynomial equations that can be evatlhy a computer almost instantaneously.
This time investment was mostly due to the fact tha source data for these models needed
to be generated through FEA. Every single datareguired the adjustment of a CAD model
followed by several minutes of waiting for the arsd results. Models were then fit to the
resulting data. This is one situation where the afskegacy data would offer time savings.
One of the advantages of legacy data, as discusgée introduction, is the necessary data
trials would already exist and be ready for modtinfy. However, such data is often
proprietary and was unavailable for use in thissaesh. Thus, two example cases were
created in a CAD environment, evaluated using F&#d approximated with metamodels.
The first case studied a generalized wheel loaditgation, and the second case analyzed

stresses and deformation in the support framebofc&et truck.



49

4.1 Wheel Loading Test Case

4.1.1 Problem Description

One assessment tool built into the previously meetd ASDS system is wheel
loading. The term wheel loading is derived fromialiwork on ground vehicles, but “wheel”
simply refers to any support point. If three orslesipport points are chosen, a statically
determinant problem is created. The solution cafobad by summing the forces in the y-
direction and the moments in both the x and z-timas. While this is very useful, many
vehicle concepts consist of more than three whe&sh a situation is called a statically
indeterminate problem. A simple set of closed farquations is insufficient to solve this
system since there are too many unknowns. Howéwere are alternative methods that can
provide a solution. One way to determine the loatlseach support is to use an FEA
simulation. These simulations then formed the basian approximation of a wheel loading
system. An experiment was created to generate estdvarying wheel loading conditions.
First, a testing rig was constructed in ABAQU®hich consisted of four arms each with a
support block (Figure 21). These supports can beegl at any location along the length of
the arm, up to a maximum of four meters and a minmof zero distance from the CG. A
minimal load of 100 Ibf was applied to the centskdck of the structure to simulate the CG
of a concept vehicle. By varying the support-to-@i&ances, different reaction forces were
measured in each support, providing 4 variablesdaodtputs upon which to build a model.

Next, the DOE was formulated to specify the trihlat would need to be run. Being
that the final goal of this research is rapid ca@@valuation, it was decided that the required

number of trials be kept to a minimum. Initiallytliogonal arrays were used to sample the
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design space. The L-49 array was chosen, requ#thdest runs and 7 levels for each
variable. While results from this sampling scheneravacceptable, orthogonal arrays were
abandoned in favor of a basic random sampling sehfam two reasons. One, the PCE
method is built to handle inputs which follow a mal, random distribution. In order to draw
comparisons between the methods, the source datlbaudentical. Two, trials cannot be
easily removed from an L-49 array without destrgyits orthogonal properties; random
samples can be simply removed without fundamentaiigcting the sampling scheme. In
total, four data sets were generated. Two of tlvesgained 50 trials each and were used as
source data. The other two were used as validataaa sets with 30 trials apiece. Every
distance value in this source data was distribatemlit a mean value of 2, half of the full leg
length. The trials in one source set and one vadidaset were randomly generated using a
standard deviation of 1. The remaining two setdus deviation of 0.5. Details regarding

this method of data generation will be discusseSaantion 4.1.3 of this thesis.

Figure 21: Screenshot of the loading rig created ahanalyzed using ABAQUS.
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4.1.2 Mode Formulation
Using the values obtained from the DOE, a serieABAQUS analyses were

performed to generate the source data upon whemgtamodel is built. In every trial, the
total load for each support was calculated and tepresented as a percentage of the total
load. For example, if all four supports were ecgt@it from the CG, the value at each
support was 0.25, or 25%. Once all analyses weneptaied, metamodels were built to
approximate the results. Regardless of the modeleapnique used, one model was
generated for each leg, using all four supportadists as variables. Every loading situation
was then modeled by four equations. Like the FEgults, the results of these models are
formatted as a percentage of the total load. Egnsit{9) and (10) show the general forms of

the models for the PRS and PCE methods, respectivel

9:(X) = Bo+ B+ BoXo + BoXs + By,
Firstorder terrs
+ BeX X + BeX X + By XX + BeXi Xy + ByXoXa + BioXoXy + BriXsX,
Secondrderinteractio terms
2 9)

2 2 2
+ 1812)(1 + 1813)(2 + ﬁ14X3 + ﬁ15X4
Secondrder terrs
3 3 3 3
+ 1816)(1 + :817X2 + ﬂ18X3 + 1819)(4
Third order terms

whereX =[x, %, %, Xx,]
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91(6) = ﬂO +ﬂl£l +ﬂ2£2 +ﬂ3£3 +ﬂ4£4

Firstorder terrs

+ P56165 + BodiSs + Bréids + Badida * Bo6aSs * Piosaba + Passls

Secondrderinteraction terms ( 10)

+ 8,8 - 1)+ Bo(&2 -1+ BulE -1)+ Bole2-1)

Secondrder terms

+1816(£13 _351)"':817(523 _352)"':818(533 _353)"':819(52 _354)

Third order terrs

where@=[¢§, &, & &

The above equations both calculate the predictéeeyg. The ‘1’ notation indicates that

this is the response for the first leg of the logdiig. The form of the equation for the other

three legs is identical. Different observed valae used for the regression, however,

resulting in different solutions for the coeffictans. The values irX are normalized to the

largest individual value® is comprised of standard Gaussian variables clealusing

Equation # and the original values generated byDi®&. With these equations formulated,

the modeling methodologies can be studied withia tontext of the wheel loading

experiment.

4.1.3 Experimental Setup

Equations (9) and (10) only represent only onesilda configuration for the

polynomial response surface and polynomial chapsmsion methods. There several factors

that can be altered which affect model performafd¢e primary goal of this segment of

research was to not only build a working metamdaulél also to compare many different
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approaches in order to find the most robust butiefit model possible. In the following
sections, these factors are explained and the agipes toward studying them are outlined.

In conceptual design, the design space for patiecdincepts can involve a great deal
of uncertainty. Radical new ideas may be well al@sihe traditional understanding of a
problem. Another concept may combine elements fseweral existing but diverse products.
Modeling for both these situations involves builflen approximation with source data from
a design space that may be significantly diffefemrin that of the new set of concepts being
evaluated. It was for this reason that two distisets of source and validation data were
created. By altering the standard deviation ofdiséributions for support distances, one data
set represents a larger design space, which irelonaee radical loading configurations. The
opposite set is smaller and more conservative. dit@ates four possible test setups. Models
can be both built and tested on data generated tisensame distribution, large and small.
An interpolative case is created when a modeltisofthe large set and validated using the
small. The reverse of this situation is the exttaiee case. Using these variations, model
accuracy can be gauged when subjected to varysigrispaces.

A large factor in the accuracy of any model isinenber of known system responses
available for fitting. Generally speaking, increasthe amount of source data will result in a
better model. Unfortunately, obtaining these knovatues can be quite time consuming.
Large amounts of existing data are not always alikl The goal should be to generate
reasonably accurate models with limited amountdadé. Higher error is acceptable at early
stages in the design process since many issuesvemdecided. The question then becomes

how much the data can be limited. For this studycheset of source data contains a
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maximum of 50 trials. This number was sequentiadiguced to 40, 30, and 20 trials, and
models were fit to each of these four situations.

While the textbook definitions of the various miwg methodologies provide a
general form to be followed, the decision of whiehms to include or exclude is that of the
individual and the system he or she wishes to aqymate. The term “interaction effects”
deals with terms that in some way involve two orrengariables (i.e. multidimensional).
Examples of such terms are provided in Equationsa(®@ (10). It should be noted that
interaction effects seen in Equation (10) are nat multi-dimensional Hermite polynomials.
Rather, they are an alternate set of effects st the interaction terms in the PRS model.
Adding variable interaction is not a guaranteedhoeétto increase model accuracy. It is
possible that these additional terms will capturerenof the target process’s behavior;
however they may also have a minimal or negatifecefon model performance. This
experiment was limited to second order effects,itieraction of two first order variables.
Including higher order interactions would have atitlieo many terms to the equation and
affected additional components of the study.

Similar to the option of including interaction e¢ts, model order is another choice to
be made. The degree of a system’s response idwaysaknown. Higher order models are
capable of capturing more complex behavior. Howesech flexibility in the model may be
unneeded and result in weaker performance. Modealee vereated that included one-
dimensional terms up to the third power. The res@itom these will be compared to

approximations built with no term higher than setonder.
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Finally, the two modeling methodologies will bengoared. Every experimental
factor explained above will be studied using babhnhiques. Different behaviors between
the two methods may highlight certain advantagedisadvantages. Perhaps, one method
performs better in all situations. Making these pansons will not only lead to better wheel

loading approximations but also provide insighoifitture analyses as well.

4.2 Bucket Truck Support Frame Test Case

4.2.1 Problem Description

The analyses described in the previous sectionsfon a generalized wheel loading
situation. While such a tool is useful, the modglechallenges are relatively minimal. The
loading rig has little to no complexity, and theufodesign variables are very similar in
nature. In order to more fully assess the capgfitmetamodeling for conceptual design, an
additional case was studied. The analysis probles atnosen to be the design of the support
frame for a bucket truck. Figure 22 shows an examopkhis type of vehicle. The base of the
arm is anchored to a custom frame in the reareftiinck. This frame is then fixed to either
the vehicle itself or to outriggers that rest oa gnound. Bucket trucks are manufactured in a
variety of different sizes. The base vehicle usad rmange from medium sized, consumer
level trucks all the way up to heavy duty, commaralass vehicles. Dimensions of the
support frame are dependent upon vehicle choicemBarm length depends on the desired
application; the weight to be supported at the enthe arm is also variable. Each of these
conditions plays a role in the loading on the supframe. The nature of this loading is

important to the designer and was chosen to béthes of this analysis.
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Figure 22: An example image of a bucket truck usetbr the second analysis case.

Like in the wheel loading case, no legacy data awaslable for use in this research.
Thus, the source data was generated from finitmeh analysis of a CAD model. The
support frame was modeled in SolidWafkas shown in Figure 23. All joints in the model
are assumed to be perfect; no welding assumptiens made. The outrigger plates at either
end of the frame are fixed, and the loads are eppb the square plate on top. The nature of
these loads was kept as simple as possible in ¢odstay within the confines of a useful
conceptual design tool. While a potential desigméirnot have every detail figured out, he
or she will at least know a few basic requiremesush as overall dimensions and the
intended usage. The five design variables wereerhbased upon this assumed knowledge:
length and width of the frame; length and weighthaf boom arm; weight of the object to be
supported at the end of the boom arm. The desigexpériments for this case was done
similarly to that of the wheel loading analysis. &evalues and standard deviations were set

for each variable (Table 1), and data was genertbeigh a random sampling process.
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Loading was applied to the FEA model based uposetivalues. The sum of the two weights
created a downward force. The second loading coemgamas a moment created by the two
weights. The moment caused by the boom arm aloseagsumed to act at half of its length.
A second moment was generated by the weight irbtimen’s basket and was calculated at
the full length of the boom. Initial investigatiof the problem determined that the maximum
loading occurred with a forward facing, fully extesd boom. All simulation runs were
performed in CosmosWorksat this maximum loading scenario. A total of Si@lg were
simulated; sixty to be used as training data anddzhtional thirty for validation purposes.
The magnitudes of the maximum stress and maximusplatiement along with their
respective locations would be interest to a desighieus, these eight different outputs were
recorded for each of the FEA trials. The maximurass was measured in pounds per square

inch (p.s.i.) while the displacement and locatiatues were measured in inches.
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Figure 23: The support frame structure was generai in SolidWorks and simulated
using CosmosWorks.

Table 1: The parameters used to generate the simuian trials for the support frame

test case.
Overall Boom Boom Basket
Length Overall Length Weight Weight
(in) Width (in) (in) (Ibs) (Ibs)
Mean 180 35 600 19000 500
St. Dev. 24 2 175 5000 150
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4.2.2 Experimental Setup

Generating the models was again very similar tontleeel fitting done in the wheel
loading case. Several terms were added to Equai®rend (10) in order to accommodate a
fifth design variable. The source data from thepsup frame analyses, both inputs and
outputs, were normalized to the same ranges asvhieel loading data. This was done to
allow for an accurate comparison once results wétained. Similar experimental factors
were also altered such that their effects couldtbdied in this new test case. Data was not
generated using different distributions, however,n® investigation into interpolation or

extrapolation could be performed.
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5 RESULTS AND DISCUSSION

5.1 Metamodeling Results

5.1.1 Evaluation Procedure

A large number of models were created accordinthéoprocedure laid out in the
development chapter. It was necessary to choosetlaooh for measuring these metamodels
so that relative performance could be determindaugh the various models were all built
upon different sets of source trials, each wasuatatl on common sets of validation data. As
previously mentioned, each of these validation setgained 30 data points. The reason for
this additional series of trials was to assure tfet comparisons were being made.
Performance metrics can be calculated to show helvanmodel fits the data from which it
was generated. In practical applications howevereats are used to approximate responses
other than those used in their training. For ins¢éama model built on a small set of
uncomplicated data may fit those points very wellt when applied to a real problem the
model may fail entirely. By comparing a model’'s ¢icted responses with actual observed
values in an independent data set, it is possiblebtain an unbiased assessment of the
approximation.

Three performance metrics were calculated fromultesof the metamodeling
experiments. Maximum absolute difference was tts¢ @f these. As shown in Equation (11),
this value is defined quite simply as the largeffeence between the predicted valiig,
and the observed valug, in absolute terms over samples. The second metric was root

mean square error (RMSE), as defined by Equati@h @nally, the R statistic was used to
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gauge a model’'s performance. This metric is catedlaaccording to Equation (13), where

VmeaniS the average value of the observed responses.

MaximumAbsoluteError = ma><{|§/i - yi|in:l) (11)

(12)

(13)

Using these calculations, the results from expeantmg with various model factors will be
compared to one another. The following two sectwilspresent results from the two cases

separately.

5.1.2 Whedl Loading Results

In total, 192 different models were generatechis study. Each model was then run
with two distinct sets of validation data. Thussuks can be obtained from 384 different
configurations. The nature of the experiment ddlesvathe data to be condensed somewhat.
Four models were generated for each test, one nfodebch leg on the loading rig. Since
the outputs of these models are fundamentally am{ile. percentage of total load), they

were considered as one single response for theopeirpf error calculations. Comparisons
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could then be made using a more manageable p&& wvalues for the RMSE and maximum
absolute error metrics. Theé’ Ralues were obtained for each regression perfarfiedthe
wheel loading case, all of these values were betvde®5 and 1.0 indicating an accurate fit
of the source data. This metric, however, doesnmaaessarily provide a good means of
comparison between the various modeling configonatifor reasons already explained. In
order to best view the effects of the experimefaetiors put forth in the method development
chapter, this section will present a series of tsha¥hile both RMSE and maximum absolute
error were used for analysis, only RMSE values wappear in the figures. Both metrics
revealed similar trends, but RMSE is a better meastia model’s overall performance.

The first factor to be analyzed is a model’'s perfance in situations with varying
distributions of source and validation data. Fig@4 displays these results. For this
configuration, ' order models were generated using 50 points ofcsodata. The two
columns on the left side of the chart represent et®odhat were tested using the same
validation data, generated with a 1.0 standardatievi. However, the models were fit to data
of both distributions. Here, the extrapolation chas slightly higher error but still compares
favorably to the models built and tested on theesdata distribution. Similar results are seen
on the other half of the chart. While the interpiolgq models are not quite as accurate, they
perform nearly as well as the other models. A aersible difference in RMSE is seen
between the two halves of the figure. This resuitat surprising, however. The tighter, more

conservative data set has fewer extreme loadindittons that are more difficult to predict.
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RMSE Analysis for Interpolation/Extrapolation
(3rd order models, 50 source data points)

6%

5%

4%

3% 1

RMSE

1% A

1.0:1.0 05:1.0 1.0:05 05:05
(extrapolation) (interpolation)

St. Dev. of Source Data: St. Dev. of Evaluation Data

mPCE OPRS

0%

Figure 24: This chart presents an example case ofadel performance in
interpolating and extrapolating conditions.

For every modeling configuration that was investiggl, models were fit to varying
levels of input data. The general trend was fooreto increase as fewer data points were
used for regression, as evidenced by Figure 25tHeomost part, this increase was modest
down to as few as 30 data points. In the chartether for the PCE model is still relatively
low when only 20 trials were used. However, the RiR&lel had a noticeable reduction in
accuracy. Though the error for the PRS model issodbad as to render the approximation

unusable, this behavior does indicate that moratVity can be expected when the source
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data is reduced. There will be more discussiomn fatgarding the differences in performance
between the two methodologies. The point to be niemte is that with minimal input data,

otherwise acceptable models may no longer prouigg@ate results.

RMSE Analysis for Number of Trial Runs
(3rd order models, 0.5 standard deviation data sets)
8%
7%
6%
5%
0
S 4%
o
3%
2%
- . . r
0% T T T
50 40 30 20
Number of Trial Runs in Source Data
mPCE OPRS

Figure 25: Models can exhibit unstable behavior whe presented with only a
minimum of source data.
The impact of including interaction effects in tin@del expression was examined. As
discussed in the chapter on methodology developnieataddition of these terms does not

guarantee a better model. The results from thigex@nt affirm that claim. In Figure 26,
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interaction effects provide a noticeable improvemienerror at all levels of input data.

However, in Figure 27, the same terms have a negatipact on model performance. The
difference between these two cases is the disioibaf both the source and validation data.
Interaction effects appear to be beneficial inagittns with more densely sampled, smaller
design spaces. The additional control perhaps sava way to fine tune the approximation.
Over larger design spaces with less dense samplirsgcontrol becomes a drawback rather

than an advantage.

RMSE Analysis for Interaction Effects
(0.5 standard deviation data sets)
4%
3%
3%
w 2%
)
>
e 2%
1% -
1% -
0% . . .
50 40 30 20
Number of Trials Runs in Source Data
B PCE w/interaction O PCE w/o interaction

Figure 26: In this modeling configuration, interacion effects had a positive impact
on model performance.
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RMSE Analysis for Interaction Effects
(1.0 standard deviation data sets)
14%
12%
10%
w 8%
[9p]
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Number of Trials Runs in Source Data
m PCE w/interaction  OPCE w/o interaction

Figure 27: Interaction effects were not beneficiain this example.

Comparisons were also drawn between approximatioatsdid or did not include
third order terms. For models that were fit to %0l data points, Figure 28, the addition of
third order terms did yield a slight increase irciaacy. However, when the amount of
source data was reduced to 20 trials, some secatet models outperformed their third
order counterparts, Figure 29. The reason forldaigvior is similar to the explanation given
when discussing the impact of interaction effeEts. minimal sampling situations in a large
design space, the gaps between regression posmtawrh wider. Within these gaps a higher

response is more likely to exhibit radical behawi@n a more simple approximation.



67

RMSE
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RMSE Analysis for 3rd vs. 2nd Order
(1.0 standard deviation data sets, 50 source data points)

3rd Order 2nd Order
Model Degree

mPCE OPRS

Figure 28: With high levels of source data, "8 order models offer a small

improvement in model accuracy.
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RMSE Analysis for 3rd vs. 2nd Order
(1.0 standard deviation data sets, 20 source data points)
14%
12% ~
10% -
L(})J 8% -
S
T 6% |
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3rd Order 2nd Order
Model Degree
mPCE OPRS

Figure 29: With minimal input data, 2" order models often outperform those with 5
order terms.

In many of the modeling configurations examinedpag of this research, PRS and
PCE models performed nearly identically. This wegeeially true when the models were fit
to larger numbers of source data points. Differerdid become apparent, however, when the
models were only presented with a minimal numbetaté points. Figure 30 highlights these
variations. The PRS model outperformed the PCEagmbr in both cases where the source
data was distributed over a larger design spaceenvdhsmaller distribution was used as the

input data, the PCE model was more accurate.
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Method Comparison
(3rd order models, 20 source data points)
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Figure 30: PCE performs better when fit to smallerdistributions of data. Source
data with a greater distribution is better modeledby PRS.

5.1.3 Support Frame Results

For the support frame test case, 48 different nsodere generated for analysis.
Since each output response represented a veryetiffeneasurement, the results were not
combined to provide a single error value. Thougghedifferent responses were recorded

from the simulation runs, models were only cong&ddor six of those outputs. The y and z
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location coordinates of the maximum stress locatiewer changed, so no approximation was
necessary. As before, models were built at var{ewvegls of input data: 60, 50, 40, and 30
trials. The increase in possible data was done¢oramodate the additional terms required
by a five design variable problem as opposed to.fou

The R values for the models in this case were not asistmtly high as for the
wheel loading problem. The values were effectivielgntical between the PRS and PCE
methods, however. Table 2 presents these values3foorder models that included
interaction effects. Rvalues for 2" order models with no interaction effects are pmeeein
Table 3. Both tables share the general trend ofeasing R values as source data is
removed. The values for the x-position of the maximstress are always 1. In the previous
paragraph, it was explained that y and z positafrihis location never changed. While the
value of the position does indeed change, it remainrelatively the same position. Its
position is directly related to the overall dimems of the frame and is thus easily predicted.
Another feature to note is that thé Ralues for the x and y positions of the maximum
displacement are considerably lower in ti&dder case. This will come more into play as

other results are presented.
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#of R-squared
trials in Maximum Stress Maximum Displacement
source
data |Magnitude x-positionjMagnitude|x-position|y-position|z-position
60 0.7722 1 0.7792 0.8411 0.8477 0.9909
50 0.7673 1 0.7749 0.8794 0.8951 0.9928
40 0.995 1 0.9952 0.9073 0.9168 0.9967
30 0.9983 1 0.9986 0.9769 0.981 0.9975

Table 3: R? values for 2° order models at different levels of input data.

# of R-squared
trials in : - -
Maximum Stress Maximum Displacement
source
data |Magnitude x-position|Magnitude|x-position|y-position z-position
60 0.757 1 0.7621 0.6094 0.6254 0.9648
50 0.7492 1 0.7546 0.6303 0.6508 0.9693
40 0.9823 1 0.982 0.6805 0.6915 0.9718
30 0.9858 1 0.9842 0.6578 0.6909 0.9762

Again, RMSE values will be used to compare the @®ds it is a better overall

measure than maximum absolute error. Similar tremdsvisible in all the outputs, so only

two will be presented here for discussion. The mmaxn stress magnitude represented some

of the best modeling performance while the y-poagitof the maximum displacement was

one of the most challenging responses to approrinkagures 31 and 32 depict the results

from these two responses for both PRS and PCE ingdapproaches. In each situation,

PCE outperforms PRS, but the errors in generatamsiderably higher than those seen for
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the simpler wheel loading situation. The errorsensd for the maximum displacement y-
position approximation are so high as to renderntioelel ineffective. Thus, the’Rialues
were more than a little misleading. Another apphosicould be followed if adequate results

are to be realized.

RMSE Analysis for Maximum Stress Magnitude

35%

30%

25%

20%

RMSE

15%

10% -

5% _ 1
0% . . .

60 50 40 30

Number of Trial Runs in Source Data

B PCE - 3rd order/All effects
OPRS - 3rd order/All effects

Figure 31: Error values are noticeably higher thanthose seen in the wheel loading
analysis.
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RMSE Analysis for Maximum Displacement y -
position
120%
100%
80%
LL
2 60%
e
40% ]
20% -
0% :
60 50 40 30
Number of Trial Runs in Source Data
B PCE - 3rd order/All effects
O PRS - 3rd order/All effects

Figure 32: The position of the maximum displacemenis difficult to approximate.
This modeling configuration did not perform well.

The next series of charts shows a comparison leetiweo different configurations of
PCE models. The first models were built using o2y order effects and no interaction
between variables. These are compared to the PGEIsfsom the above charts. Figure 33
actually shows a slight trend for reduction in eres input data is removed. Moderate
improvements in accuracy over th& 8rder PCE models are seen as well. Much more
drastic reductions in error were observed when yapplthe simpler model to maximum

displacement y-position response (Figure 34). Aacyiwas increased to the point where the
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model may be useful for rough design estimatesalRémat the R values for this model type
were significantly lower than for the previous ofidis result indicates a situation of over-
fitting the source data. Thé%rder model was able to better approximate thatinata
points. However, in doing so, it lost its gendyalind was unable to accurately predict the

response elsewhere in the design space.

RMSE Analysis for Maximum Stress Magnitude

20%
18%
16%
14%
12%

10%
8%

RMSE

6%
4%
2%
0% . . .

60 50 40 30

Number of Trial Runsin Source Data
O PCE - 2nd order/No interaction
B PCE - 3rd order/All effects

Figure 33: Simpler, 2 order models offered better performance than 8 order.
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RMSE Analysis for Maximum Displacement y -
position
80%
70%
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Number of Trial Runsin Source Data
OPCE - 2nd order/No interaction
B PCE - 3rd order/All effects

Figure 34: Large improvements were obtained when"? order models were used to
approximate maximum displacement position.
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6 CONCLUSIONS AND FUTURE WORK

6.1 Summary and Conclusions

The research presented in this thesis has dedctibe development of a new
engineering design tool. Specifically created tovseghe needs of conceptual design, the
application contains several features, including:

» A 3D augmented reality environment.
* Intuitive methods for object creation, manipulatiand editing.

* Quantitative assessment for user created concepts.

Augmented reality provides a new way to developliagfions. Instead of the
software environment existing only on a displayesar, virtual elements coincide with the
real world. Through the use of a video see-throdifD, a 3D environment was developed
in which the user’'s hands are the primary modentdraction. This creates a very direct
mapping that is easily learned by most anyone.

Because of the capabilities of AR, the common tdsksd in traditional design
software were applied in a new, more intuitive fo@ustom elements, both real and virtual,
were created to develop this new interaction. A dvdavice became the equivalent of a 3D
mouse. Various marker boards were created, eadiorpéng functions specific to the
board’s purpose. Virtual objects can be picked nod mspected almost as if they were
actually in the user’s hand. These same objectbeatitered and then placed into assemblies
in a similar way that one sets down a real objébese capabilities provide the user a very

flexible work space to create and visualize a cphce
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Within the same design environment, two quantieaawalysis tools are available to
provide instant feedback of a concept. Based upmn gosition and weights of each
component on the board, a virtual button will degpthe center of gravity of the assembled
concept. Similarly, the wheel loading button wile wisplay the load distribution after
selecting four support points. These evaluatiorist@ad the designer by providing more
technical data at an early phase in the desigregsoc

In support of the development of the wheel loadinglysis, additional research was
done to investigate the application of metamod®&isu§e in the context of conceptual design.
Two methods were studied in different case studpdynomial response surface and
polynomial chaos expansion. The first test case thwasanalysis situation applied in the
design application, wheel loading. For both methadsor was found to be less than 10%,
according to the calculated RMSE metric, when piegtias few as thirty input data points.
In certain test configurations, acceptable resuige observed with twenty points of source
data. However, model performance in these conditwas considerably more volatile and
unpredictable. The inclusion of interaction effeztsl third order terms was found to provide
a small improvement in accuracy in more denselypdathdata sets. These effects had a
negative impact when input data was reduced. Redoce differences between the two
methods were not substantial, except when onlyranmaim of source data was used. Based
on the presented results, PRS models performedrbgtten fit to large data distributions.
PCE was better suited to modeling smaller distrdmst and then extrapolating.

The second case to be studied was that of the gujppme for a bucket truck. This

design problem was found to be considerably maoifecdlit to model, with certain outputs
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containing more non-linear behavior than the previgproblem. Even for the simpler
responses, third order models were only moderatdffycient for rough approximation with
error values between 10% and 20%. The models fgoutsl that were more difficult to
predict were so inaccurate as to be useless fapappation. Second order models, however,
improved these numbers drastically. Predictionreionthe maximum stress magnitude was
much closer to 10% across all the input data candit Similarly, errors for the maximum
displacement y-position fell to 20%, only rising36% at the minimum input data condition.
While certainly not exact, these approximations rbayable to provide rough performance

estimates without the need for costly analysis.

6.2 Future Work

Continuing work for this research will advancergjonany paths. First and foremost,
the presented application must become an officét pf the ASDS project mentioned in
Chapter 2. The future goals of this project areoffer a variety of interface and display
options to users that are all capable of functigras a single framework; augmented reality
plays a role in this vision. Aside from this, thenee a great deal of possibilities for future
research in the field of metamodeling for conceptiesign. This thesis has only presented
two methods for consideration. A colleague is auityeperforming similar analyses using
the radial basis function (RBF) and Kriging metho#ldaptive learning algorithms such as
neural networks and support vector regression (SMRY hold promise in building better
approximations. The test cases being modeled nisstl®e expanded. More challenging

design problems will be found to better analyzewAeous methods. There is also a need to
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better legitimize the approximations with more nakld data. This can be done in a number
of ways. First, the use of legacy data needs tpursued more vigorously. In this project,
legacy data was simulated by generating resulta fiamdomly chosen FEA run. However, it
would be interesting to generate models using imgugata from a real world product.
Approximation results from the generic models coalso be better validated. This could
take the form of comparing the predicted model otgpo high fidelity simulation results of
actual industrial models or even to physical testithe product itself.

Advancement of the augmented reality interfacensther avenue for continued
research. While the theoretical benefits of AR hagen proposed in this thesis, no official
user studies were performed. Such testing would tielidate the use of 3D interfaces as
well serve as a baseline for future studies uspdated hardware and software. For instance,
additional methods of visual feedback could be evqal to provide additional dimensions of
information. Though powerful and indispensablehis project, the OSGART framework is
not perfect. Even in the best conditions, the tragkesults have a fair amount of noise. This
could be mitigated by applying a Kalman filter, similar method, to this data. Other
problems may not be so easily solved. As more mar&ee used, misrecognition of markers
becomes a greater issue. Sub-optimal lighting ¢mmd$i cause the application to become
unstable. It may become necessary to move to anotaeking method. AR has many
alternative solutions. Particularly, marker-lesscking holds great promise. Using infrared,
depth sensing technology, it is possible to tréeklocation and orientation of a user’'s hands
as well as detect gestures. In this way, AR appdina would no longer be tied to physical

markers or sensors. With this depth informatiortuail objects can be made to “hide” behind
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real objects. Dual camera devices and stereosatipptays can bring 3D vision to AR
systems. Combining all these concepts, the capakiists to enhance the illusion the AR
presents to a user. As this technology becomesrbatd smaller, the 3D AR interface may

one day replace the notion of computing being cadito a desktop.
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