Transplacental Passage of Drugs and other Exogenous Compounds: A Review - Part II

Gary A. Eckhoff
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/iowastate_veterinarian
Part of the Medicinal and Pharmaceutical Chemistry Commons, Obstetrics and Gynecology Commons, and the Veterinary Medicine Commons

Recommended Citation
Available at: https://lib.dr.iastate.edu/iowastate_veterinarian/vol34/iss2/8

This Article is brought to you for free and open access by the Journals at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State University Veterinarian by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Conclusion

We have attempted to provide the practitioner a foundation upon which indication for fluid therapy and proper selection of fluid may be considered when confronted with the clinical case. Simplicity in approach and efficient use of the practitioner’s time can be maintained if initial time is spent preparing formulations and equipment. The addition of a regimen of supportive fluid therapy to one’s armament of therapeutic measures will add a very professional and rewarding dimension to the rural practice of bovine medicine.

REFERENCES

Transplacental Passage of Drugs and Other Exogenous Compounds: A Review-Part II

by Gary A. Eckhoff, D.V.M., M.S.

METABOLISM OF DRUGS BY THE PLACENTA

In addition to and in conjunction with its transport functions, the placenta possesses metabolic activity consisting of many enzyme systems which function in the biosynthesis, degradation, and biotransformation of numerous endogenous compounds. Claude Bernard was the first to discover glycogen in the placenta. The role of placental glycogenolysis in maintaining early fetal glucose stores has also been elucidated. In 1965 Mori discovered protein biosynthesis in the placenta. This study utilized rabbits and involved placental S35 incorporation into protein. Numerous active enzyme systems exist which function in the biosynthesis and degradation of steroids. It was also discovered that conjugation of steroids markedly decreased their placental transfer. Thus there are extensive enzymatic capabilities in the placenta for endogenous compounds. It would be interesting to speculate on the effects of drugs on these metabolic activities of the placenta. This is an area with very little investigative effort and resultant alteration in placental function could be of considerable importance to fetal physiology.

Only within the last five years has investigative effort revealed the ability of the placenta to function in the biotransformation of drugs and other foreign compounds. Consideration of molecular change of pharmacologic agents given to the pregnant female and assayed in the fetus have led workers toward investigative efforts in this area. As noted above, pharmacologically administered steroids to the mother are generally considered to pass through the placenta only in a nonmetabolized state. It is thus essential to under-
stand how placental biotransformation of other drugs may affect their transplacental passage. It is also of interest to note that the varied drug metabolizing capabilities of placental tissue once again suggests a regulatory role of the placenta. This context would infer more of a physiological barrier than an anatomical barrier. There can be no doubt that placental biotransformation influences the form and quantity in which certain foreign agents ultimately reach the fetal compartment.

Preliminary evidence indicates that placental drug metabolism resembles that associated with the very familiar hepatic microsomal cytochrome P-450 drug metabolism system. The placenta, after the twelfth week of gestation, contains the pigment P-450, numerous mitochondria and microsomes, and significant quantities of smooth endoplasmic reticulum in the trophoblastic cells. In vitro metabolism of certain drugs also occurs with placental microsomal fractions and homogenates. For instance, pentobarbital and amphetamine metabolism and hydroxylation and demethylation of polycyclic hydrocarbons has been demonstrated with rat and human placentas. As in the case for hepatic microsomal drug metabolism, these placental enzyme systems can be induced under certain circumstances. Smoking mothers have more ability for placental metabolism of certain agents. Chlordane pretreatment also induces the metabolism of certain substrates such as triamterene, a diuretic, was transferred much more rapidly from the fetus than to the fetus. It was postulated that possibly an active transfer process exists for this purine-like compound.

Since most substances foreign to the body traverse the placenta via simple diffusion, it is pertinent that factors which determine the rate of this transfer be discussed. Almost all substances cross the placenta, and what becomes important, therefore, is the rate of their passage to the fetus.

The law which encompasses most of the factors which govern placental drug transfer is Fick's Law. The rate of diffusion is a function of the surface area available for transfer, the concentration gradient between maternal and fetal blood, the thickness of the membrane, and the diffusion constant of the drug, which takes into account its lipid solubility, degree of ionization, molecular weight, and spatial configuration. The following formula bears these relationships out:
The rate of diffusion is given by the following equation:

\[
\text{rate of diffusion} = K \frac{A(C_m - C_f)}{X}
\]

where:
- \(K\) is the diffusion constant
- \(A\) is the surface area
- \(X\) is the membrane thickness
- \((C_m - C_f)\) is the concentration difference between maternal and fetal blood

Of the basic mechanisms of placental transfer discussed above, only simple diffusion follows Fick's Law. It does not take into account the effects of maternal and fetal blood flow, solubility of the drug in fetal blood compared to maternal blood, and the intervillous space—fetal blood concentration gradient. Solubility differences are of particular interest when considering the uptake of anesthetics. Blood flow is very important with highly fat soluble poorly ionized agents which penetrate the placenta with ease. The rate of placenta passage in this case is largely determined by the volume of blood perfusing the placenta. Changes in blood flow resulting from uterine contractions, cord compression, position of the mother or any insult on blood flow to and from the placenta can thus affect placental drug transfer.

The placenta can be thought of as a lipoid membrane or barrier when one discusses placental permeability. Highly ionized acids and bases traverse the placenta slowly and changes in pH which increase the concentration of the undissociated form favors the passage of these drugs. One would expect poor fetal penetration with drugs of low lipid solubility. The ideal situation for rapid passage is low dissociation at physiological pH and high lipid solubility. Thiopental and antipyrine are two such drugs which penetrate the placenta very rapidly and achieve equilibrium with the fetus within 1 to 2 minutes. On the other hand tubocurarine and succinylcholine, two drugs with a great deal of dissociation at body pH and highly lipid insoluble, traverse the placental membrane at an extremely slow rate.

The few studies that have been done on placental drug transfer strikingly resemble the transfer of materials across the blood-brain barrier or gastrointestinal epithelium. However, quantitative studies are still too few to provide a sound basis for the placenta as a lipoid membrane. Predictions regarding the rate of transplacental passage of drugs must await further investigation.

The lipoid theory would make it unlikely that an analgesic could be developed for maternal pain and not cross the placenta, since an agent that would cross the blood-brain barrier would also cross the placenta.

As noted in the formula above, the rate of placental drug transfer is partially dependent on the concentration gradient between fetal and maternal blood. It appears that a high concentration gradient can override the effects of lipid solubility and ionization. This seems to be the case for curare and succinylcholine.

Molecular size of the drug also determines its diffusibility. Drugs with a molecular weight of less than 600 diffuse across easily, but with increasing size the factor of lipid solubility becomes progressively more important. A molecular weight of 1000 seems to be the point at which compounds become nearly impassable. If the placental membrane does indeed fit the widely held classical concept that the plasma membranes are composed of fat-like layers interspersed with pores, drugs with molecular weight under 100 could apparently pass through these pores bypassing the lipid region. Larger drugs must pass through this region.

Surface area and thickness of the placental membrane also have a theoretical bearing on the rate of transplacental diffusibility of drugs. Theoretical because this area is virtually unstudied in the light of drug passage. The surface area of the placenta increases and the villous membrane becomes thinner as gestation progresses. These processes should tend to favor the transfer of pharmacological agents across the placenta.

To conclude the discussion of factors which determine the rate of transplacental drug transfer it can be said that this trans-
fer rate is governed chiefly by the lipid solubility of the unionized drug molecule with other factors, such as molecular size, blood flows, concentration gradients, and surface area and membrane thickness, usually of secondary importance.

Summary

Various aspects of transplacental passage of pharmacological agents have been discussed and reviewed. Essentially all drugs can traverse the placenta but there are notable differences in the rate of transfer. The scarcity of quantitative data does not allow predictions to be made concerning the specific rate of transfer of a new drug. The foregoing discussion of placental pharmacology serves to illustrate the fragmentary knowledge on this subject and thus emphasizes the need for future investigations before this area of pharmacology is fully understood.

REFERENCES

India’s Approach to Cattle Development:
Heifer Project As Catalyst In
India’s White Revolution

by Liam O’Dea
HPI India Representative
Edited by Dan E. Woodle*

India—1970

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Population</td>
<td>550 million</td>
</tr>
<tr>
<td>Cattle Population</td>
<td>250 million</td>
</tr>
<tr>
<td>Annual Milk Production</td>
<td>25 million tons</td>
</tr>
<tr>
<td>Daily per capita availability of milk</td>
<td>140 ml.</td>
</tr>
<tr>
<td>Per capita Income per year</td>
<td>$78</td>
</tr>
</tbody>
</table>

Statistics can be misleading and these are not 100% accurate, but even allowing for such limitations, it is clear that:

a. There is scarcely half enough milk to meet the recommended minimum requirement of 250 ml. per person per day.

b. The income of millions of India’s people are below the subsistence level.

Background

These are two basic facts of present day India. It was not always so. Two hundred years ago India’s population was probably not more that 20% of its present level. Apart from periodic and regional famines, there was probably sufficient food for everyone. Cattle have always been one of India’s great assets, providing draft power, transport, fuel, fertilizer and milk. It is

* Mr. Woodle is a third year student in the College of Veterinary Medicine, Iowa State University.