
�+ � �.� - �3 , ,�� (���$,, +-� -$)(,
�) 0��� -� - �� ($/ +,$-1�� � *, -)(,��3 , ,�� (�

�$,, +-� -$)(,

�	�

Sensor Augmented Large Interactive Surfaces
Prasad Ramanahally Siddalinga
�� � ��� �� �	�� �
� 	
 �
� �

�) &&)0�-#$,�� (��� �� $-$)(�&�0)+%,�� -� #4*,���& $� ��+�$�, -� - � �.� -�

� � +-�)!�-# �& �-+$��&��(���)'*.- +��("$(+$("��)'')(,

3$,�3 ,$,�$,��+). "#-�-)�1).�!)+�!+ �� (��)* (�� � � ,,�� 1�-# ��) 0��� -� - �� ($/ +,$-1�� � *, -)(,��3 , ,�� (���$,, +-� -$)(,�� -��) 0��� -� - �� ($/ +,$-1��$"$-�&
� *),$-)+1���-�#�,�� (�� � � *- ��!)+�$(�&.,$)(�$(��+� �.� - �3 , ,�� (���$,, +-� -$)(,�� 1��(�� .-#)+$2 ��� �'$($,-+� -)+�)!��) 0��� -� - �� ($/ +,$-1��$"$-�&
� *),$-)+1���)+�')+ �$(!)+' � -$)(��*& �, ��)(-� �- � $"$+ *�$ �, -� - � �. �

� �)'' (� ��� $-� -$)(
� � ' � (�#�&&1��$�� �&$("� ��� +�, � � ���� (,)+��. "' (- ��� � +" �� (- +� �-$/ �� .+!� � ,���
�	��� �
 � � � � �	�� 	 �	 ��� � ���
��	
 �� �
� � ���		
���
#4*,���& $� ��+�$�, -� - � �.� -��		
��

Sensor augmented large interactive surfaces

by

Prasad Ramanahally Siddalinga

A thesis submitted to the graduate faculty

 in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Daji Qiao, Major Professor

Stephen Gilbert
Govindarasu Manimaran

Chris Harding

Iowa State University

Ames, Iowa

2010

Copyright ©Prasad Ramanahally Siddalinga, 2010. All rights reserved

ii

TABLE OF CONTENTS

LIST OF TABLES ... iii

LIST OF FIGURES ... iv

ACKNOWLEDGMENTS .. v

ABSTRACT………… .. vi

CHAPTER 1. OVERVIEW ... 1

1.1. Introduction ……..……………1

1.2 Related work …….…3

1.3. The need for user identification in a multi-touch environment ………………………………………..…….5

CHAPTER 2. Existing components USED BY CRICKET BASED USER identification 8

2.1. Sparsh-UI ……….. 8

2.2. Cricket Sensors ……15

CHAPTER 3. Cricket based user identification system ... 23

3.1. Design Criteria for user identification architecture...………………………………………………………………..23

3.2. Infrastructure Details……………………………………………………………………………………………….………………25

3.3. Cricket Based User Identification (CrUId) Software Architecture ……………………………………………..28

CHAPTER 4. Evaluation of Cricket based user identificaiton system .. 35

4.1. Enhanced Interaction Affordances Enabled by the Cricket System …………………………………………..35

4.2. Evaluation of Linear Extrapolation Based Algorithm ………………………………….................................42

CHAPTER 5. CONCLUSIONS AND FUTURE WORK .. 46

CHAPTER 6. BIBLIOGRAPHY………………………………………………………………………………………….……………..…48

iii

LIST OF TABLES

Table 1: Coordinate positions of various beacons above the Multitouch table..…………………….……..……….26

Table 2: Comparison of various user identification architectures ………………………………………………..…….…45

iv

LIST OF FIGURES

Figure 1: The Sparsh UI Architecture ……………………………………………………………… …………….……….09

Figure 2: Sparsh UI Gestures……………………………………………………………………………………………….….12

Figure 3: Cricket v2 Hardware details …………………………………………………………… ……………………. 17

Figure 4: Tiny OS message format ……………………………………………………………… …………………………19

Figure 5: Configuration 1, Passive Mobile Architecture ………………………………………….………………21

Figure 6: Configuration 2, Active Mobile Architecture……………………………………………………….…...21

Figure 7: Cricket based Infrastructure for User Identification on a Multitouch Table……………….26

Figure 8: A Cricket Listener mounted on user’s hand using Velcro strap……………………………..…. 27

Figure 9: CrUId Software Architecture…………………………………………………………………………………… 29

Figure 10: Pseudo code of User id estimation algorithm ………………………………………………………….32

Figure 11: User aware multi-touch Photo Application………………………………………………………….....36

Figure 12: User aware multi-touch Paint Application……………………………………………………………… 36

Figure 13: User Identity enhanced Conway’s game of life ……………………………………………………….. 37

Figure 14: Workspace ownership using Crickets ……………………………………………………………………. 38

Figure 15: Some of the special gestures enabled by Cricket system ………………………………………… 39

Figure 16: 3D-zoom gesture with Cricket ………………………………………………………………………………… 40

Figure 17: Ownership transfer using “Hover to share” gesture in a photo app …………………….….. 41

Figure 18: Ownership transfer using “Touch to share” gesture in a photo app…………………..….. .42

Figure 19: Comparison of Linear extrapolation algorithm and Naïve approach ………………..……. 44

Figure 20: Comparison of error count growth rates of the two approaches………………………..…….44

v

ACKNOWLEDGMENTS

I would like to take this opportunity to express my gratitude to everyone who helped me in this

endeavor. I would like to express my sincere gratitude to Dr. Daji Qiao and Dr. Stephen Gilbert who

guided me in this research work. Their patience, guidance, support and words of inspiration throughout

the research work were instrumental in producing this work.

I would like to thank Dr. Manimaran who has been a source of encouragement right since the beginning

of my graduate program. I would also like to thank Dr. Chris Harding for his valuable inputs in writing

this thesis.

I would like to thank my colleagues Mike Oren, Britta Mennecke, Jay Roltgen, Eric Marsh for their inputs

and making work fun. A special thanks to my friend Morgan Thomas who patiently read my work and

gave valuable suggestions. I would like to thank my friends for their support and making my stay in Iowa

enjoyable.

I would like to thank my parents R.P.Paramashivaiah and K.M.Kathyayini, my sister Divya for their

constant support, encouragement and inspiration.

vi

ABSTRACT

Large interactive surfaces enable effective multi-user collaboration, but a majority of the current multi-

touch systems are not truly multi-user. In this work we present a novel sensor-based approach for both

user identification around a touch table and integration of unique gestures above the table. The work

proposes the criteria for a successful and robust user identification system. The Cricket sensor based

user identification system is integrated with an open source gesture recognition system “Sparsh-UI” to

enable rapid multi-touch application development. Finally we evaluate the Cricket-based algorithm with

contemporary multi-user, multi-touch systems and describe the various interaction affordances

provided by the Cricket based user identification system.

1

CHAPTER 1. OVERVIEW

1.1. Introduction

 Multi-touch technology research has been of great interest in the recent past and is revolutionizing

human-computer interaction. Advances in multi-touch research have increased the availability of a wide

variety of multi-touch devices with different underlying technologies and configurations.

Some of the commonly used technologies include FTIR, Diffused Illumination, Electrode-based detection

and Infrared bezel-based displays. The following is a brief description of these:

FTIR (Frustrated Total Internal Reflection): Frustrated Total Internal Reflection is one way of detecting

multiple touches [11] [14]. The mechanism is similar to fiber optics. A strong infrared (IR) source is

placed along the edges of the Plexiglass; Usually an array of IR LEDs is employed for this purpose; Some

of the light that enters the edge of the Plexiglass reflects back and forth between the inside planes of

the Plexiglass due to total internal reflection (TIR). The light that does not undergo TIR leaves the

Plexiglass near the edge.

The Plexiglass is now flooded with IR light. By touching the surface with human finger, the reflection is

disturbed due to change in boundary conditions, and some of the light is scattered. Hence the term

Frustrated Total Internal Reflection. This scattered light when captured by an IR sensitive camera

appears as a "blob". The blobs correspond to the position of the touch and are processed using

thresholding algorithms to determine the position of the touch.

Diffused Illumination: In this technique we flood the surface of the Plexiglass/ Acrylic with diffuse IR

light, illuminating the fingertips of the user [8]. The reason to use diffuse IR light is to ensure a uniform

light intensity at all points on the Plexiglass. Objects closer to the surface of the Plexiglass will reflect

more light, so by very carefully filtering and thresholding the camera image, the fingers touching the

surface of the Plexiglass can be isolated, again as blobs. The downside to this process is that any object

2

close to the surface will show up, including the user's palms, shirtsleeves, or bracelets. With careful

tweaking of the filtering and thresholding algorithms, these effects can be minimized.

 Electrode based multi-touch devices: DiamondTouch [7] works by transmitting signals through

antennas in the table. These signals are capacitively coupled through the users and chairs to receivers,

which identify the parts of the table each user is touching.

Infrared bezel based multi-touch displays: In these Multitouch devices there is a bezel in front of a

display (such as a large flat screen panel) which contains a set of IR transmitters and receivers on

opposite ends, thus forming a grid of infrared rays [17]. Upon bringing the finger close to the surface of

the screen, the path of the light is obstructed and its location can be determined by using the

information from the receptor on the x and y axes.

A major advantage of the multi-touch technology is that it allows for a very rich and effective co-located

collaboration experience which was previously impossible with the traditional mouse and keyboard

interface. [10] and [19] discuss the effectiveness of multi-touch interfaces for co-located and remote

collaboration. Large interactive surfaces are usually put to use as multi-user devices as they provide

simultaneous accessibility to multiple users. However, for an interactive surface to be truly multi-user- in

addition to supporting multi-touch - it has to support the ability to differentiate and identify the users in

the environment. Most commercially available multi-touch interactive surfaces are not capable of

identifying the users, while some have limited ability such as identifying the presence of a user on a

particular side.

The collaboration experience can be greatly enhanced if the multi-touch architecture (Hardware and

Software) is made aware of the users. User identification is crucial for multi-touch applications that

require authentication. In this work the criteria that need to be considered while designing a user

identification system are established and novel method of identifying users on interactive surfaces

3

called “Cricket based user identification system” is presented. The various features and the enhanced

interaction affordances enabled by this system are explained. Finally the performance of the algorithm

used in this system is evaluated and compare the Cricket based user Identification system against

contemporary user identification systems.

1.2. Related Work

Table-top interfaces provide new avenues for co-located collaboration but pose new challenges as well.

Though much work is concentrated on new gestural interfaces and improved interaction techniques,

there have been very few recent works in the area of user identification for multi-touch interfaces.

DiamondTouch [7] (now sold by Circle Twelve Inc) was one of the first multi-user multi-touch interfaces,

which provided user identification. Diamond touch has a set of antennas that are embedded in the table

top, with receivers in chairs. It works by transmitting signals through these antennae; user identification

is achieved by capacitive coupling of these signals through users to receivers located in the chairs. Thus

it knows “who” and “where” a particular user is touching. However, a major drawback of such a system

is that the users are associated to the chairs that they are using, i.e. the association is between the

chairs and the touches rather than the user himself. Thus, individual hands (left vs. right) of each user

cannot be distinguished. Further, with such a solution we are forced to use a specific type of hardware

and cannot be deployed on existing multi-touch interfaces.

Dohse et al [9] present a very basic camera-based hand-tracking user identification system, which

identifies users based on the side of the table from which the hands appear. However, this approach has

the same limitation as DiamondTouch; if the user switches sides of the table, the system cannot

recognize the user as identical. Also, if there are multiple users on the same side of the table, then this

approach does not work.

4

Schmidt et al in [23] present a vision based approach for identifying users in a multi-touch environment

by identifying distinct hand geometry using an overhead camera. In this system the users can switch

from an un-restricted input mode (without identification) to identification mode by laying their hands

flat on the surface. The contours of the hand are then analyzed to achieve user identification. A major

drawback that may be observed in this system is that to afford identification, the user has to perform a

special gesture. Further the users are not continuously tracked, limiting the number of applications that

can use such architecture. Further it might be quite inconvenient to the user if one has to spread the

hand often while using a multi-touch interface.

Christoph etal in *2+ present “Infractables” a multi-user Multitouch system capable of user identification,

however this system requires the users to use an Infrared stylus based input device instead of their

hands.

Franks et al in [1] discuss using a sensor-based approach to detect the proximity of users to the multi-

touch table. The approach discussed consists of a Multitouch table where each side of the table has an

array of infrared reflection sensors. These sensors scan a limited area around that side of the table and

report a rough distance value, which is influenced by the reflective properties of the surface of the

object in the front. By mapping each sensor to a specific location around the table, a proximity map can

be calculated which shows which area is occupied. Thus the sides of the table or regions of the table,

which are occupied by users can be determined.

Though this model provides an approach where the system is housed within the Multitouch table

hardware and allows for proximity detection, it has several drawbacks. It cannot differentiate among the

users present, and although the paper suggests that complicated models, which allow specific shape

models to be associated with a particular user, can be developed, it does not discuss the details of it.

Further, such a model would heavily depend on the orientation of the user and may not work with all

5

orientations. Also the system cannot detect if a user reaches over to another part of the table while

standing in the same position. It merely associates a side to the user.

Schöning et al [13] present a mobile phone user identification and authentication mechanism for multi-

touch walls. The proposed approach requires that the Multitouch system is FTIR based. The user

touches a region of the FTIR Multitouch wall with a phone, which is equipped with accelerometer to

detect movements. Upon detecting the movement, the phone generates a flash of light, which can be

detected by the camera in the FTIR wall. This flash can be differentiated from the one generated by

touches as it generates a much brighter blob in the visual range than the one generated by touch which

is mostly in the infrared range. The user ID is then transmitted via Bluetooth. The flash of light and the

user id reception (via Bluetooth) must happen in a very small window of time to allow associating that

region to a particular user. If there is a collision (with a light flash and User Id reception from another

phone) the whole process has to be repeated again. The work also describes to provide an

authentication mechanism by using a challenge response mechanism by exchanging messages over

Bluetooth.

The proposed approach provides limited user identification and secure authentication mechanism for

users on a Multitouch screen, but the procedure is cumbersome and works only with a particular type of

hardware, i.e. FTIR. Also, it is vulnerable to denial of access attacks as a malicious user can easily cause

collisions thus requiring a legitimate user to repeat the process again and again.

1.3. The Need For User Identification In a Multi-touch Environment

User identification in multi-touch interfaces is needed for several reasons, which we will discuss in this

section.

6

1. Provide user-centric experience

Large multi-touch interfaces can serve as an excellent platform for co-located collaboration. Therefore,

applications developed on these surfaces are sometimes developed to be more user-centric than

traditional desktop applications. For an application to be truly multi-user, it needs to be aware of the

users. For example, since the user interface can be accustomed to change dynamically with the number

of users present in the multi-touch environment, the user interface could further adapt based on the

position or orientation of each individual user. One could also apply user-specific settings in a multi-user

environment. A plethora of customizations and UI enhancements are possible by detecting the

proximity of users to the multi-touch interface. Thus, in order for the interface to recognize individual

users and provide an engaging experience, it is necessary to recognize which user is interacting with the

application at a given time.

2. User authentication

In a multi-user interface, users interact in a shared space. For certain Multitouch applications such as

Geographical Information systems (GIS) which are used for crisis management, tactical control of

unmanned vehicles, or something as simple collaborative photo tagging applications, it might be

necessary to have several users working with different access rights. For example, some have

permission to only view the data while others will have the permission to modify the data or certain

users can be restricted to specific regions of the interactive surface. Thus, in addition to recognizing the

position of the touches, the system needs to be aware of the user generating those touches to grant the

appropriate privileges. As a result, it becomes necessary to identify and authenticate the user in order

to provide access to a particular region or data.

3. Enhanced interaction affordances

Systems which provide a means of user identification can provide enhanced interaction based on

detection of user presence or proximity to the multi-touch interface. Proximity detection of users opens

7

up new modes of interaction possibilities such as orientation of widgets / layout based on the number of

users or position of users. If the system is capable of detecting the “hover” in addition to touch, new

gestures can be developed. Differentiating the left hand gestures from right hand gestures can also form

the basis of new gestures. Thus, user identification facilitates the development of new gestures, which

require multiple user participation, and provide the basis for the concept of object or region ownership.

4. Research tool

Finally, accurate user identification for multi-touch surfaces could prove to be an indispensable tool in

the field of CSCW (computer supported cooperative work) by providing data related to distribution of

touches of each user in various scenarios. This would encourage research efforts into how users create

and use personal and shared workspaces on interactive surfaces. The study of this data can be vital in

defining the next generation of user interface to support collaborative work.

8

CHAPTER 2. EXISTING COMPONENTS USED BY CRICKET BASED USER IDENTIFICATION

2.1. Sparsh-UI

In this section, a Multitouch gesture recognition system “Sparsh UI” is described. This Multitouch

gesture recognition forms the foundation for our Cricket Based User Identification software

architecture. Sparsh UI was developed by our group at Virtual Reality applications center [21]. In

particular my contribution to this project consisted of the architecture, C++ version of the gesture

server, FTIR, Bezel, Stantum device drivers, TUIO [26] adapter for Sparsh-UI and the “Flick gesture”

algorithm was my individual contribution to this project. It is capable of supporting a wide variety of

Multitouch hardware and provides a rich gesture library. We enhance this Multitouch gesture

recognition framework by adding User identification system using the Cricket systems. Sparsh UI was

selected for this purpose due to its following features:

1. Ability to support a variety of hardware

Sparsh UI supports a wide variety of hardware such as FTIR-based, diffuse-illumination based, bezel or

capacitive screen. It decouples the hardware details from the gesture framework by specifying a

standard protocol for communicating with the hardware.

Most multi-touch devices generate additional information from a touch, in addition to the (x, y)

coordinate values on the screen. The state of a touch point can be defined using three states defined

below:

 Point Birth: Information related to the creation of the touch point when the finger comes in

contact with the screen.

 Point Move: Information related to the motion of the touch point (referred to as Point Move).

 Point Death: Information related to release of the finger from the touch screen (Point Death).

9

 An identification number for each touch point generated when a finger comes in contact with

the touch screen (Point ID).

Figure 1: The Sparsh UI Architecture: The Sparsh Adapter standardizes touch events from varied hardware,

sends the events over TCP to the Gesture Recognition Framework, which then sends appropriate events to

the software client via the Client Adapter.

Thus, each touch point can be distinctly identified by the x-y coordinates, the state of the touch point

(Point Birth, Point Move and Point Death) and the ID of the touch point (Point ID). Sparsh UI specifies a

10

format in which a device should send touch data to it and provides a driver adapter that can standardize

the input from the driver, which would be compatible with Sparsh UI (Figure 1).

The driver adapter uses the data structure with the parameters mentioned above. As of now we have

Sparsh compatible drivers for a 60” FTIR-based touch table created at Iowa State University[25], a

Stantum SMK-15.4” multi touch tablet, and a 42” infrared-based bezel display from IR Touch. An adapter

for the Dell Latitude XT is in progress.

Communication between the device driver and the Sparsh UI gesture recognition framework takes place

over sockets using TCP protocol. This allows the driver and driver adapter to be written in the language

of choice.

2. Gesture recognition

Most contemporary open source multi-touch software libraries provide only the ability to recognize the

touch points and pass the touch coordinates directly to the application, leaving the application to do the

gesture processing.

Multi-touch is made intuitive by means of gestures; it is vital for a multi-touch library to provide gesture

recognition support. The following considerations should be addressed while providing gesture support

to multi-touch applications:

 Flexibility to specify the supported gestures at an application level and UI component level.

 Support for providing touches point coordinates if the application does need to do custom

gesture recognition.

 Ease of adding new gestures to the framework.

 The usage of various gestures can be specific to the application. For example, our image manipulation

application Picture App makes use of the Drag, Zoom, and Rotate gestures, but another application

11

called “Table Tower Defense” just makes use of touch gestures. One needs to process the touch point

data to recognize all possible gestures for the former and just send out the touch coordinate data for

the latter. Hence it is inefficient to analyze raw touch data for various gestures unless the application

needs it. Similarly, not all the UI components would require all the gestures. For instance, a button

would allow only “Select”, while a window title bar would allow “Drag” and other gestures that indicate

minimize, maximize, etc. To incorporate this flexibility, we use the concept of Group ID to identify the

various UI components on the screen. On each point birth, the application is queried for a Group ID and

the allowed gestures corresponding to the point location. Different point birth sequences can be

associated to the same Group ID (analogous to multiple fingers on the same UI component). If no

gesture recognition is required for a given touch coordinate, it can return a null value indicating that

there is no need for gesture processing. The Sparsh UI gesture recognition framework processes the

incoming touch point coordinate data, recognizes the associated gestures, and sends back the

associated gesture event for the Group ID. At the application end, it can be easily identified as to which

component has been acted upon and the gesture event can be handled appropriately.

Applications can register for receiving the raw touch points if they need to process special custom

gestures. The modular design of Sparsh UI makes it easy to add new gestures to the gesture recognition

framework. The intuitiveness of a multi-touch interface is achieved through the use of gestures which

are highly intuitive in the application context in which they are used. The usefulness of a gesture library

would in part depend upon the number of intuitive gestures that a library can support.

Sparsh UI currently supports the following gestures. More gestures are being added as a part of

continuous improvement of the framework.

Select gesture: Simply placing a finger on the multi-touch device performs this gesture. This gesture is

normally used for selection purposes. It can also be used creatively as in our Table Tower Defense game.

12

The touch coordinates are passed to the application whenever the gesture framework detects this

gesture.

Spin gesture: This gesture (Figure 2) is performed by placing two fingers on the multi-touch device that

creates an invisible axis, somewhat similar to Jeff Han’s two-handed hold-and-tilt gesture [14].

Figure 2: From top left, Spin Gesture, One-finger Drag Gesture, Zoom Gesture, Rotate Gesture.

In a 3D CAD-like application, once the axis has been established by one hand, the user is able to spin the

3D view point by dragging a third finger perpendicular to the axis created by the first two fingers. It can

be used for any chosen axis of rotation. This gesture can be used to manipulate views in any 2D or 3D

environment.

Multi-Finger drag gesture: The multi-finger drag gesture is a generic drag gesture which detects the drag

(or swipe) when one or more fingers are moved across the touch screen. If applications need not

13

differentiate between the number of fingers that are used to do the drag operation, they can register for

the multi-finger drag gesture.

In all the drag gesture implementations, the gesture recognition framework generates drag events with

the parameters ∆X and ∆Y, the amount of offset from the initial position (initial position of the centroid

if it’s not single touch).

If an application needs to distinguish between the number of fingers that resulted in the drag gesture, it

can register for one or more of the following gestures:

One-finger drag: The user performs this gesture by placing a finger on the device and dragging it across

the surface (Figure 2). This gesture can be used for moving graphic elements on the screen. It can also

be used for panning a view (e.g., panning a map).

Two-finger drag: This is similar to a one-finger drag gesture except that two fingers are used instead of

one. The two fingers may be held close to one another or apart.

Three- finger drag: In this case three fingers are used to perform the drag or swipe operation. This

gesture is being considered to manipulate 3D objects in a multi-touch environment where both 3D and

2D objects are present. Similarly, Sparsh UI offers gestures for four-or five-finger gestures.

Rotate gesture: This gesture is performed by placing two fingers, either from the same hand or different

hands; on the multi-touch device and rotating them clockwise or counter-clockwise (Figure 2). The

gesture framework generates an event with the parameters consisting of the angle of rotation and the

coordinates of center about which rotation occurs.

Zoom gesture: This gesture (Figure 2) is performed by placing two fingers on the multi-touch device and

dragging them away or towards each other along a line. The gesture is typically used for zooming in and

14

out of maps, or more generally, scaling and resizing screen elements. When a zoom gesture occurs, an

event consisting of the scale factor is generated.

3. Support of different platforms

A generic framework should be capable of operation across popular operating systems (Windows, Linux,

and MacOS X). Sparsh UI exists in both Java, which is supported by most popular operating systems, and

the C++ version is written using the Boost library, which makes it cross platform compatible.

4. Support for different programming languages

Since Sparsh UI uses socket-based communication to communicate with the multi-touch application,

this allows one to write Sparsh-based applications in the language of choice. The system currently has

client adapters for Java / C++ which abstract the communication protocol over sockets between the

client application and the gesture framework.

5. Support of wide interface scale

Since collaboration across multi-touch devices often use disparate multi-touch devices of varying

dimensions and configurations, it is important that gesture processing is not affected by the varying

resolutions of different devices. This is achieved by using relative values for touch coordinates instead of

absolute coordinates. However, it is the responsibility of application developers to ensure the usability

and ergonomics of applications across devices of varying dimensions.

6. Support of collaboration

Sparsh UI provides a platform to develop collaborative multi-touch applications where collaboration is

achieved at application level, e.g., by using TCP sockets to have two instances of the same application on

different systems exchange data. In future versions we plan to support collaboration in Sparsh-UI so that

various gesture events can be exchanged across networked multi-touch devices. But nevertheless there

will always be application data, which needs to be exchanged at application level.

15

7. Open source Community support

Since Sparsh UI is distributed free of cost under the LGPL license, there is an active community support.

This helps in the continuous development of the software to support more hardware and addition of

new gestures.

2.2. Cricket Sensors

In this section, the cricket sensors which are used in our user identification architecture are described.

The Cricket indoor location system was developed by MIT [22] and is currently available commercially

from Crossbow technologies [6]. The crickets were originally intended for usage in building wide

deployment for the purposes of location depended applications and user tracking. The design of cricket

based systems was driven by the following considerations:

1) Decentralized administration: As Crickets were designed for building-wide deployment, it would

be impractical if a centralized control and management system was used. In the cricket-based

system, there are fixed entities which announce their location, and the receiver hardware can

compute its location in space using an inference algorithm. Hence there is no need for a central

entity to keep track of individual component in the system.

2) Scalability: Decentralized approach, distributed communication protocol, and a passive listener

allow greater scalability thus allowing a large number of users to be tracked.

3) Ease of Deployment: Since the cricket transmitters do not need any backbone infrastructure, it

is easier to deploy. Their small size allows them to be easily deployed in constrained spaces.

4) Cost: The cricket devices are built using commercially available off-the-shelf inexpensive

components so that wide scale deployments can be realized in a cost efficient manner.

5) Granularity / Accuracy: The cricket system is capable of providing a reasonably high degree of

accuracy of the order of 4-5 centimeters. It further allows demarcating boundaries between

16

regions corresponding to different beacons. Further, it provides the ability to create virtual

boundaries by assigning different space identifiers to beacons.

6) Network heterogeneity: This is mainly to enable heterogeneous networked devices to obtain

their location irrespective of the type of their communication technology. For example, different

devices (which are using cricket service) can use Ethernet, WLAN, IR or any other mode of

communication in a single space, but still get location information from cricket and benefit from

location based services.

7) User Privacy: In a cricket-based system, since each user tracks himself without a central tracking

system, privacy of the user is safeguarded. Cricket is more of a “location support system” rather

than a location tracking system.

17

2.2.1. Cricket Hardware Details:

Figure 3: Cricket v2 Hardware details

Figure 3 (from Cricket manual [5]) shows the cricket hardware with all the important hardware

components marked. The main components of the cricket [18] are as described below:

1) Microcontroller : The Cricket sensor has a 8 bit , 7.4 MHz ATMEL 128L microcontroller with 8 kB

of RAM and 128kBytes of flash ROM for program memory and 4 kB of EEPROM as Read only

memory. It needs an operating voltage of about 3 V and draws a current of 8 mA and 8 uA

during the active and sleep modes respectively.

2) RF Transceiver: The Cricket sensor has a CC1000 RF transceiver which operates at 433 MHz. The

operational data rate is 19.2 kbps.

3) Ultrasonic (US) transmitter / Receiver: The ultrasonic modules use a 40 kHz piezoelectric open-

air ultrasonic transmitter / sensor. The transmitter generates ultrasonic pulses of duration 125

us. The transmitter uses a voltage multiplier to generate a 12 V supply from the 2 V supply

18

voltage while the receiver uses a two sage amplifier to get a variable gain between 70dB and 78

dB.

4) Expansion connector: The cricket node includes a 51 pin connector that is compatible with MICA

mote sensor interface. This allows connecting MICA sensor boards for enhanced sensing or

Mote processor boards for increased processing power.

5) RS-232 interface: The RS-232 interface is used to connect Crickets to host devices / PC for

programming or data collection purposes.

6) Temperature Sensor: As the velocity of sound in air depends on the ambient temperature, it is

necessary to compensate for these variations. An on-board pre-calibrated temperature sensor is

used for this purpose.

7) Diagnostic LEDs- These LEDs can be programmed to provide various status indications of the

cricket sensor board (like successful reception / collision indication etc).

8) Power source: The crickets can be powered either by two AA batteries (with battery holders on

the back) or by a DC source using the external power connector.

Each Cricket has a unique 8 –byte ID, which uniquely identifies every Cricket node.

2.2.2. Cricket Firmware:

The crickets run the TinyOS 1.1.6 [20] distributed operating system for sensor motes. The TinyOS

platform has an inbuilt RF stack which is used by the cricket for RF packet transmission and reception.

Figure 4(from [20]) shows the TinyOS RF message format.

19

Figure 4: Tiny OS message format

The RF message consists of a preamble, which is transmitted prior to the actual message transmission.

The Preamble allows time for the receiver to wake up from sleep state and also to sync its clock with

that of the incoming signal.

The preamble is followed by the message header, which consists of

a) Source address (2 bytes) – The address of the transmitter

b) Destination Address (2 bytes) – the address of the receiver

c) Message length (1 byte) – The length of the message

d) Group ID (1 byte) – group id of the messages.

The header is followed by the message content. The message can be up to 256 bytes in length but is

limited to 29 bytes in the firmware. The message also has a CRC appended at the end of the message to

check for the integrity of the message contents.

Preamble Header Data

C

R

C

20

2.2.3. Beacon Firmware and Message Architecture:

Cricket Operating Modes

Each cricket sensor consists of ultrasonic and RF radios which are used to determine the location. The

cricket sensor can be deployed in one of the following two roles:

1) Beacons: These are cricket sensors that are mounted at fixed locations. The cricket beacons have fixed

space IDs (a string that represents the space in which the beacon is present) and fixed position co-

ordinates. The beacons transmit their space–IDs and position co-ordinates periodically over the radio

frequency channel. This RF transmission is followed by a concurrent ultrasonic transmission.

The transmission occurs every 800 ms and this is a configurable parameter, which can be varied

according to deployment requirements. A value that is too small would increase the probability of RF /

US collisions. Similarly, a high value of this value would result in infrequent distance measurements,

which may provide reduced accuracy if we are tracking moving objects.

2) Listeners: These are cricket sensors that are mounted on stationary or mobile objects that need to be

tracked. The listener listens to the RF and the ultrasonic transmission from the beacon and correlates

them to each other and using the difference in propagation times of the ultrasonic and RF pulses

calculate the relative distance to a specific beacon. If the distance of listener to three or more beacons is

known, then the location of the listener in co-ordinate space can be inferred using known triangulation

techniques.

Cricket Deployment Modes

 Smith et al. in [24] describes two modes of deployment name Active Mobile architecture and passive

Mobile architecture.

21

Stationary Beacons (Infrastructure)

 Mobile Listener

Figure 5: Configuration 1, Passive Mobile Architecture

Figure 6: Configuration 2, Active Mobile Architecture

Beacon

Listener

Beacon Beacon

Mobile Beacons

Listener

Beacon

Listener Listener

 Stationary Listeners (Infrastructure)

22

Figure 6 shows an active mobile architecture with passive nodes (Listeners) mounted on a surface such

as ceiling and we have mobile transmitters which periodically broadcast RF and US pulses.

The receivers mounted at known locations use these broadcasts to compute the distances to these

mobile nodes. The distances can be passed on to a central co-ordinator, which can aggregate the

distance measurements from all the listeners and compute the location of the mobile node.

2.2.4. Comparison of Active and Mobile architectures:

In [24] an in-depth analysis of both active and passive mobile architecture is provided and the following

conclusions are drawn:

1) Active mobile architecture outperforms passive mobile architecture as long as there are fewer

mobile nodes. As the number of transmitting mobile nodes increase, the number of collisions

increase, resulting in less accurate measurements or delayed distance measurements due to

increase in the number of collisions.

2) Passive mobile architecture scales with the increase in the number of mobile nodes. Since the

mobile nodes do not transmit periodically and the number of beacons is fixed, there will be less

contention over the wireless medium. For ultrasonic transmissions, it is important to have a line of

sight transmission for more accurate distance measurements. Experiments show that it is easier to

block ultrasonic impulses by placing an obstacle (such as hand) in front of the transmitter than

compared to placing an obstacle in front of the receiver.

23

CHAPTER 3. CRICKET BASED USER IDENTIFICATION SYSTEM

In this chapter the design criteria for user identification architecture are established and then we

describe the hardware and software architecture of the Cricket based user identification system.

3.1. Design Criteria for user identification architecture

In order to serve as a reliable and scalable tool for user identification, robust user-identification

architecture should satisfy the following design criteria.

1. Support for a wide variety of multi-touch hardware

With recent advances in multi-touch technology, several hardware options such as FTIR, Diffuse

illumination, IR based solutions have become readily available. Furthermore, these hardware options

can be used in either a horizontal configuration such as a multi-touch table, or in a vertical multi-touch

wall. A robust user identification mechanism should be able to support multiple hardware architectures

and configurations so that it provides the user with the flexibility to choose a hardware solution that

best fits their needs.

2. Support for user mobility

Due to the size of the device and the nature of interactive surfaces, there might be a need for the user

to switch sides (in a multi-touch table) or move across the multi-touch wall. A robust user identification

mechanism should be able to maintain the same user association even if the user switches sides or

moves to a different part of the interface.

3. Support for User Authentication

Large multi-touch surfaces allow multiple users to interact the same time. Certain applications might

need to limit certain users to a certain region or limit the data that certain users can manipulate. In such

a scenario, it becomes necessary to provide some means of authentication so that data or territorial

24

integrity can be protected. Thus, a robust user identification system should provide a means for

authenticating users.

4. Support for presence / proximity detection

For certain applications it might be necessary to detect the arrival of a user within the vicinity of the

multi-touch interface or to detect the continued presence of the user near the interface. Providing such

abilities would allow interesting applications to be developed on a multi-touch interface. For example, in

a user-aware photo application, the user’s photos can be displayed or hidden depending on the user’s

presence or absence. Hence proximity / presence detection is a desirable feature of a robust user

identification system.

5. Continuous user tracking

The multi-touch user-identification system should be capable of detecting the user for each touch he or

she makes. Such capability is required for most applications. Discontinuous tracking or the need to

switch to a “tracking” mode, though useful in some applications, would limit the scope of user-centric

applications that can be developed. Continuous user tracking is also vital for user authentication

otherwise security will be compromised.

6. Software support

Good user identification architecture should provide a pluggable software interface, which may be

integrated into a wide variety of multi-touch software platforms. As such, the framework should be

platform-independent and support frameworks written in a variety of programming languages. A

gesture support system, which would recognize gestures in addition to user identification, would be

desirable for rapid Multitouch application development.

