
�+ � �.� - �3 , ,�� (���$ ,, +-� -$)(,
�) 0��� -� - �� ($/ +,$-1�� � *, -)( ,��3 , ,�� (�

�$ ,, +-� -$)(,


�	�

Sensor Augmented Large Interactive Surfaces
Prasad Ramanahally Siddalinga
�� � ��� �� �	�� � 
� 	
 �
� �

� ) &&)0�-#$,�� (��� �� $-$)(�&�0)+%,�� -� #4*,���& $� ��+�$�, -� - � �.� -�

� � +-�)!�-# �& �-+$��&��(��� )'*.-  +��( "$(  +$("�� )'')( ,

3$ ,�3 ,$,�$,��+). "#-�-)�1).�!)+�!+  �� (��)* (�� � �  ,,�� 1�-# ��) 0��� -� - �� ($/ +,$-1�� � *, -)( ,��3 , ,�� (���$ ,, +-� -$)(,�� -��) 0��� -� - �� ($/ +,$-1��$"$-�&
�  *),$-)+1���-�#�,��  (�� � �  *- ��!)+�$(�&.,$)(�$(��+� �.� - �3 , ,�� (���$ ,, +-� -$)(,�� 1��(�� .-#)+$2 ��� �'$($ ,-+� -)+�)!��) 0��� -� - �� ($/ +,$-1��$"$-�&
�  *),$-)+1��� )+�')+  �$(!)+' � -$)(��*& �,  �� )( -� �- � $"$+ *�$ �, -� - � �. �

�  � )'' (� ��� $-� -$)(
� � ' � ( �#�&&1��$�� �&$("� ��� +�, � � ����  ( ,)+��. "' ( - ��� � +" �� ( - +� �-$/ �� .+!� �  ,���
�	��� �
 � � � � �	�� 	 �	 ��� � ���
��	
 �� �
� � ���		
���
#4*,���& $� ��+�$�, -� - � �.� -��		
��



 

Sensor augmented large interactive surfaces 

 

by 

 

Prasad Ramanahally Siddalinga 

 

A thesis submitted to the graduate faculty 

 in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

 

Major: Computer Engineering 

 

Program of Study Committee: 
Daji Qiao, Major Professor 

Stephen Gilbert 
Govindarasu Manimaran 

Chris Harding 
 

 

 

 

 

 

Iowa State University 

Ames, Iowa 

2010 

Copyright ©Prasad Ramanahally Siddalinga, 2010. All rights reserved 



ii 

 

TABLE OF CONTENTS 

 
LIST OF TABLES ................................................................................................................................. iii 

LIST OF FIGURES ............................................................................................................................... iv 

ACKNOWLEDGMENTS ........................................................................................................................ v 

ABSTRACT………… .............................................................................................................................. vi 

CHAPTER  1. OVERVIEW ................................................................................................................... 1 

1.1.    Introduction    …………………………………………………………………………………………………………..……………1 

1.2     Related work     …………………………………………………………………………………………………………………….…3 

1.3.    The need for user identification in a multi-touch environment ………………………………………..…….5 

CHAPTER  2. Existing components USED BY CRICKET BASED USER identification ................................ 8 

2.1. Sparsh-UI ………………………………………………………………………………………………………………………………….. 8 

2.2. Cricket Sensors …………………………………………………………………………………………………………………………15 

CHAPTER  3. Cricket based user identification system ..................................................................... 23 

3.1.  Design Criteria for user identification architecture...………………………………………………………………..23 

3.2.  Infrastructure Details……………………………………………………………………………………………….………………25 

3.3. Cricket Based User Identification (CrUId) Software Architecture ……………………………………………..28 

CHAPTER  4. Evaluation of Cricket based user identificaiton system ................................................ 35 

4.1. Enhanced Interaction Affordances Enabled by the Cricket System …………………………………………..35 

4.2. Evaluation of Linear Extrapolation Based Algorithm ………………………………….................................42 

CHAPTER  5. CONCLUSIONS AND FUTURE WORK ............................................................................ 46 

CHAPTER 6.     BIBLIOGRAPHY………………………………………………………………………………………….……………..…48 

 

 

  



iii 
 

LIST OF TABLES 

 

Table 1: Coordinate positions of various beacons above the Multitouch table..…………………….……..……….26 

Table 2:  Comparison of various user identification architectures ………………………………………………..…….…45 

 



iv 
 

 

LIST OF FIGURES 

Figure 1:    The Sparsh UI Architecture ……………………………………………………………… …………….……….09 

Figure 2:     Sparsh UI Gestures……………………………………………………………………………………………….….12 

Figure 3:     Cricket v2 Hardware details  …………………………………………………………… ……………………. 17 

Figure 4:     Tiny OS message format ……………………………………………………………… …………………………19 

Figure 5:    Configuration 1, Passive Mobile Architecture ………………………………………….………………21 

Figure 6:    Configuration 2, Active Mobile Architecture……………………………………………………….…...21 

Figure 7:    Cricket based Infrastructure for User Identification on a Multitouch Table……………….26 

Figure 8:    A Cricket Listener mounted on user’s hand using Velcro strap……………………………..…. 27 

Figure 9:    CrUId Software Architecture…………………………………………………………………………………… 29 

Figure 10:  Pseudo code of User id estimation algorithm ………………………………………………………….32 

Figure 11:   User aware multi-touch Photo Application………………………………………………………….....36 

Figure 12:   User aware multi-touch Paint Application……………………………………………………………… 36 

Figure 13: User Identity enhanced Conway’s game of life ……………………………………………………….. 37 

Figure 14:   Workspace ownership using Crickets ……………………………………………………………………. 38 

Figure 15: Some of the special gestures enabled by Cricket system ………………………………………… 39 

Figure 16: 3D-zoom gesture with Cricket ………………………………………………………………………………… 40 

Figure 17: Ownership transfer using “Hover to share” gesture in a photo app …………………….….. 41 

Figure 18:   Ownership transfer using “Touch to share” gesture in a photo app…………………..….. .42 

Figure 19:   Comparison of Linear extrapolation algorithm and Naïve approach ………………..……. 44 

Figure 20: Comparison of error count growth rates of the two approaches………………………..…….44



v 
 

 

ACKNOWLEDGMENTS 

 

I would like to take this opportunity to express my gratitude to everyone who helped me in this 

endeavor. I would like to express my sincere gratitude to Dr. Daji Qiao and Dr. Stephen Gilbert who 

guided me in this research work. Their patience, guidance, support and words of inspiration throughout 

the research work were instrumental in producing this work.  

I would like to thank Dr. Manimaran who has been a source of encouragement right since the beginning 

of my graduate program. I would also like to thank Dr. Chris Harding for his valuable inputs in writing 

this thesis. 

I would like to thank my colleagues Mike Oren, Britta Mennecke, Jay Roltgen, Eric Marsh for their inputs 

and making work fun. A special thanks to my friend Morgan Thomas who patiently read my work and 

gave valuable suggestions. I would like to thank my friends for their support and making my stay in Iowa 

enjoyable. 

I would like to thank my parents R.P.Paramashivaiah and K.M.Kathyayini, my sister Divya for their 

constant support, encouragement and inspiration. 



vi 
 

 

ABSTRACT  

 

Large interactive surfaces enable effective multi-user collaboration, but a majority of the current multi-

touch systems are not truly multi-user. In this work we present a novel sensor-based approach for both 

user identification around a touch table and integration of unique gestures above the table. The work 

proposes the criteria for a successful and robust user identification system. The Cricket sensor based 

user identification system is integrated with an open source gesture recognition system “Sparsh-UI” to 

enable rapid multi-touch application development. Finally we evaluate the Cricket-based algorithm with 

contemporary multi-user, multi-touch systems and describe the various interaction affordances 

provided by the Cricket based user identification system. 
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CHAPTER  1.   OVERVIEW 

1.1. Introduction 

 Multi-touch technology research has been of great interest in the recent past and is revolutionizing 

human-computer interaction.  Advances in multi-touch research have increased the availability of a wide 

variety of multi-touch devices with different underlying technologies and configurations.   

Some of the commonly used technologies include FTIR, Diffused Illumination, Electrode-based detection 

and Infrared bezel-based displays. The following is a brief description of these: 

FTIR (Frustrated Total Internal Reflection): Frustrated Total Internal Reflection is one way of detecting 

multiple touches [11] [14]. The mechanism is similar to fiber optics. A strong infrared (IR) source is 

placed along the edges of the Plexiglass; Usually an array of IR LEDs is employed for this purpose; Some 

of the light that enters the edge of the Plexiglass reflects back and forth between the inside planes of 

the Plexiglass due to total internal reflection (TIR). The light that does not undergo TIR leaves the 

Plexiglass near the edge. 

The Plexiglass is now flooded with IR light. By touching the surface with human finger, the reflection is 

disturbed due to change in boundary conditions, and some of the light is scattered. Hence the term 

Frustrated Total Internal Reflection. This scattered light when captured by an IR sensitive camera 

appears as a "blob". The blobs correspond to the position of the touch and are processed using 

thresholding algorithms to determine the position of the touch. 

Diffused Illumination: In this technique we flood the surface of the Plexiglass/ Acrylic with diffuse IR 

light, illuminating the fingertips of the user [8]. The reason to use diffuse IR light is to ensure a uniform 

light intensity at all points on the Plexiglass. Objects closer to the surface of the Plexiglass will reflect 

more light, so by very carefully filtering and thresholding the camera image, the fingers touching the 

surface of the Plexiglass can be isolated, again as blobs. The downside to this process is that any object 
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close to the surface will show up, including the user's palms, shirtsleeves, or bracelets. With careful 

tweaking of the filtering and thresholding algorithms, these effects can be minimized. 

 Electrode based multi-touch devices: DiamondTouch [7] works by transmitting signals through 

antennas in the table. These signals are capacitively coupled through the users and chairs to receivers, 

which identify the parts of the table each user is touching.  

Infrared bezel based multi-touch displays: In these Multitouch devices there is a bezel in front of a 

display (such as a large flat screen panel) which contains a set of IR transmitters and receivers on 

opposite ends, thus forming a grid of infrared rays [17]. Upon bringing the finger close to the surface of 

the screen, the path of the light is obstructed and its location can be determined by using the 

information from the receptor on the x and y axes. 

A major advantage of the multi-touch technology is that it allows for a very rich and effective co-located 

collaboration experience which was previously impossible with the traditional mouse and keyboard 

interface. [10] and [19] discuss the effectiveness of multi-touch interfaces for co-located and remote 

collaboration. Large interactive surfaces are usually put to use as multi-user devices as they provide 

simultaneous accessibility to multiple users. However, for an interactive surface to be truly multi-user- in 

addition to supporting multi-touch - it has to support the ability to differentiate and identify the users in 

the environment. Most commercially available multi-touch interactive surfaces are not capable of 

identifying the users, while some have limited ability such as identifying the presence of a user on a 

particular side. 

The collaboration experience can be greatly enhanced if the multi-touch architecture (Hardware and 

Software) is made aware of the users. User identification is crucial for multi-touch applications that 

require authentication. In this work the criteria that need to be considered while designing a user 

identification system are established and novel method of identifying users on interactive surfaces 
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called “Cricket based user identification system” is presented. The various features and the enhanced 

interaction affordances enabled by this system are explained. Finally the performance of the algorithm 

used in this system is evaluated and compare the Cricket based user Identification system against 

contemporary user identification systems.  

1.2. Related Work  

Table-top interfaces provide new avenues for co-located collaboration but pose new challenges as well. 

Though much work is concentrated on new gestural interfaces and improved interaction techniques, 

there have been very few recent works in the area of user identification for multi-touch interfaces. 

DiamondTouch [7] (now sold by Circle Twelve Inc) was one of the first multi-user multi-touch interfaces, 

which provided user identification. Diamond touch has a set of antennas that are embedded in the table 

top, with receivers in chairs. It works by transmitting signals through these antennae; user identification 

is achieved by capacitive coupling of these signals through users to receivers located in the chairs. Thus 

it knows “who” and “where” a particular user is touching. However, a major drawback of such a system 

is that the users are associated to the chairs that they are using, i.e. the association is between the 

chairs and the touches rather than the user himself. Thus, individual hands (left vs. right) of each user 

cannot be distinguished. Further, with such a solution we are forced to use a specific type of hardware 

and cannot be deployed on existing multi-touch interfaces. 

Dohse et al [9] present a very basic camera-based hand-tracking user identification system, which 

identifies users based on the side of the table from which the hands appear. However, this approach has 

the same limitation as DiamondTouch; if the user switches sides of the table, the system cannot 

recognize the user as identical. Also, if there are multiple users on the same side of the table, then this 

approach does not work. 
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Schmidt et al in [23] present a vision based approach for identifying users in a multi-touch environment 

by identifying distinct hand geometry using an overhead camera. In this system the users can switch 

from an un-restricted input mode (without identification) to identification mode by laying their hands 

flat on the surface. The contours of the hand are then analyzed to achieve user identification. A major 

drawback that may be observed in this system is that to afford identification, the user has to perform a 

special gesture. Further the users are not continuously tracked, limiting the number of applications that 

can use such architecture. Further it might be quite inconvenient to the user if one has to spread the 

hand often while using a multi-touch interface. 

Christoph etal in *2+ present “Infractables” a multi-user Multitouch system capable of user identification, 

however this system requires the users to use an Infrared stylus based input device instead of their 

hands.  

Franks et al in [1] discuss using a sensor-based approach to detect the proximity of users to the multi-

touch table. The approach discussed consists of a Multitouch table where each side of the table has an 

array of infrared reflection sensors. These sensors scan a limited area around that side of the table and 

report a rough distance value, which is influenced by the reflective properties of the surface of the 

object in the front. By mapping each sensor to a specific location around the table, a proximity map can 

be calculated which shows which area is occupied. Thus the sides of the table or regions of the table, 

which are occupied by users can be determined. 

Though this model provides an approach where the system is housed within the Multitouch table 

hardware and allows for proximity detection, it has several drawbacks. It cannot differentiate among the 

users present, and although the paper suggests that complicated models, which allow specific shape 

models to be associated with a particular user, can be developed, it does not discuss the details of it. 

Further, such a model would heavily depend on the orientation of the user and may not work with all 
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orientations.  Also the system cannot detect if a user reaches over to another part of the table while 

standing in the same position. It merely associates a side to the user. 

Schöning et al [13] present a mobile phone user identification and authentication mechanism for multi-

touch walls. The proposed approach requires that the Multitouch system is FTIR based.  The user 

touches a region of the FTIR Multitouch wall with a phone, which is equipped with accelerometer to 

detect movements. Upon detecting the movement, the phone generates a flash of light, which can be 

detected by the camera in the FTIR wall. This flash can be differentiated from the one generated by 

touches as it generates a much brighter blob in the visual range than the one generated by touch which 

is mostly in the infrared range.  The user ID is then transmitted via Bluetooth.  The flash of light and the 

user id reception (via Bluetooth) must happen in a very small window of time to allow associating that 

region to a particular user. If there is a collision (with a light flash and User Id reception from another 

phone) the whole process has to be repeated again.  The work also describes to provide an 

authentication mechanism by using a challenge response mechanism by exchanging messages over 

Bluetooth. 

The proposed approach provides limited user identification and secure authentication mechanism for 

users on a Multitouch screen, but the procedure is cumbersome and works only with a particular type of 

hardware, i.e. FTIR.  Also, it is vulnerable to denial of access attacks as a malicious user can easily cause 

collisions thus requiring a legitimate user to repeat the process again and again. 

1.3. The Need For User Identification In a Multi-touch Environment 

User identification in multi-touch interfaces is needed for several reasons, which we will discuss in this 

section. 
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1. Provide user-centric experience 

Large multi-touch interfaces can serve as an excellent platform for co-located collaboration. Therefore, 

applications developed on these surfaces are sometimes developed to be more user-centric than 

traditional desktop applications.  For an application to be truly multi-user, it needs to be aware of the 

users. For example, since the user interface can be accustomed to change dynamically with the number 

of users present in the multi-touch environment, the user interface could further adapt based on the 

position or orientation of each individual user. One could also apply user-specific settings in a multi-user 

environment. A plethora of customizations and UI enhancements are possible by detecting the 

proximity of users to the multi-touch interface. Thus, in order for the interface to recognize individual 

users and provide an engaging experience, it is necessary to recognize which user is interacting with the 

application at a given time.  

2. User authentication 

In a multi-user interface, users interact in a shared space.  For certain Multitouch applications such as  

Geographical Information systems (GIS) which are used for crisis management, tactical control of 

unmanned vehicles, or something as simple collaborative photo tagging applications,  it might be 

necessary to have several users working with different access rights.  For example, some have 

permission to only view the data while others will have the permission to modify the data or certain 

users can be restricted to specific regions of the interactive surface. Thus, in addition to recognizing the 

position of the touches, the system needs to be aware of the user generating those touches to grant the 

appropriate privileges.  As a result, it becomes necessary to identify and authenticate the user in order 

to provide access to a particular region or data.  

3. Enhanced interaction affordances 

Systems which provide a means of user identification can provide enhanced interaction based on 

detection of user presence or proximity to the multi-touch interface. Proximity detection of users opens 
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up new modes of interaction possibilities such as orientation of widgets / layout based on the number of 

users or position of users.  If the system is capable of detecting the “hover” in addition to touch, new 

gestures can be developed. Differentiating the left hand gestures from right hand gestures can also form 

the basis of new gestures. Thus, user identification facilitates the development of new gestures, which 

require multiple user participation, and provide the basis for the concept of object or region ownership. 

4. Research tool 

Finally, accurate user identification for multi-touch surfaces could prove to be an indispensable tool in 

the field of CSCW (computer supported cooperative work) by providing data related to distribution of 

touches of each user in various scenarios. This would encourage research efforts into how users create 

and use personal and shared workspaces on interactive surfaces. The study of this data can be vital in 

defining the next generation of user interface to support collaborative work. 
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CHAPTER  2. EXISTING COMPONENTS USED BY CRICKET BASED USER IDENTIFICATION 

2.1. Sparsh-UI 

In this section, a Multitouch gesture recognition system “Sparsh UI” is described. This Multitouch 

gesture recognition forms the foundation for our Cricket Based User Identification software 

architecture. Sparsh UI was developed by our group at Virtual Reality applications center [21]. In 

particular my contribution to this project consisted of the architecture, C++ version of the gesture 

server, FTIR, Bezel, Stantum device drivers, TUIO [26] adapter for Sparsh-UI and the “Flick gesture” 

algorithm was my individual contribution to this project. It is capable of supporting a wide variety of 

Multitouch hardware and provides a rich gesture library. We enhance this Multitouch gesture 

recognition framework by adding User identification system using the Cricket systems. Sparsh UI was 

selected for this purpose due to its following features: 

1. Ability to support a variety of hardware 

Sparsh UI supports a wide variety of hardware such as FTIR-based, diffuse-illumination based, bezel or  

capacitive screen. It decouples the hardware details from the gesture framework by specifying a  

standard protocol for communicating with the hardware.  

Most multi-touch devices generate additional information from a touch, in addition to the (x, y) 

coordinate values on the screen.  The state of a touch point can be defined using three states defined 

below: 

 Point Birth: Information related to the creation of the touch point when the finger comes in 

contact with the screen. 

 Point Move: Information related to the motion of the touch point (referred to as Point Move). 

 Point Death: Information related to release of the finger from the touch screen (Point Death). 
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 An identification number for each touch point generated when a finger comes in contact with 

the touch screen (Point ID). 

 

 

Figure 1: The Sparsh UI Architecture: The Sparsh Adapter standardizes touch events from varied hardware, 

sends the events over TCP to the Gesture Recognition Framework, which then sends appropriate events to 

the software client via the Client Adapter. 

 

Thus, each touch point can be distinctly identified by the x-y coordinates, the state of the touch point 

(Point Birth, Point Move and Point Death) and the ID of the touch point (Point ID). Sparsh UI specifies a 
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format in which a device should send touch data to it and provides a driver adapter that can standardize 

the input from the driver, which would be compatible with Sparsh UI (Figure 1). 

The driver adapter uses the data structure with the parameters mentioned above. As of now we have 

Sparsh compatible drivers for a 60” FTIR-based touch table created at Iowa State University[25], a 

Stantum SMK-15.4” multi touch tablet, and a 42” infrared-based bezel display from IR Touch. An adapter 

for the Dell Latitude XT is in progress. 

Communication between the device driver and the Sparsh UI gesture recognition framework takes place 

over sockets using TCP protocol. This allows the driver and driver adapter to be written in the language 

of choice. 

2. Gesture recognition 

Most contemporary open source multi-touch software libraries provide only the ability to recognize the 

touch points and pass the touch coordinates directly to the application, leaving the application to do the 

gesture processing.   

Multi-touch is made intuitive by means of gestures; it is vital for a multi-touch library to provide gesture 

recognition support. The following considerations should be addressed while providing gesture support 

to multi-touch applications: 

 Flexibility to specify the supported gestures at an application level and UI component level. 

 Support for providing touches point coordinates if the application does need to do custom 

gesture recognition. 

 Ease of adding new gestures to the framework. 

 The usage of various gestures can be specific to the application. For example, our image manipulation 

application Picture App makes use of the Drag, Zoom, and Rotate gestures, but another application 
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called “Table Tower Defense” just makes use of touch gestures. One needs to process the touch point 

data to recognize all possible gestures for the former and just send out the touch coordinate data for 

the latter. Hence it is inefficient to analyze raw touch data for various gestures unless the application 

needs it. Similarly, not all the UI components would require all the gestures. For instance, a button 

would allow only “Select”, while a window title bar would allow “Drag” and other gestures that indicate 

minimize, maximize, etc. To incorporate this flexibility, we use the concept of Group ID to identify the 

various UI components on the screen. On each point birth, the application is queried for a Group ID and 

the allowed gestures corresponding to the point location. Different point birth sequences can be 

associated to the same Group ID (analogous to multiple fingers on the same UI component). If no 

gesture recognition is required for a given touch coordinate, it can return a null value indicating that 

there is no need for gesture processing. The Sparsh UI gesture recognition framework processes the 

incoming touch point coordinate data, recognizes the associated gestures, and sends back the 

associated gesture event for the Group ID. At the application end, it can be easily identified as to which 

component has been acted upon and the gesture event can be handled appropriately. 

Applications can register for receiving the raw touch points if they need to process special custom 

gestures. The modular design of Sparsh UI makes it easy to add new gestures to the gesture recognition 

framework. The intuitiveness of a multi-touch interface is achieved through the use of gestures which 

are highly intuitive in the application context in which they are used. The usefulness of a gesture library 

would in part depend upon the number of intuitive gestures that a library can support.  

Sparsh UI currently supports the following gestures.  More gestures are being added as a part of 

continuous improvement of the framework.  

Select gesture: Simply placing a finger on the multi-touch device performs this gesture. This gesture is 

normally used for selection purposes. It can also be used creatively as in our Table Tower Defense game. 
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The touch coordinates are passed to the application whenever the gesture framework detects this 

gesture. 

Spin gesture: This gesture (Figure 2) is performed by placing two fingers on the multi-touch device that 

creates an invisible axis, somewhat similar to Jeff Han’s two-handed hold-and-tilt gesture [14].  

                    

                                    

Figure 2: From top left, Spin Gesture, One-finger Drag Gesture, Zoom Gesture, Rotate Gesture. 

In a 3D CAD-like application, once the axis has been established by one hand, the user is able to spin the 

3D view point by dragging a third finger perpendicular to the axis created by the first two fingers. It can 

be used for any chosen axis of rotation. This gesture can be used to manipulate views in any 2D or 3D 

environment. 

Multi-Finger drag gesture: The multi-finger drag gesture is a generic drag gesture which detects the drag 

(or swipe) when one or more fingers are moved across the touch screen. If applications need not 
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differentiate between the number of fingers that are used to do the drag operation, they can register for 

the multi-finger drag gesture. 

In all the drag gesture implementations, the gesture recognition framework generates drag events with 

the parameters ∆X and ∆Y, the amount of offset from the initial position (initial position of the centroid 

if it’s not single touch). 

If an application needs to distinguish between the number of fingers that resulted in the drag gesture, it 

can register for one or more of the following gestures: 

One-finger drag: The user performs this gesture by placing a finger on the device and dragging it across 

the surface (Figure 2). This gesture can be used for moving graphic elements on the screen. It can also 

be used for panning a view (e.g., panning a map). 

Two-finger drag: This is similar to a one-finger drag gesture except that two fingers are used instead of 

one. The two fingers may be held close to one another or apart.  

Three- finger drag: In this case three fingers are used to perform the drag or swipe operation. This 

gesture is being considered to manipulate 3D objects in a multi-touch environment where both 3D and 

2D objects are present. Similarly, Sparsh UI offers gestures for four-or five-finger gestures. 

Rotate gesture: This gesture is performed by placing two fingers, either from the same hand or different 

hands; on the multi-touch device and rotating them clockwise or counter-clockwise (Figure 2).  The 

gesture framework generates an event with the parameters consisting of the angle of rotation and the 

coordinates of center about which rotation occurs. 

Zoom gesture: This gesture (Figure 2) is performed by placing two fingers on the multi-touch device and 

dragging them away or towards each other along a line. The gesture is typically used for zooming in and 
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out of maps, or more generally, scaling and resizing screen elements. When a zoom gesture occurs, an 

event consisting of the scale factor is generated. 

3. Support of different platforms 

A generic framework should be capable of operation across popular operating systems (Windows, Linux, 

and MacOS X). Sparsh UI exists in both Java, which is supported by most popular operating systems, and 

the C++ version is written using the Boost library, which makes it cross platform compatible. 

4. Support for different programming languages 

Since Sparsh UI uses socket-based communication to communicate with the multi-touch application, 

this allows one to write Sparsh-based applications in the language of choice. The system currently has 

client adapters for Java / C++ which abstract the communication protocol over sockets between the 

client application and the gesture framework.  

5. Support of wide interface scale 

Since collaboration across multi-touch devices often use disparate multi-touch devices of varying 

dimensions and configurations, it is important that gesture processing is not affected by the varying 

resolutions of different devices. This is achieved by using relative values for touch coordinates instead of 

absolute coordinates. However, it is the responsibility of application developers to ensure the usability 

and ergonomics of applications across devices of varying dimensions.  

6. Support of collaboration 

Sparsh UI provides a platform to develop collaborative multi-touch applications where collaboration is 

achieved at application level, e.g., by using TCP sockets to have two instances of the same application on 

different systems exchange data. In future versions we plan to support collaboration in Sparsh-UI so that 

various gesture events can be exchanged across networked multi-touch devices. But nevertheless there 

will always be application data, which needs to be exchanged at application level.  
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7. Open source Community support 

Since Sparsh UI is distributed free of cost under the LGPL license, there is an active community support. 

This helps in the continuous development of the software to support more hardware and addition of 

new gestures. 

2.2. Cricket Sensors 

In this section, the cricket sensors which are used in our user identification architecture are described. 

The Cricket indoor location system was developed by MIT [22] and is currently available commercially 

from Crossbow technologies [6].  The crickets were originally intended for usage in building wide 

deployment for the purposes of location depended applications and user tracking.  The design of cricket 

based systems was driven by the following considerations: 

1) Decentralized administration: As Crickets were designed for building-wide deployment, it would 

be impractical if a centralized control and management system was used. In the cricket-based 

system, there are fixed entities which announce their location, and the receiver hardware can 

compute its location in space using an inference algorithm. Hence there is no need for a central 

entity to keep track of individual component in the system. 

2)  Scalability: Decentralized approach, distributed communication protocol, and a passive listener 

allow greater scalability thus allowing a large number of users to be tracked. 

3) Ease of Deployment:  Since the cricket transmitters do not need any backbone infrastructure, it 

is easier to deploy. Their small size allows them to be easily deployed in constrained spaces. 

4) Cost: The cricket devices are built using commercially available off-the-shelf inexpensive 

components so that wide scale deployments can be realized in a cost efficient manner. 

5) Granularity / Accuracy: The cricket system is capable of providing a reasonably high degree of 

accuracy of the order of 4-5 centimeters. It further allows demarcating boundaries between 
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regions corresponding to different beacons. Further, it provides the ability to create virtual 

boundaries by assigning different space identifiers to beacons. 

6) Network heterogeneity: This is mainly to enable heterogeneous networked devices to obtain 

their location irrespective of the type of their communication technology. For example, different 

devices (which are using cricket service) can use Ethernet, WLAN, IR or any other mode of 

communication in a single space, but still get location information from cricket and benefit from 

location based services. 

7) User Privacy: In a cricket-based system, since each user tracks himself without a central tracking 

system, privacy of the user is safeguarded. Cricket is more of a “location support system” rather 

than a location tracking system. 
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2.2.1. Cricket Hardware Details: 

 

Figure 3: Cricket v2 Hardware details 

Figure 3 (from Cricket manual [5]) shows the cricket hardware with all the important hardware 

components marked.  The main components of the cricket [18] are as described below:  

1) Microcontroller :  The Cricket sensor has a 8 bit , 7.4 MHz ATMEL 128L microcontroller with 8 kB 

of RAM and 128kBytes of flash ROM for program memory and 4 kB of EEPROM as Read only 

memory.  It needs an operating voltage of about 3 V and draws a current of 8 mA and 8 uA 

during the active and sleep modes respectively. 

2) RF Transceiver: The Cricket sensor has a CC1000 RF transceiver which operates at 433 MHz. The 

operational data rate is 19.2 kbps. 

3) Ultrasonic (US) transmitter / Receiver: The ultrasonic modules use a 40 kHz piezoelectric open-

air ultrasonic transmitter / sensor. The transmitter generates ultrasonic pulses of duration 125 

us. The transmitter uses a voltage multiplier to generate a 12 V supply from the 2 V supply 
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voltage while the receiver uses a two sage amplifier to get a variable gain between 70dB and 78 

dB. 

4) Expansion connector: The cricket node includes a 51 pin connector that is compatible with MICA 

mote sensor interface. This allows connecting MICA sensor boards for enhanced sensing or 

Mote processor boards for increased processing power. 

5) RS-232 interface: The RS-232 interface is used to connect Crickets to host devices / PC for 

programming or data collection purposes. 

6) Temperature Sensor:  As the velocity of sound in air depends on the ambient temperature, it is 

necessary to compensate for these variations. An on-board pre-calibrated temperature sensor is 

used for this purpose. 

7) Diagnostic LEDs- These LEDs can be programmed to provide various status indications of the 

cricket sensor board (like successful reception / collision indication etc ). 

8) Power source: The crickets can be powered either by two AA batteries (with battery holders on 

the back) or by a DC source using the external power connector. 

Each Cricket has a unique 8 –byte ID, which uniquely identifies every Cricket node. 

 

2.2.2. Cricket Firmware: 

The crickets run the TinyOS 1.1.6 [20] distributed operating system for sensor motes. The TinyOS 

platform has an inbuilt RF stack which is used by the cricket for RF packet transmission and reception.   

Figure 4(from [20] ) shows the TinyOS RF message format. 
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Figure 4: Tiny OS message format 

The RF message consists of a preamble, which is transmitted prior to the actual message transmission. 

The Preamble allows time for the receiver to wake up from sleep state and also to sync its clock with 

that of the incoming signal. 

The preamble is followed by the message header, which consists of   

a) Source address  (2 bytes) – The address of the transmitter  

b) Destination Address  (2 bytes) – the address of the receiver 

c) Message length ( 1 byte) – The length of the message 

d) Group ID (1 byte) – group id of the messages. 

The header is followed by the message content. The message can be up to 256 bytes in length but is 

limited to 29 bytes in the firmware. The message also has a CRC appended at the end of the message to 

check for the integrity of the message contents. 
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2.2.3. Beacon Firmware and Message Architecture: 

Cricket Operating Modes 

Each cricket sensor consists of ultrasonic and RF radios which are used to determine the location.  The 

cricket sensor can be deployed in one of the following two roles: 

1) Beacons: These are cricket sensors that are mounted at fixed locations. The cricket beacons have fixed 

space IDs (a string that represents the space in which the beacon is present) and fixed position co-

ordinates. The beacons transmit their space–IDs and position co-ordinates periodically over the radio 

frequency channel. This RF transmission is followed by a concurrent ultrasonic transmission. 

The transmission occurs every 800 ms and this is a configurable parameter, which can be varied 

according to deployment requirements.  A value that is too small would increase the probability of RF / 

US collisions.  Similarly, a high value of this value would result in infrequent distance measurements, 

which may provide reduced accuracy if we are tracking moving objects. 

 

2) Listeners: These are cricket sensors that are mounted on stationary or mobile objects that need to be 

tracked. The listener listens to the RF and the ultrasonic transmission from the beacon and correlates 

them to each other and using the difference in propagation times of the ultrasonic and RF pulses 

calculate the relative distance to a specific beacon. If the distance of listener to three or more beacons is 

known, then the location of the listener in co-ordinate space can be inferred using known triangulation 

techniques. 

Cricket Deployment Modes 

 Smith et al. in [24] describes two modes of deployment name Active Mobile architecture and passive 

Mobile architecture. 
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Stationary Beacons (Infrastructure) 

  

        

 

 

                         Mobile Listener  

Figure 5: Configuration 1, Passive Mobile Architecture 

    

 

 

 

 

 

 

  

                  

Figure 6: Configuration 2, Active Mobile Architecture 
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Figure 6 shows an active mobile architecture with passive nodes (Listeners) mounted on a surface such 

as ceiling and we have mobile transmitters which periodically broadcast RF and US pulses. 

The receivers mounted at known locations use these broadcasts to compute the distances to these 

mobile nodes.  The distances can be passed on to a central co-ordinator, which can aggregate the 

distance measurements from all the listeners and compute the location of the mobile node. 

2.2.4. Comparison of Active and Mobile architectures: 

In [24] an in-depth analysis of both active and passive mobile architecture is provided and the following 

conclusions are drawn: 

1) Active mobile architecture outperforms passive mobile architecture as long as there are fewer 

mobile nodes. As the number of transmitting mobile nodes increase, the number of collisions 

increase, resulting in less accurate measurements or delayed distance measurements due to 

increase in the number of collisions. 

2) Passive mobile architecture scales with the increase in the number of mobile nodes. Since the 

mobile nodes do not transmit periodically and the number of beacons is fixed, there will be less 

contention over the wireless medium.  For ultrasonic transmissions, it is important to have a line of 

sight transmission for more accurate distance measurements. Experiments show that it is easier to 

block ultrasonic impulses by placing an obstacle (such as hand) in front of the transmitter than 

compared to placing an obstacle in front of the receiver. 
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CHAPTER  3. CRICKET BASED USER IDENTIFICATION SYSTEM 

 

In this chapter the design criteria for user identification architecture are established and then we 

describe the hardware and software architecture of the Cricket based user identification system. 

3.1.  Design Criteria for user identification architecture 

In order to serve as a reliable and scalable tool for user identification, robust user-identification 

architecture should satisfy the following design criteria.  

1. Support for a wide variety of multi-touch hardware 

With recent advances in multi-touch technology, several hardware options such as FTIR, Diffuse 

illumination, IR based solutions have become readily available. Furthermore, these hardware options 

can be used in either a horizontal configuration such as a multi-touch table, or in a vertical multi-touch 

wall. A robust user identification mechanism should be able to support multiple hardware architectures 

and configurations so that it provides the user with the flexibility to choose a hardware solution that 

best fits their needs. 

2. Support for user mobility 

Due to the size of the device and the nature of interactive surfaces, there might be a need for the user 

to switch sides (in a multi-touch table) or move across the multi-touch wall. A robust user identification 

mechanism should be able to maintain the same user association even if the user switches sides or 

moves to a different part of the interface. 

3. Support for User Authentication 

Large multi-touch surfaces allow multiple users to interact the same time. Certain applications might 

need to limit certain users to a certain region or limit the data that certain users can manipulate. In such 

a scenario, it becomes necessary to provide some means of authentication so that data or territorial 
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integrity can be protected. Thus, a robust user identification system should provide a means for 

authenticating users. 

4. Support for presence / proximity detection 

For certain applications it might be necessary to detect the arrival of a user within the vicinity of the 

multi-touch interface or to detect the continued presence of the user near the interface. Providing such 

abilities would allow interesting applications to be developed on a multi-touch interface. For example, in 

a user-aware photo application, the user’s photos can be displayed or hidden depending on the user’s 

presence or absence. Hence proximity / presence detection is a desirable feature of a robust user 

identification system. 

5. Continuous user tracking 

The multi-touch user-identification system should be capable of detecting the user for each touch he or 

she makes. Such capability is required for most applications. Discontinuous tracking or the need to 

switch to a “tracking” mode, though useful in some applications, would limit the scope of user-centric 

applications that can be developed. Continuous user tracking is also vital for user authentication 

otherwise security will be compromised. 

6. Software support  

Good user identification architecture should provide a pluggable software interface, which may be 

integrated into a wide variety of multi-touch software platforms. As such, the framework should be 

platform-independent and support frameworks written in a variety of programming languages. A 

gesture support system, which would recognize gestures in addition to user identification, would be 

desirable for rapid Multitouch application development. 


