Anisotropic Gauss-Hermite Beam Model Applied to through-Transmission Inspections of Delaminations in Composite Plates

Thumbnail Image
Date
1991
Authors
Margetan, Frank
Thompson, R. Bruce
Gray, Timothy
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Margetan, Frank
Associate Scientist
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Manufactured parts containing composite materials can present challenging ultrasonic inspection problems. The inherent anisotropy of such materials acts to distort propagating ultrasonic beams, leading in turn to an associated distortion of defect images. Such distortions complicate the task of estimating the physical dimensions of a defect from its ultrasonic image. In the present work we demonstrate how these difficulties can be overcome by appropriately modelling the ultrasonic inspection process, and using the model to analyze defect images. To illustrate the approach, we consider a normal incidence through-transmission inspection of a flat uniaxial composite plate with an internal delamination. We begin by reviewing our model of the inspection process which incorporates the Gauss-Hermite model for beam propagation in anisotropic materials. The inspection model requires as inputs certain parameters which characterize the transducers, and others which characterize the composite material. We demonstrate how these parameters can be obtained from simple beam-mapping experiments. We then present experimental C-scan images of a seeded circular delamination in a composite plate, and compare these to images predicted by the model. Finally, we demonstrate how the model can be used to accurately size a delamination from its ultrasonic image.

Comments
Description
Keywords
Citation
DOI
Keywords
Copyright
Tue Jan 01 00:00:00 UTC 1991