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ABSTRACT

A discrete event system (DES) is an event-driven system that evolves according to abrupt

occurrences of discrete changes (events). The domain of such systems encompasses aspects of

many man-made systems such as manufacturing systems, telephone networks, communication

protocols, traffic systems, embedded software, asynchronous hardware, robotics, etc.

Supervisory control theory for DESs studies the existence and synthesis of the supervisory

controllers, namely, supervisors that restrict the system behaviors by dynamically disabling

certain controllable events so that the controlled close-loop system could behave as desired.

Extensive work on supervisory control of untimed DESs exists and the extension to the timed

setting has been reported in the literature. In this dissertation, we study the supervisory control

of dense-time DESs in which the digital-clocks of finite-precision are employed to observe the

event occurrence times, thereby relaxing the assumption of the prior works that time can be

measured precisely. In our setting, the passing of time is measured using the number of ticks

generated by a digital-clock and we allow the plant events and digital-clock ticks to occur

concurrently. We formalize the notion of a control policy that issues the control actions based

on the observations of events and their occurrence times as measured using a digital-clock, and

show that such a control policy can be equivalently represented as a “digitalized”-automaton,

namely, an untimed-automaton that evolves over the events (of the plant) and ticks (of the

digital-clock). We introduce the notion of observability with respect to the partial observations

of time resulting from the use of a digital-clock, and show that this property together with

controllability serves as a necessary and sufficient condition for the existence of a supervisor

to enforce a real-time specification on a dense-time discrete event plant. The observability

condition presented in the dissertation is very different from the one arising due to a partial
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observation of events since a partial observation of time is in general nondeterministic (the

number of ticks generated in any time interval can vary from execution to execution of a

digital-clock). We also present a method to verify the proposed observability and controllability

conditions, and an algorithm to compute a supervisor when such conditions are satisfied.

Furthermore we examine the lattice structure of a class of timing-mask observable languages,

and show that the proposed observability is not preserved under intersection but preserved

under union.

Fault diagnosis for DESs is to detect the occurrence of a fault so as to enable any cor-

rective actions. It is crucial in automatic control of large complex man-made systems and

has attracted considerable attention in the literature of reliability engineering, control and

computer science. For the event-driven systems with timing-requirements such as manufactur-

ing systems, communication networks, real-time scheduling and traffic systems, fault diagnosis

involves detecting the timing-faults, besides the sequence-faults. This requires monitoring tim-

ing and sequence of events, both of which may only be partially observed in practice. In this

dissertation, we extend the prior works on fault diagnosis of timed DESs by allowing time to

be partially observed using a digital-clock which measures the advancement of time with finite

precision by the number of ticks. For the diagnosis purposes, the set of nonfaulty timed-traces

is specified as another timed-automaton that is deterministic. We show that the set of timed-

traces observed using a digital-clock with finite precision is regular, i.e., can be represented

using a finite (untimed) automaton. We also show that the verification of diagnosability (the

ability to detect the execution of a faulty timed-trace within a bounded time delay) as well as

the off-line synthesis of a diagnoser are decidable by reducing these problems to the untimed

setting. The reduction to the untimed setting also suggests an effective method for the off-line

computation of a diagnoser as well as its on-line implementation for diagnosis. The aforemen-

tioned results are further extended to the nondeterministic setting, i.e., diagnosis of dense-time

DESs using digital-clocks under nondeterministic event observation mask. We introduce the

notion of “lifting” (associating each event with each of its nondeterministic observations), and

show that diagnosis of dense-time DESs employing digital-clocks to observe event occurrence
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times under nondeterministic event observation mask can be reduced to that of the determin-

istic setting, i.e., diagnosis of the lifted dense-time DESs under the deterministic lifted event

observation mask, and hence can be further reduced to diagnosis of the untimed setting.
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CHAPTER 1. INTRODUCTION

1.1 Discrete Event Systems: Untimed and Timed

A discrete event system (DES) is an event-driven system which evolves according to

abrupt occurrences of discrete changes (events). The examples of the discrete events include

completion of a transaction in a database system, transmission of a message in a communication

network, occurrence of a failure in a manufacture system, etc. The domain of discrete event

systems encompasses aspects of many man-made systems such as manufacturing systems, tele-

phone networks, communication protocols, traffic systems, embedded software, asynchronous

hardware, robotics, etc [66].

Discrete event systems can be classified into two types: untimed and timed DESs. In the

case of untimed DESs, the system behavior is only determined by the sequence of the events

executed, whereas in the case of timed DESs, the system behavior is determined by the logic

order of the events as well as the times at which the events occur. An untimed model is used

when the system under study needs to meet the qualitative goals such as orderly occurrence

of events, whereas a timed model is used when the quantitative goals such as a response rate

in a traffic system and an average delay in a communication network need be satisfied.

In contrast to the continuous systems in which the system state changes continuously with

the evolvement of time, the state transition mechanism of DESs is event-driven: state transi-

tions occur at asynchronous discrete time instants instantaneously in response to events, and

in between event occurrences, the system state remains unchanged [19]. Unlike the continuous

control systems, the state space of a DES consists of a set of discrete states. Further, the states

as well as the state transitions of DESs may take symbolic values rather than real values. For

instance, the state of a machine can be on or off, and a machine can change its state from on
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to off upon the occurrence of an event shutting down. Owing to these features, discrete event

systems cannot be adequately described using differential or difference equations. Instead,

formal language and state machine are used to describe the behavior of DESs at the logic level

of abstraction. A language is a collection of the sequences of events that can be executed. A

state machine is an alternative way to represent a language model. Petri net and automaton

are the two state machine modeling formalisms for DESs that are widely used in the literature.

In this dissertation, we choose automaton as the modeling formalism for DESs.

1.2 Control of Untimed and Timed DESs

Supervisory control theory for DESs was initiated in the work reported in [106]. It

studies the existence and synthesis of supervisory controller, also called supervisor that restricts

the system behaviors by dynamically disabling certain controllable events as a function of the

observed event-trace so that the controlled system behaves as desired.

Extensive work on supervisory control of untimed systems/specifications exists. See for

example centralized supervisory control under complete or partial observations in which the

specification is expressed by a single language in [106, 107, 137, 148, 80, 75, 22, 68, 117, 98, 152],

and the extension to modular supervisory control in which multiple modular supervisors are

combined to achieve the desired system behavior expressed by the intersection of two or more

elementary specification languages in [134, 135, 30, 105, 20, 109, 36, 61]. Since a real control

system is usually complex and physically distributed, it is impractical to design a centralized

supervisor for such real applications. Therefore a decentralized/distributed control architec-

ture need be employed. Similar to the modular supervisory control, multiple supervisors are

synthesized for decentralized/distributed supervisory control. In the case of decentralized

control, the local supervisors do not communicate with each other, whereas in the case of

distributed control, the local supervisors can exchange their local observations for the purpose

of control. Unlike the modular supervisory control, each individual supervisor of decentral-

ized/distributed supervisory control has its own set of controllable events, observation mask

and a desired controlled behavior to achieve. The work on the decentralized/distributed super-
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visory control can be found in [79, 81, 112, 133, 131, 132, 111, 48, 50, 11, 147, 145, 103, 154].

In [9, 10, 28, 122, 90, 90, 92], the issues of control arising due to bounded communication

delays were studied. Supervisory control of DESs with special purposes has been addressed

in the following works. See for example the work on robust control in [78, 1, 24, 113], on

adaptive control in [25, 35], on optimal control in [96, 95, 76, 65, 67, 115, 18, 8, 85, 62], on

fault-tolerant control in [1, 94, 21, 45, 110, 34, 89, 129, 128, 130], and on directed control in

[43, 42]. The above works focus on control of deterministic discrete event systems, i.e., the

systems in which given a state and an event that occurs at the state, the destination state

reached following the occurrence of the event can be uniquely determined. However, in certain

systems, due to the unmodeled system dynamics and/or partial observations, the current state

and ongoing event are not sufficient to uniquely determine its next state. For instance, while

a manufacturing system is performing a task, an undetectable failure may occur. This can be

modeled by a nondeterministic transition which leads to two successor states based on whether

a failure occurred. The studies on supervisory control of the nondeterministic DESs can be

found in [83, 116, 69, 70, 69, 70, 72, 39, 40, 49, 99, 52, 150, 151]. And control in the temporal

logic setting has been examined in [77, 56, 12, 118, 13].

The aforementioned works studied control of untimed DESs. The extensions to the timed

setting have been reported in the works as follows. In [17, 16, 82] a discretized model of time

was used: the time advances when a “tick” transition of the timer occurs. Such a discretized-

time model is not as general as a dense-time model [4, Section 2.3.2], which requires the

continuous time to be approximated by a priori fixing the smallest measurable time unit.

Such approximation limits the accuracy of the modeling for a physical system. Also the

inclusion of clock tick transitions in timed DESs results in the state-space explosion problem.

To avoid state-space explosion, the author of [91] proposed the notion of eligible time bound

and showed the controllability and observability conditions for the existence of a supervisor.

Moreover the possibility of preempting a “tick” transition by a forcible event as in [16, 82]

is an artifact arising due to the discretized model of time, and thus is unrealistic. Another

approach for control of timed DESs is based on a dense-time model: the event occurrence
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times are represented by real numbers and increase monotonically without bound. A dense-

time model is a more natural model for physical systems that operate over continuous time.

The examples of modelings of dense-time DESs include timed automaton proposed by Alur

and Dill and timed Petri nets proposed by Leveson and Stoley. The first use of dense-time

model (timed automaton) for supervisory control of dense-time DESs was proposed in [136],

where the authors introduced the notion of controllability in the timed setting as a condition

for the existence of a supervisor, and also presented a method to verify the controllability

condition by reducing to reachability over an untimed region-automaton [6]. The supervisory

control using dense-time model was later studied in [37], in which the timed automaton is

completely discretized into region automaton, and then the discrete synthesis problem is solved.

Certain techniques for efficient representations of region-automaton have been presented in

the literature. For instance, in [59] two special types of events Set and Exp, which represent

setting and expiring of clocks respectively, are used to transform a timed automaton into a

small-sized equivalent finite state automaton, namely Set-Exp-Automaton (SEA). The real-

time control problem is then solved by adapting the non-real-time control method. Since

the state of a SEA changes with the passing of time only when a clock reaches a value it is

compared to in a timing constraint of the corresponding timed automaton, in practice the size

of SEA does not increase significantly with the magnitudes of the constants used in timing

constraints. The extension to real-time control under partial observation was reported in [58].

In [86], the timed supervisory control method based on sampling region graphs of the plant

and specifications, and constructing a discrete finite subautomaton, called grid automaton

was presented. The aforementioned techniques can be used to expedite the controllability

test of [136]. In [7, 84, 125], symbolic methods for controller synthesis in the setting of game

timed-automata have been proposed. The game timed-automaton approach is different from

Ramadge and Wonham framework: supervisory control is considered as a game between a

supervisor with a desired specification and a plant with the goal to drive the controlled plant

to a set of safe states. Moreover, [71] employed prioritized synchronization to exercise control

in the dense-time setting. Recently, an extension of the supervisory control to a class of timed
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DESs modeled by (max,+) automata, which can be viewed as special timed automata, is

proposed in [60, 93].

The above cited works on control of dense-time systems assume that the event occurrence

times can be measured precisely. Such assumption on infinite-precision measurement of time

can greatly simplify the design and analysis of systems. However, measuring time with arbi-

trary precision is not practically possible. In our work, we relax the assumption that time can

be measured with arbitrary precision by letting a supervisor employ a digital-clock to measure

event occurrence times in form of the number of ticks generated by the digital-clock. (See

also [3] where finite-precision clocks are investigated.) Under finite-precision measurement of

time, correctness of control may get lost. The application of digital-clocks to verification and

testing of real-time systems modeled by timed automaton can be found in the works such as

[38, 87, 74, 64, 63]. And the research on semantics of control that can be implemented with

digital-clocks of finite-precision can be found in [139, 138].

The following example illustrates that owing to the partial observability of time resulting

from the use of a digital-clock, controllability condition of [136] alone is not sufficient for the

existence of a supervisor.

Example 1 Consider a plant G and a specification language K as shown in Figure 1.1. Sup-

pose all events are controllable, so that any specification language including K is controllable.

G can execute a earlier than 2 units of time, followed by which it can execute b. The specifi-

cation requires that b be disabled if a occurs at or before 1.5 units of time. Under a precise

observation of time, this can be achieved by observing the occurrence time of a and disabling b

accordingly. Suppose time is measured by a digital-clock which ticks every ∆±δ units of time,

where ∆ = 1 and δ = 0.1. Then the timed-trace (a, 1.1 < t1 ≤ 1.5) is indistinguishable from

the timed-trace (a, 1.5 < t2 < 1.8), for both are observed as “tick.a”. Since b must be disabled

following (a, t1) whereas it must be enabled following (a, t2), no supervisor for enforcing the

desired specification exists when time is measured using the digital-clock described above.

The above example serves to motivate the study of supervisory control of dense-time dis-

crete event systems using finite-precision digital-clocks for measuring time. We start by for-
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a b
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Figure 1.1 Timed-automata of plant G (left) and specification K (right)

malizing the notion of a control policy that employs observations of events and their occurrence

times as measured using a digital-clock for computing the control actions, and show that it

can be equivalently represented as a “digitalized”-automaton, namely, an untimed-automaton

that evolves over events (of the plant) and ticks (of the digital-clock). We introduce the no-

tion of observability with respect to the partial observation of time resulting from the use of a

digital-clock, and show that this property together with controllability serves as a necessary

and sufficient condition for the existence of a control policy to enforce a real-time specification

on a dense-time discrete event plant. The observability condition presented in the paper is very

different from the one arising due to a partial observation of events since a partial observation

of time is in general nondeterministic (the number of ticks generated in any time interval can

vary from execution to execution of a digital-clock). We present a method to check the pro-

posed observability and controllability conditions, and also present a method to synthesize a

supervisor when these conditions are satisfied.

1.3 Diagnosis of Untimed and Timed DESs

Fault diagnosis is crucial for large complex control systems such as manufacturing sys-

tems, computer and communication networks, power systems, circuits, traffic systems, heating,

ventilation and air conditioning systems, etc. It has attracted considerable attention from the

literature of reliability engineering, computer science and control. The task of diagnosis is to

detect the occurrence of faults from the observations of the system behavior so as to enable

any corrective actions.

Diagnosis of untimed DESs was first studied in [114], in which the notion of diagnosability,

i.e., the property that requires the occurrence of a failure to be detected within bounded time
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delay, was proposed. And an exponential algorithm to check diagnosability was also proposed

in [114]. The polynomial tests for checking diagnosability were given in [46, 146]. A stronger

notion of state-observability has been examined in [88]. Moreover, diagnosis in the probabilistic

setting (stochastic DESs) can be found in [120], and in the Petri net setting in [33, 32]. These

cited works studied centralized diagnosis: a centralized diagnoser is responsible for fault/failure

detection. However many large complex systems are physically distributed, which results in

variable communication delays and communication errors. Therefore centralized diagnosis is

not appropriate for these systems. The architecture in which diagnosis can be preformed

at each local site is needed. Diagnosis of discrete-event systems in the decentralized setting

has been reported in [27, 101, 127, 119, 73], and in the distributed setting can be seen in

[108, 14, 102, 104]. Decentralized diagnosis can be viewed as a special case of distributed

diagnosis. In decentralized diagnosis, the local diagnosers do not communicate with each

other, whereas in distributed diagnosis either diagnosers communicate with each other directly

or through a coordinator which is responsible for fusing local observations and making the final

diagnosis decision. In [29], the assumption of zero communication delay made in [114] was

mildly relaxed by allowing at most one-step communication delay. Decentralized/distributed

diagnosis under bounded communication delay was further studied in [124, 144, 100, 104, 102].

Diagnosis of repeatable/intermittent-failures was investigated in [57, 144, 55, 23, 153]. The

notion of diagnosability was extended to [1,∞]-diagnosability to allow diagnosis of a failure

each time it occurred. To facilitate generalization of failure specifications, diagnosis in the

temporal logic setting was studied in [53, 55]. And decentralized diagnosis using inference-

based ambiguity management has been reported in [73, 119].

The above cited works study diagnosis of untimed discrete event systems. However most

applications of discrete event systems (such as manufacturing systems, communication net-

work, real-time scheduling, traffic systems, etc.) possess timing properties (such as latency).

Correctness of these real-time applications depend on not only the correctness of the sequence

of events executed, but also the correctness of the event occurrence times. For instance, a

controller of a manufacturing system may be required to issue a correct control within an al-



8

lowable time interval; the messages transmitted in a communication network may be required

to be delivered within an acceptable delay. Diagnosis of such event-driven systems with timing-

requirements involves detecting the timing-faults, besides the sequence-faults. This requires

monitoring both timing and sequence of events. Therefore the priori works on diagnosis of

untimed discrete event system are inadequate in monitoring or diagnosing timing-faults that

arise in real-time applications. There has been some research on diagnosis of timed discrete

event systems, which includes diagnosis in the discrete-time setting [149] and in the dense-time

setting [41, 26, 123, 15]. It is known that the class of discrete-time systems is a subclass of

dense-time ones as modeled by timed-automata [5]. Failure diagnosis of dense-time models

was first examined in [123]. It was assumed that while a diagnoser has partial observation

of events, it is able to measure time perfectly. It was shown that the verification of diagnos-

ability in this setting is decidable and on-line diagnosis can be effectively performed, whereas

no comments were made about the off-line synthesis of a diagnoser. The failure diagnosis of

timed-automata under partial observation of events and perfect observation of time was also

studied in [15]. The main focus was on the synthesis of diagnosers which are realizable as

deterministic timed-automata. A procedure for constructing a diagnoser off-line for a subclass

of dense-time automaton was proposed in [31].

These earlier works on failure diagnosis of timed DESs assume that a diagnoser has par-

tial observation of events but can measure (or observe) time precisely. In practice, however,

time can only be measured with finite precision. The following example illustrates that a sys-

tem, that is diagnosable under the assumption that time is measured precisely, may become

undiagnosable when time can only be measured with certain finite precision.

Example 2 Consider the timed automaton model G shown in Figure 1.2, in which f is a

faulty event and unobservable, and u is a nonfaulty event and unobservable. The faulty event

f can occur after 0.5 units of time in G, whereas the nonfaulty event u occurs before 0.5 units

of time. Following the occurrence of the faulty event, G can execute observable event a at

1.6 units of time. whereas following the nonfaulty event, event a can be executed at 1.6 units

of time. It can be checked that this system is diagnosable if time could be measured with
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arbitrary precision based on the occurrence time of event a: a (resp., no) fault has occurred

if a can be observed at 1.6 (resp., 1.2) units of time. Suppose time could be measured with

only a finite precision, say using a digital clock that ticks every one unit of time. Then G is no

longer diagnosable. This is because a faulty trace (f, 1.1)(a, 1.6) cannot be distinguished from

a nonfaulty trace (u, 0.1)(a, 1.2), both of which produce the same observation, namely, “tick”

followed by a.

1

5

3

4

2
a

x = 1.6f

u
a

x = 1.2

x > 0.5

x ≤ 0.5

G

x ≤ 1.6

x ≤ 1.2

Figure 1.2 Timed automaton model of a discrete event system

This motivates us to study the diagnosis problem of dense-time discrete event systems in

which digital-clocks with finite precision are used to measure the event occurrence times. In

our work, we model the finite precision observability of time using a digital-clock that measures

time discretely by executing ticks, the logic of which is governed by a timed-automaton. We

show that the set of timed-traces of a dense timed-automaton observed using a finite precision

digital-clock is regular, i.e., can be represented using a finite (untimed) automaton. We show

that the verification of diagnosability (ability to detect the execution of a faulty timed-trace

within a bounded time delay) as well as the off-line synthesis of a diagnoser are decidable

by reducing these problems to the untimed setting. The reduction to the untimed setting

also suggests an effective method for the off-line computation of a diagnoser as well as its

on-line implementation for diagnosis. The aforementioned results are further extended to

the nondeterministic setting, i.e., the diagnosis of dense-time DESs using digital-clocks under

nondeterministic event observation mask. We introduce the notion of lifting, (associating each

event with each of its nondeterministic observations) and show that diagnosis of dense-time

DESs in the nondeterministic setting can be reduced to that of “lifted” dense-time DESs

under deterministic event observation mask, and hence can be further reduced to that of lifted
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untimed DESs in the deterministic setting.

The same problem was also independently studied in [2]. The authors of [2] additionally

studied the existence of a digital-clock that ensures the diagnosability of a dense-time system,

whereas we additionally study the diagnosis problem where failure is specified more generally,

namely as the violation of a real-time specification language (in contrast, in [2] failure was

simply modeled as the execution of a faulty transition). We also further study the diagnosis

problem in the nondeterministic setting, i.e., diagnosis of dense-time DESs using digital-clocks

under nondeterministic event observation mask. The other differences are as below: (i) We ex-

plicitly define the notion of a timing-mask of a timed-trace (namely its observation when time

is measured using a digital-clock). It captures nondeterminism of the untimed observations of

a timed trace as observed using a digital-clock explicitly. Whereas no such explicit definition

is given in [2]. (ii) We point out that the set of behaviors of a dense-time discrete event sys-

tem observed employing a digital-clock for the measurement of time is not prefix-closed. This

is owing to the fact that plant events and digital-clock ticks can occur simultaneously. The

non-prefix-closure of the set of observed behaviors was not noticed in [2]. The construction

of an automaton, that accepts the event/timing-masked language of a plant (namely the set

of observations of the plant timed-traces when events are partially observed and time is mea-

sured using a digital-clock) given in [2, Proposition 3] would require additional marking and

refinement. (iii) We establish an equivalence between diagnosability of a timed DES employing

a digital clock to observe event occurrence times and that of an untimed DES. Therefore the

diagnosis problem in the dense-time setting can be solved by its reduction to the untimed set-

ting. In particular this suggests an algorithm to construct a diagnoser when the given system

is diagnosable. In contrast, how to construct a diagnoser when a given system is diagnosable

is not described in [2] (whether the necessary and sufficient condition of [2, Proposition 7] is

also enough to construct a diagnoser is not discussed and hence open).

1.4 Organization of Dissertation

The dissertation is organized as follows.
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In Chapter 2, we present the notations and preliminaries which are necessary for the dis-

sertation.

In Chapter 3, we define the behavior of a dense timed-automaton when the event occurrence

times are measured using a digital-clock of finite precision that measures time discretely by

generating ticks. We show that the set of timed-traces in which the event occurrence times are

measured through a digital-clock constitutes a regular language, i.e., can be represented by a

finite (untimed) automaton.

In Chapter 4, we study the supervisory control of dense-time discrete event systems using

finite-precision digital-clocks to observer event occurrence times. We start by introducing the

notion of control compatible and timing-mask compatible control policies that do not disable

uncontrollable events and also respect the timing-mask associated with a digital-clock, and

show that a compatible control policy can be represented as a “digitalized”-automaton (an

untimed-automaton in which the passing of time occurs discretely in form of the occurrences

of ticks). We then introduce the notion of observability with respect to the partial observation

of time resulting from the use of a digital-clock, and show that this property together with

controllability serves as a necessary and sufficient condition for the existence of a control pol-

icy to enforce a real-time specification on a dense-time discrete event plant. The observability

condition presented in the paper is very different from the one arising due to a partial obser-

vation of events since a partial observation of time is in general nondeterministic (the number

of ticks generated in any time interval can vary from execution to execution of a digital-clock).

Finally we present a method to check the proposed observability and controllability conditions,

and also present a method to synthesize a supervisor when these conditions are satisfied. We

further examine the lattice structure of a class of timing-mask observable languages, and show

that timing-mask observability is not preserved under intersection but preserved under union.

In Chapter 5, we study the diagnosis of dense-time discrete event systems using finite-

precision digital-clocks to observer event occurrence times. Two diagnosis problems are inves-

tigated: (i) diagnosis of timed discrete event system modeled by timed-automaton with both

timing and event observation masks, and (ii) diagnosis with dense-time specification which
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specifies the nonfailure behavior. We show that the verification of diagnosability (ability to

detect the execution of a faulty timed-trace within a bounded time delay) as well as the off-line

synthesis of a diagnoser are decidable by reducing these problems to the untimed setting. The

reduction of the diagnosis problem to the untimed setting also suggests an effective method

for the off-line computation of a diagnoser as well as its on-line implementation for diagnosis.

The aforementioned results are further extended to the nondeterministic setting, i.e., diagnosis

of dense-time DESs using digital-clocks under nondeterministic event observation mask. We

introduce the notion of lifting and show that diagnosis of dense-time DESs in the nondetermin-

istic setting can be reduced to diagnosis of lifted dense-time DESs under deterministic event

observation mask, and hence can be further reduced to diagnosis of lifted untimed DESs in the

deterministic setting.

In Chapter 6, we summarize the work and conclude with the discussions of future work.

We also summarize the other works that have done during the Phd studies of the author.
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CHAPTER 2. NOTATION AND PRELIMINARIES

In this chapter, we present the notations and preliminaries which are necessary for the

dissertation: the notions of untimed and timed-language, untimed and timed-automaton, non-

speedingness, non-slowingness, etc. The interested readers are recommended to refer to [66,

19, 4] for more details on untimed/timed DESs and untimed/timed automaton.

2.1 Untimed Language and Automaton

Let Σ denote a set of events. A trace over Σ is a sequence s = σ1 · · ·σn where σi ∈ Σ

for i = 1, · · · , n. We use Σ∗ to denote the set of all event-traces over Σ, including the trace

of zero-length ε. A subset L ⊆ Σ∗ is called a language over Σ. Given a trace s, |s| is used to

denote the length of s. A trace s ∈ Σ∗ is said to be a prefix of a trace t ∈ Σ∗ if for some trace

u ∈ Σ∗, t = su. This is denoted by s ≤ t. If s ≤ t and |s| < |t|, then s is said to be a proper

prefix of t. The prefix-closure of L ⊆ Σ∗, denoted pr(L), is the set of all prefixes of the traces

in L. L is called prefix-closed or simply closed if pr(L) = L. Given a language K, K is said to

be relative closed (with respect to a language L) if pr(K) ∩ L = K.

Given Σ̂ ⊆ Σ, the projection of an untimed-trace over Σ̂ is denoted by Π
Σ̂

(·), which is

inductively defined as

Π
Σ̂

(ε) := ε,

Π
Σ̂

(sσ) :=

 Π
Σ̂

(s)σ if σ ∈ Σ̂

Π
Σ̂

(s) otherwise

where s ∈ Σ∗, and σ ∈ Σ.

It can be concluded that Π
Σ̂

(s) ∈ Σ∗.
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For control purpose, the event set Σ is partitioned into the set of uncontrollable as well as

controllable events: Σ = Σu ∪ (Σ − Σu). Given a language K, K is said to controllable (with

respect to a language L and a set of uncontrollable events Σu) if

∀s ∈ pr(K), σ ∈ Σu s.t. sσ ∈ L ⇒ sσ ∈ pr(K).

The property of controllability requires that the execution of an uncontrollable event σ following

a trace s in pr(K) must either result in a trace in pr(K), or a violation of the language L, i.e,

resulting in a trace in Σ∗ − L.

In many real applications, it is difficult for a supervisor to observe all the events that the

plant executes due to lack of sensors, or due to the presence of faulty sensors. Therefore certain

events may be indistinguishable or even completely unobservable to a supervisor. Such partial

observations over plant events can be captured by the notion of an event observation mask,

a function mapping each event to a set of “observable events” denote by certain observation

symbols: M : Σ ∪ {ε} → Λ ∪ {ε}, where Λ is the set of observed symbols, and M(ε) = ε. An

untimed-trace s = σ1 · · ·σn is observed through the event-maskM asM(s) = M(σ1) · · ·M(σn).

Given an untimed closed language L ⊆ Σ∗, the event-masked language M(L) is defined by

M(L) := {M(s) | s ∈ L}. Event observation mask M is said to be deterministic, if ∀σ ∈ Σ,

|M(σ)| = 1. Here | · | denotes the size of a set, i.e., the number of elements belonging to the set.

Consider a language K, and a deterministic observation mask M . K is said to be observable

(with respect to a language L and an observation-mask M) if

∀s, t ∈ pr(K), σ ∈ Σ s.t. M(s) = M(t), sσ ∈ pr(K), tσ ∈ L ⇒ tσ ∈ pr(K).

The property of observability requires that if the execution of an event σ following a trace s

in pr(K) results in a trace remaining in pr(K), then the execution of an event σ following a

trace t in pr(K), which is indistinguishable from s, must either result in a trace in pr(K), or a

trace in Σ∗−L. An observation-mask M is said to be nondeterministic if ∀σ ∈ Σ, |M(σ)| ≥ 1,

and ∃σ′ ∈ Σ s.t |M(σ′)| > 1. An event may have multiple possible observations under a

nondeterministic observation mask. Such nondeterminism of observations on events is due to

the limited sensing capabilities of sensors, or due to the presence of faulty sensors.
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A language is a formal way to describe the behaviors of discrete event systems. It specifies

all the admissible sequences of events that a DES can execute. However it is not always

easy to specify or work with a “simple” representation of languages. Therefore an alternative

modeling formalism to define and manipulate languages so that we can analyze and manipulate

any arbitrarily complex language is needed [19]. An automaton is such graphical device with

well-defined rules to represent languages.

An untimed automaton G is a five-tuple, G = (X,Σ, α,X0, Xm), where

• X is a set of states,

• Σ is a finite set of events,

• α : X × Σ→ X is a set of transitions,

• X0 ⊆ X is a set of initial states, and

• Xm ⊆ X is a set of marked or accepting states.

For a transition r ∈ α, r is in form of (x, σ, x′), where x is the source state, σ is the event label,

and x′ is the destination state.

An untimed-automaton is said to be deterministic if for all x, x′ ∈ X,σ ∈ Σ : |{(x, σ, x′) ∈

α}| ≤ 1, and otherwise it is said to be nondeterministic. The language generated (resp.,

accepted) by an automaton G consists of the traces executable in G starting from an initial

state (resp., and ending in a final state in Xm), and is denoted L(G) (resp., Lm(G)). It

has been shown that for any nondeterministic automaton, there always exists an equivalent

deterministic automaton, i.e., the generated as well as marked language represented by the two

automata are the same. A deadlock appears if an automaton reaches a state x /∈ Xm, and no

further execution can be executed at x. Whereas a livelock appears when an automaton reaches

a set of unmarked states, and there is no transition going out of such a set. If either deadlock

or livelock can happen, then an automaton is said to be blocking, in which case the marked

states of the system may never be reached. Therefore the property of absence of blockingness

is expected. Given an automaton G, G is said to be nonblocking if pr(Lm(G)) = pr(L(G)).
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The property of nonblockingness requires that any generated trace can be eventually extended

to a sequence belonging to its marked behavior.

Given automaton Gi = (Xi,Σi, α,X0i, Xmi) for i = 1, 2, the composed automaton of G1

and G2 is defined as G1||G2 := (X1 ×X2,Σ1 ∪Σ2, α,X01 ∪X02, Xm1 ×Xm2), where the set of

transitions α is defined by

• (xi, σ, x
′
i) ∈ αi, and σ ∈ Σ1 ∩ Σ2, ⇒ ((x1, x2), σ, (x′1, x

′
2)) ∈ α,

• (x1, σ, x
′
1) ∈ α1, and σ ∈ Σ1 − Σ2, ⇒ ((x1, x2), σ, (x′1, x2)) ∈ α,

• (x2, σ, x
′
2) ∈ α2, and σ ∈ Σ2 − Σ1, ⇒ ((x1, x2), σ, (x1, x

′
2)) ∈ α.

Synchronous composition of automata only allows transitions on common events. It can be

used to model the joint behavior of the concurrently operating automata. Given a plant G =

(X,Σ, α,X0, Xm) and a supervisor S = (Y,Σ, β, Y0, Ym), the controlled behavior of G under S

can be represented by their synchronous composition G‖S = (X × Y,Σ, γ,X0× Y0, Xm× Ym),

where ((x, y), σ, (x′, y′)) ∈ γ if and only if (x, σ, x′) ∈ α and (y, σ, y′) ∈ β.

The automaton representation is more convenient than enumeration of all the admissible

sequences of events in the language. However in general a language is an infinite set, which

may not be represented by finite state machines. We call a language that admits a finite state

machine presentation a regular language. An automaton is unable to represent a non-regular

language since it would require infinite number of states. Certain class of non-regular languages

can be modeled by the other modeling formalism of DESs mentioned before, Petri nets.

2.2 Timed Language and Automaton

Let <+ denote a set of nonnegative real numbers, andN denote a set of natural numbers.

A timed-trace over an event set Σ is a sequence ν = (σ1, t1) · · · (σn, tn) where for i = 1, · · · , n,

ti ∈ <+; for i = 1, · · · , n− 1, ti ≤ ti+1 and σi ∈ Σ; and for i = n, σi ∈ Σ, where Σ := Σ ∪ {ε}.

Its corresponding untimed-trace is denoted as νuntime = σ1 · · ·σn, in which event occurrence

times are abstracted. We use T (ν) := tn to denote the final time instant in ν. For ν = ε,
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T (ν) := 0. We denote the set of all timed-traces as T . A subset of T is called a timed-

language. For a timed-language L ⊆ T , we use pr(L) ⊆ T to denote the set of all prefixes

of the timed-traces belonging to L. L ⊆ T is said to be prefix-closed, or simply closed if

pr(L) = L. Given a timed-language K, K is said to be relative closed (with respect to a

language L) if pr(K) ∩ L = K. A timed-language L is said to be nonforcing if an event

is never forced to occur in L, i.e., a passing of time is always allowed: ∀ν ∈ pr(L) and

∞ 6= t > T (ν), it holds that ν(ε, t) ∈ pr(L). Note that time is fully observable under an

event mask, therefore a timed-trace ν = (σ1, t1) · · · (σn, tn) is observed through an event-mask

M as M(ν) = (M(σ1), t1) · · · (M(σn), tn). For a timed-language L ⊆ T , its corresponding

event-mask language M(L) is defined by M(L) := {M(ν) | ν ∈ L}.

Given Σ̂ ⊆ Σ, the projection of a timed-trace over Σ̂ is denoted by Π
Σ̂

(·) and inductively

defined as:

Π
Σ̂

(ε) := ε,

Π
Σ̂

(ν(σ, t)) :=

 Π
Σ̂

(ν)(σ, t) if σ ∈ Σ̂

Π
Σ̂

(ν)(ε, t) otherwise

where ν ∈ T , σ ∈ Σ, t ∈ <+. For t ≤ t′ ∈ R+, we treat a “no event at t” followed by “an

event σ ∈ Σ at t′” to be equivalent to just “the event σ at t′”. I.e., we treat (ε, t)(σ, t′) to be

equivalent to the timed-trace (σ, t′). And so it can be concluded that Π
Σ̂

(ν) ∈ T .

A timed discrete event system can be modeled by a timed-automaton A = (Q,Σ,Ξ,Υ, I, Q0,

Qm), where

• Q is a finite set of discrete states (locations);

• Σ is a finite set of events;

• Ξ is a finite set of clocks;

• Υ ⊆ Q×Σ×Φ× 2Ξ×Q is a set of transitions. Here Φ is the set of clock constraints. A

clock constraint φ ∈ Φ is a Boolean formula over atomic constraints of the form ξ ∼ c or

ξ1 − ξ2 ∼ c, where ξ, ξ1, ξ2 ∈ Ξ, ∼∈ {≤, <,=, >,≥}, and c is a rational constant. Each
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transition υ ∈ Υ is a tuple (q, σ, φ, r, q′) with q being the source discrete state, σ being the

event associated with the transition, φ being a clock constraint representing the guard

condition of the transition, r being the set of clocks to be reset by the transition, and q′

being the destination discrete state.

• I : Q→ Φ is the invariant function, which assigns invariant conditions (belonging to Φ)

to discrete states;

• Q0 ⊆ Q is the set of initial states;

• Qm ⊆ Q is the set of final states.

A time-assignment is a function v : Ξ → <+ assigning a nonnegative real value to each

clock. Constants may be added to a time assignment: (v + c)(ξ) := v(ξ) + c. [r 7→ 0]v defines

a time assignment which maps each clock in r ⊆ Ξ to 0 and keeps all other clocks unchanged.

Under this assignment we say that the clocks in r are reset. We use 0v to denote the time

assignment which maps every clock to 0.

A run of a timed-automaton A over a timed-trace ν = (σ1, t1) · · · (σn, tn) is a sequence of

the form (q0, v0) · · · (σi,ti)→ (qi, vi) · · ·
(σn,tn)→ (qn, vn) where q0 ∈ Q0; for each i = 0, · · · , n, qi ∈ Q,

and time-assignment vi satisfies the following requirements:

• Initialization: v0 = 0v;

• Invariance: ∀i = 0, · · · , n, ∀t ∈ [0, ti+1 − ti], vi + t satisfies I(qi), where t0 = 0.

• Consecution: ∀i = 1, · · · , n, ∃(qi−1, σi, φi, ri, qi) ∈ Υ such that vi−1+ti−ti−1 satisfies φi

and vi = [ri 7→ 0](vi−1 + ti− ti−1); if σn 6= ε then there is a tuple (qn−1, σn, φn, rn, qn) ∈ Υ

such that vn−1 + tn − tn−1 satisfies φn and vn = [rn 7→ 0](vn−1 + tn − tn−1), otherwise

qn = qn−1 and vn = vn−1 + tn − tn−1.

A timed-automaton A generates a finite timed-trace ν if A has a run over ν; it generates

an infinite timed-trace ν if it generates all finite prefixes of ν. A generated finite timed-trace

ν is accepted by A if a corresponding run over ν ends in a final state in Qm; an infinite timed-

trace is accepted by ν if a corresponding run over ν visits the set of final states infinitely
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often. The timed language generated (resp., marked) by A, denoted by L(A), (resp., Lm(A))

is the set of all the timed-traces generated (resp. marked) by A. A is said to be nonforcing

if L(A) is nonforcing. The generated untimed language of A is denoted by Luntime(A) =

{νuntime | ν ∈ L(A)}. Similarly, the marked untimed language of A is denoted by Luntimem (A) =

{νuntime | ν ∈ Lm(A)}. Given timed-automata A and R, R is said to be closed relative to A if

pr(Lm(R)) ∩ Lm(A) = Lm(R).

An untimed-automaton can be considered as a special timed-automaton with an empty

set of clocks. Given a timed-automaton A, its corresponding region-automaton R(A) :=

(QR,Σ,ΥR, QR0, QRm) is a nondeterministic untimed-automaton whose states consist of clock-

regions together with the locations of A, and whose paths mimic the runs of A in a certain way.

Here R denotes the set of clock-regions of A, QR = Q×R, QR0 = Q0 × 0v, QRm = Qm ×R

and ((q, α), σ, (q′, α′)) ∈ ΥR if and only if ∃(q, σ, φ, r, q′) ∈ Υ and ∃α′′ ∈ R such that (i) α′′

is a time successor of α, (ii) α′′ satisfies φ, and (iii) α′ = [r 7→ 0]α′′. A clock region is an

equivalence class of clock interpretations induced by the equivalence relation ∼. For t ∈ <, let

btc and fract(t) denote the integral part and the fractional part of t respectively. For each

x ∈ Ξ, let cx be the largest integer c such that x ≤ c or c ≤ x is a subformula of some clock

constraints in Φ. The equivalence relation v ∼ v′ holds if and only if the conditions below hold

[6]:

1. For each x ∈ Ξ, either bv(x)c and bv′(x)c are the same, or both v(x) and v′(x) are greater

than cx.

2. For all x, y ∈ Ξ with v(x) ≥ cx and v(y) ≥ cy, fract(v(x)) ≤ fract(v(y)) iff fract(v′(x)) ≤

fract(v′(y)).

3. For all x ∈ Ξ with v(x) ≤ cx, fract(v(x)) = 0 iff fract(v′(x)) = 0.

The following table lists the clock regions of a timed automaton with two clocks x and y

with cx = 2 and cy = 1, which include 6 points, 14 open line segments and 8 open regions.

From [6], we have the number of clock regions is bounded by |Ξ|! · 2|Ξ|
∏
x∈Ξ(2cx + 2) [6,

Lemma 4.5]. Note this result is obtained by restricting ourselves to the timed automata with
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Table 2.1 Clock regions

Clock Regions
Points (0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (1, 2)
Open line segments [x = 0, 0 < y < 1], [x = 0, y > 1], [0 < x < 1, y = 1], [0 < x = y < 1],

[0 < x < 1, y = 0], [x = 1, 0 < y < 1], [x = 1, y > 1], [1 < x < 2, y = 1],
[0 < x− 1 = y < 1], 1 < x < 2, y = 0, [x = 2, 0 < y < 1], [x = 2, y > 1],
[x > 2, y = 1], [x > 2, y = 0]

Open regions [0 < y < x < 1], [0 < x < y < 1], [0 < x < 1, y > 1], [0 < y < x− 1 < 1],
[0 < x− 1 < y < 1], [1 < x < 2, y > 1], [x > 2, y > 1], [x > 2, 0 < y < 1]

the clock constraints only involving integer constants. For the timed automata in which the

clock constraints are allowed to involve comparisons with rational constants, the least common

multiple of the rational constants can be chosen so as to convert the constraints with rational

constants to the ones with integral constants. In the following, we primarily consider the timed

automata with integral constraints.

The following result from [6] shows the regularity of the corresponding untimed language

of a timed automaton.

Theorem 1 [6]Given a timed automaton A, there exists an untimed automaton which accepts

Luntime(A).

Remark 1 From [6], we have the untimed language of a timed-automaton A can be repre-

sented by its region-automaton R(A), i.e., Luntime(A) = L(R(A)). This further implies the

marked untimed language of a timed-automaton A is regular, i.e., Luntimem (A) = Lm(R(A)).

Given a region automatonR(A), there exists a deterministic untimed-automaton det[R(A)] :=

(2QR ,Σ, Υ̃, {QR0},Qm), where (Q̃, σ, Q̃′) ∈ Υ̃ if Q̃′ =
⋃
q∈Q̃:(q,σ,q′)∈ΥR

{q′} and Qm := {Q̃ ⊆

QR | Q̃∩QRm 6= ∅}, such that L(R(A)) = L(det[R(A)]) ⊆ Σ∗ and Lm(R(A)) = Lm(det[R(A)]) ⊆

Σ∗.

Given timed-automata Ai = (Qi,Σi,Ξi,Υi, Ii, Qi0, Qim), i = 1, 2, with disjoint Ξi, their

composition is defined as A1‖A2 = (Q1 × Q2,Σ1 ∪ Σ2,Ξ1 ∪ Ξ2,Υ, I, Q10 × Q20, Q1m × Q2m)

where I(q1, q2) = I(q1) ∧ I(q2) and the transition set Υ is the smallest set with the property:

1. ∀σ ∈ Σ1 ∩ Σ2, ∀(q1, σ, φ1, r1, q
′
1) ∈ Υ1, ∀(q2, σ, φ2, r2, q

′
2) ∈ Υ2, ((q1, q2), σ, φ1 ∧ φ2, r1 ∪

r2, (q
′
1, q
′
2)) ∈ Υ.
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2. ∀σ ∈ Σ1 − Σ2, ∀(q1, σ, φ1, r1, q
′
1) ∈ Υ1, ∀q2 ∈ Q2, ((q1, q2), σ, φ1, r1, (q

′
1, q2)) ∈ Υ.

3. ∀σ ∈ Σ2 − Σ1, ∀(q2, σ, φ2, r2, q
′
2) ∈ Υ2, ∀q1 ∈ Q1, ((q1, q2), σ, φ2, r2, (q1, q

′
2)) ∈ Υ.

Next we introduce the notions of non-speedingness (also called non-zenoness) and non-

slowingness. The former requires that too many transitions shall not occur in a short time

interval, whereas the latter requires that too few transitions shall not occur in a long time

interval.

Definition 1 An infinite timed-trace ν = (σ1, t1) · · · (σn, tn) · · · is said to be non-speeding or

non-zeno if for every interval [t, t+ T ] ⊆ <+ exists a count Nt,T > 0 such that

∀i < j : [ti, tj ] ⊂ [t, t+ T ]⇒ j − i < Nt,T .

ν is said to be uniformly non-speeding if Nt,T is independent of t. A timed language is said

to be (uniformly) non-speeding if all its infinite timed-traces are (uniformly) non-speeding. A

timed-automaton is (uniformly) non-speeding if its generated timed-language is (uniformly)

non-speeding. In the following, it is assumed that a system model is non-speeding by default.

An infinite timed-trace ν = (σ1, t1) · · · (σn, tn) · · · is said to be non-slowing if for every

count set [n, n+N ] := {n+ k|0 ≤ k ≤ N} ⊆ N exists an interval Tn,N ∈ <+ such that

∀i < j : [i, j] ⊂ [n, n+N ]⇒ tj − ti < Tn,N .

ν is said to be uniformly non-slowing if Tn,N is independent of n. A timed language is said

to be (uniformly) non-slowing if its each finite timed-trace possesses an infinite timed-trace

extension, and its each infinite timed-trace is (uniformly) non-slowing. A timed-automaton is

(uniformly) non-slowing if its generated timed-language is (uniformly) non-slowing.

For a non-slowing timed-language K, it holds that for each ν ∈ K, exists t > T (ν) such

that ν(ε, t) 6∈ K.
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CHAPTER 3. TIMING-MASKED LANGUAGE AND ITS

REGULARITY

In this chapter, we define the behavior of a dense timed-automaton when the event occur-

rence times are measured using a digital-clock of finite precision that measures time discretely

by generating ticks. We show that the set of timed-traces in which the event occurrence times

are measured through a digital-clock constitutes a regular language, i.e., can be represented

by a finite (untimed) automaton.

3.1 Timing-Masked Language

A digital-clock is a generator of “ticks” (used to measure time with a finite-precision).

It can be modeled as a timed-automaton C = (Qc, {τ},Ξc,Υc, Ic, Qc0, Qc), in which τ /∈ Σ

denotes the “tick” event.

Note since time can never be stopped, a digital-clock C is required to be “non-speeding”

(also known as non-Zeno), i.e., C cannot generate infinitely many tick-transitions within a

finite time interval. Dually, since C should continue to generate ticks (for the measurement

purpose), it is required to be “non-slowing”, i.e., C cannot generate only a finitely many ticks

in an infinite time interval.

Given a digital-clock C and a timed-trace ν, we use MC(ν) to denote the set of all possible

timing-masked observations of ν, where the passing of time is measured in form of the number

of ticks generated by the digital-clock C.

Definition 2 Given a digital-clock C, the timing-mask MC associated with C is defined as
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follows: For a timed-trace ν = (σ1, t1) · · · (σn, tn),

MC(ν) := { τk1σ1 · · · τknσnτ b |

∃ν1 · · · νn+1 ∈ L(C) s.t.

∀i ≤ n+ 1, νi = (τ, t1i ) · · · (τ, t
ki
i ),

∀i ≤ n, ti ∈ [tkii , t
1
i+1],

b ∈ {0, 1}, (b = 1⇔ tn = t1n+1)},

where τ0 := ε and τ i+1 := τ · τ i for all i ≥ 0.

Note in the definition above, τki , i = 1, . . . , n + 1 denotes the number of ticks that can

occur in the interval [ti−1, ti] (where t0 := 0). Accordingly a timed-trace ν1 . . . νn+1 belongs

to L(C), where for each i ≤ n, νi = (τ, t1i ) . . . (τ, t
ki
i ) has ki ticks, and moreover it holds that

ti ∈ [tkii , t
1
i+1]. Note it is possible that the occurrence of a tick coincides with that of an event

σi of the timed-trace ν. Then according to the interleaving semantics, this is observed either

as σi followed by the tick or, as the tick followed by σi. The timing-mask function includes

the both possibilities. In particular it is possible that a tick transition occurs at the last event

occurrence time tn, and so (following the interleaving semantics) the observation of ν can

consist of a single tick after the last event σn.

The following example illustrates Definition 2.

Example 3 Consider a digital-clock C with a period of 2 seconds and a jitter of 1 second as

shown in Figure 3.1 (a) and a timed-trace ν = (a, 5.5). The timed-traces that C can execute

by 5.5 seconds and ν are shown in Figure 3.1 (b) (d). From the definition of timing-mask, we

have MC(ν) = {τa, ττa, τaτ}. This is because (τ, t1)(τ, t2) ∈ L(C) for t1 ∈ [2, 3] and t2 ∈ [4, 6].

And so it is possible to observe one or two ticks before the occurrence of a. Also since C may

tick at 5.5 seconds, synchronously with a, we have τaτ ∈MC(ν) as well.

The timing-mask generated language (resp., timing-masked marked language) of a timed-

automaton A, denoted by MC(L(A)) = {MC(ν)|ν ∈ L(A)} (resp., MC(Lm(A)) = {MC(ν)|ν ∈

Lm(A)}), consists of all timing-masked observations of the timed-traces generated (resp.,



24

01

τ, 2 ≤ x ≤ 3, y:=0

x ≤ 3

a

2 4 5.5

τ τ

3 5

0

a

2 4 5.5

τ τ

3 5

0

a

2 4 5.5

τ τ

3 5

0

a

2 4 5.5

τ τ

3 5

0

a

2 4 5.5

τ τ

3 50

a

2 4 5.5

τ τ

3 5

0

a

2 4 5.5

τ τ

3 5

0

a

2 4 5.5

τ τ

3 5

0

a

2 4 5.5

τ τ

3 5

0

a

2 4 5.5

τ τ

3 5

(b) (c)

(d)

(a)

Figure 3.1 Timed-automaton of C and timing-masked observations of ν

marked) by A. It is obvious that a timing-masked language is a language over Σ ∪ {τ} := Στ .

Since τ is just a symbol representing tick, MC(L(A)) and MC(Lm(A)) can be viewed as un-

timed languages over Στ .

Remark 2 MC(ν) consists of all the untimed observations of a timed-trace ν as observed

through the digital-clock C. Since the number of ticks generated in any time interval can vary

from execution to execution of the digital-clock, the timing-mask observation of a timed-trace

is in general non-unique, i.e., MC(·) is set-valued, and hence we also refer MC(·) as being

nondeterministic. (In contrast, an event mask function is typically deterministic yielding a

unique observation for any executed trace [80, 66].)

Note if a tick event occurs simultaneously with an event σ ∈ Σ, then . . . τσ . . . as well

as . . . στ . . . must be included in the corresponding timing-masked observations. Thereby

a timing-masked language of even a prefix-closed language need not be prefix-closed. For

example, given L = {(a, 1)(ε, t1), (ε, t2)} with t1 > 1, t2 ≥ 0 and a digital-clock which ticks

every one time unit, we have MC(L) = {τ∗, τaτ∗, aττ∗}. Note a ∈ pr(MC(L)) − MC(L),
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showing the non prefix-closure of MC(L).

3.2 Regularity of Timing-Masked Language

We present the regularity result of a marked timing-masked language in this section. A

timing-masked language is in general not prefix-closed. In the following we first show that the

prefix of the timing-masked generated language of a dense timed-automaton is regular.

Proposition 1 Given a timed-automaton A and a digital-clock timed-automaton C, let MC

be the timing-mask associated with C. Then pr(MC(L(A))) ⊆ (Στ )∗ is a regular untimed

language.

Proof: Let A‖C be the product timed-automaton of A and C. In light of Theorem 1, it

suffices to show that pr(MC(L(A))) = Luntime(A‖C).

We first prove the containment pr(MC(L(A))) ⊆ Luntime(A‖C). Pick νc = τk1σ1 · · · τklσlτ r ∈

pr(MC(L(A))). There exists ν ′c = νcτ
kl+1−rσl+1 · · · τkmσmτ b ∈MC(L(A)). So there exist µ′A =

(σ1, t1) · · · (σl, tl)(σl+1, tl+1) · · · (σm, tm)(ε, t) ∈ L(A) and µ′C = (τ, t11) · · · (τ, tkll )(τ, t1l+1) · · · (τ, tkmm )

· · · (τ, tb+1
m+1) ∈ L(C) such that ν ′c ∈ MC(µ′A) and ti ∈ [tkii , t

1
i+1] for i = 1, · · · ,m, t ∈

[tbm+1, t
b+1
m+1) (if b = 0, tbm+1 = tkmm ). We need to consider the following two cases.

Case 1: r ≥ 1. If tl+1 = trl+1, i.e., σl+1 and τ occur simultaneously, then from µA =

(σ1, t1) · · · (σl, tl)(σl+1, tl+1) ∈ pr(µ′A) ⊆ L(A) and µC = (τ, t11) · · · (τ, trl+1) ∈ pr(µ′C) ⊆ L(C),

we have ρ = (τ, t11) · · · (τ, tk11 )(σ1, t1) · · · (τ, tkll )(σl, tl)(τ, t
1
l+1) · · · (τ, trl+1) ∈ pr(L(A‖C)) = L(A‖C).

If tl+1 ∈ (trl+1, t
1
l+2], then we have ρ ∈ L(A‖C).

Case 2: r = 0. If tl = t1l+1, i.e., σl and τ occur simultaneously, then from µA =

(σ1, t1) · · · (σl, tl) ∈ pr(µ′A) ⊆ L(A) and µC = (τ, t11) · · · (τ, tkll ) ∈ pr(µ′C) ⊆ L(C), we have

ρ = (τ, t11) · · · (τ, tk11 )(σ1, t1) · · · (τ, tkll )(σl, tl) ∈ pr(L(A‖C)) = L(A‖C). If tl ∈ [tkll , t
1
l+1), we

have ρ ∈ L(A‖C).

In either case, we have νc = ρuntime ∈ Luntime(A‖C).

Next we prove the reverse containment, Luntime(A‖C) ⊆ pr(MC(L(A))). Pick νc =

τk1σ1 · · · τklσlτ r ∈ Luntime(A‖C). There exists ρ = (τ, t11) · · · (τ, tk11 )(σ1, t1) · · · (τ, tkll )(σl, tl)
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· · · (τ, trl+1) ∈ L(A‖C). Then we have µA = (σ1, t1) · · · (σl, tl) ∈ L(A), µC = (τ, t11) · · · (τ, trl+1) ∈

L(C) and ti ∈ [tkii , t
1
i+1] for i = 1, · · · , l. We need to consider the following two cases.

Case 1: r ≥ 1. If µA(σl+1, tl+1) ∈ L(A) and tl+1 = trl+1, i.e., σl+1 and τ occur simul-

taneously, then νc ∈ pr(MC(µA(σl+1, tl+1))). Otherwise, we have µA(ε, trl+1) ∈ L(A) and

νc ∈MC(µA(ε, trl+1)).

Case 2: r = 0. If tl = t1l+1, i.e., σl and τ occur simultaneously, then νc ∈ pr(MC(µA)).

Otherwise, νc ∈MC(µA).

In either case, we have νc ∈ pr(MC(L(A))).

Remark 3 Since the untimed-language of a timed-automaton can be generated by its region-

automaton [6], it follows from Proposition 1 and the construction of a region-automaton [6]

that the maximum number of states in the generator of pr(MC(L(A))) is linear in the number

of states in A and C and exponential in the number of clocks and the encodings of the clock

constraints in A and C. Instead of using a region-automaton, one may use a zone-automata

which in practice possess a smaller state-space.

Proposition 1 establishes that the prefix closure of a timing-mask language is regular. In

the following, we show that a timing-masked language itself is also regular.

Proposition 2 Given a timed-automaton A and a digital-clock timed-automaton C, let MC

be the timing-mask associated with C. Then MC(L(A)) ⊆ (Στ )∗ is a regular untimed language.

Proof: From Proposition 1, we have that given a timed-automaton A, pr(MC(L(A))) =

Luntime(A‖C). For any ν ∈MC(L(A), from ν ∈ pr(MC(L(A))), then by following ν, a certain

state x in R(A‖C) must be reached. If there exists a trace ν ′ ∈ pr(MC(L(A)))−MC(L(A)), by

executing which x is also reached, then x needs to be split into two copies, namely, a marked

copy x reachable by ν and an unmarked copy x′ reachable by ν ′. Otherwise, we mark the state

x. Then by this means, the automaton R(A‖C) is augmented by certain unmarked states.

The size (i.e., the number of the states) of the resulting augmented automaton is at most twice

of that of the original automaton R(A‖C)) since each state in R(A‖C)) is either unmarked, or

marked, or split to the marked and unmarked copies. Further, since only the states reachable
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by ν ∈MC(L(A))) are marked in the resulting augmented automaton, it accepts the language

MC(L(A)). Therefore we have the timing-masked language MC(L(A))) is regular.

With Proposition 2 in hand, it is easy to conclude that the timing-masked language of a

marked timed-language is also regular. Combining the above results, we have the following

theorem.

Theorem 2 Given a timed-automaton A and a digital-clock timed-automaton C, let MC be

the timing-mask associated with C. Then MC(L(A)) ⊆ (Στ )∗ as well as MC(Lm(A)) ⊆ (Στ )∗

are regular.

From the proof of Proposition 2, we notice that in order to decide whether a state of

R(A‖C)) should be marked, unmarked or split, we need know whether the state can be

reached by a trace ν ′ ∈ pr(MC(L(A))) − MC(L(A)). In order to identify such traces, the

region-automaton R(A‖C) need be refined so that it is able to accept the non prefix-closed

language MC(L(A)). This can be done in two steps. First, the transitions of R(A‖C) are

extended to include ε-labeled transitions which keep track of the passing of time. This

helps us identify the “forcing” states where the passing of time is not possible, and only a

transition in Στ can occur. The necessity for identifying the forcing states are explained

as follows. Suppose a state x can be reached by a trace ν ∈ MC(L(A)) and νστ, ντσ ∈

MC(L(A)). If σ and τ are both forced, then we have the prefixes νσ and ντ are not in

MC(L(A)), and thus the states reached by these prefixes should be unmarked. Whereas if

either σ or τ is not forced, then both of the prefixes are accepted by MC(L(A)). And so

it is necessary to identify the forcing states. The resulting automaton is called an extended

region-automaton, denoted by Rε(A‖C), and consists of a tuple (QR,Σ
τ
,ΥRε , QR0, QRm),

where ∀((qA, qC , α), σ, (q′A, q
′
C , α

′)) ∈ ΥR: ((qA, qC , α), ε, (qA, qC , α0)), · · · , ((qA, qC , αi), ε,

(qA, qC , αi+1)), · · · , ((qA, qC , αk), σ, (q
′
A, q

′
C , α

′)) ∈ ΥRε , where αi ∈ R, αi+1 is the immedi-

ate time-successor of αi for i = 0, · · · , k− 1 and α0 (resp., α′) is the immediate time-successor

of α (resp., αk).

In the second step, an extended region automaton is further refined to identify “event-

pending” states and “tick-pending” states. Such states cannot be a final state since a certain
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transition (either tick or event) is still “pending”. To identify these states, we first introduce

the notions of “forcing”,“tick-concurrent” and “pending” states.

Definition 3 Consider the extended region automaton Rε(A‖C). Let Στ (q) ⊆ Σ
τ

denote the

set of events defined at state q of Rε(A‖C). q is said to be

• forcing if ε 6∈ Στ (q);

• tick-concurrent if forcing and exists σ ∈ Σ such that {τ, σ} ⊆ Στ (q);

• tick-pending with respect to its predecessor q− if forcing and (q−, σ, q) ∈ ΥRε such that

q− is tick-concurrent and

– either all predecessors of q are forcing,

– or (q−1 , σ1, q), (q
−
2 , ε, q) ∈ ΥRε with q−1 forcing and q−2 nonforcing;

• event-pending with respect to its predecessor q− if forcing and (q−, τ, q) ∈ ΥRε such that

q− is tick-concurrent and

– either for any predecessor q−− of q−, (q−−, ε, q−) ∈ ΥRε ,

– or (q−−1 , σ1, q
−), (q−−2 , ε, q−) ∈ ΥRε with q−−2 nonforcing.

Remark 4 It can be inferred that a forcing predecessor of a tick-pending state q must be

tick-concurrent (since tick is enabled at q). Also, in the second clause of event-pending state,

it can be inferred that if q−−1 is forcing, then q− is a tick-pending state with respect to its

predecessor q−−1 .

Note any tick/event-pending state cannot be a final state if it is reached along predecessors

which render it a pending state (since some concurrently enabled transition is still pending to

occur). And so each tick/event-pending state may be duplicated to make another copy, which

cannot be marked. This is formalized in the following algorithm.

Algorithm 1 Given a plant A and a digital-clock C, the algorithm for constructing the refined

region-automaton Rε(A||C) := (QRε ,Σ
τ ,ΥRε , QRε0, QRεm), is presented as follows.
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1. Obtain the region-automaton R(A‖C).

2. Obtain the extended region-automaton Rε(A‖C).

3. Construct the states QRε . ∀q ∈ QRε :

• if q ∈ QRεm and tick-pending, then:

– if all predecessors of q are forcing, (q, 0) ∈ QRε ;

– otherwise, q, (q, 0) ∈ QRε ;

• if q ∈ QRεm and event-pending such that (q−, τ, q) ∈ ΥRε with q− being tick-

concurrent, then:

– if for any predecessor q−− of q−, (q−−, ε, q−) ∈ ΥRε , then (q, 0) ∈ QRε ;

– otherwise, q, (q, 0) ∈ QRε ;

• otherwise, q ∈ QRε ;

4. Construct the transitions ΥRε . ∀q ∈ QRε :

• if q ∈ QRεm and tick-pending such that (q−, σ, q) ∈ ΥRε with q− tick-concurrent,

then:

– if all predecessors of q are forcing, then:

(q−, σ, (q, 0)) ∈ ΥRε (resp., ((q−, 0), σ, (q, 0)) ∈ ΥRε) if q− ∈ QRε (resp.,

(q−, 0) ∈ QRε);

– if (q−1 , σ1, q), (q
−
2 , ε, q) ∈ ΥRε with q−1 forcing and q−2 nonforcing, then:

(q−1 , σ1, (q, 0)) ∈ ΥRε (resp., ((q−1 , 0), σ1, (q, 0)) ∈ ΥRε) if q−1 ∈ QRε (resp.,

(q−1 , 0) ∈ QRε), and (q−2 , ε, q) ∈ ΥRε ;

• if q ∈ QRεm and event-pending such that (q−, τ, q) ∈ ΥRε with q− being tick-

concurrent, then:

– if for any predecessor q−− of q−, (q−−, ε, q−) ∈ ΥRε , then:

(q−, τ, (q, 0)) ∈ ΥRε ;
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– if (q−−1 , σ1, q
−), (q−−2 , ε, q−) ∈ ΥRε with q−−1 forcing (resp. nonforcing) and q−−2

nonforcing, then:

((q−, 0), τ, q)(resp. (q−, τ, q)), (q−, τ, (q, 0)) ∈ ΥRε ;

• otherwise, (q−, σ, q) ∈ ΥRε (resp., ((q−, 0), σ, q) ∈ ΥRε) if (q−, σ, q) ∈ ΥRε and

q− ∈ QRε (resp., (q−, 0) ∈ QRε);

5. Construct the marked states QRεm.

q ∈ QRεm iff q ∈ QRεm ∩QRε .
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Figure 3.2 Timed automata of A,C and clock regions

The following example illustrates Algorithm 1.

Example 4 Given a timed-automaton A, digital-clock automaton C and the clock regions of

A||C as shown in Figure 3.2. The extended region-automaton Rε(A‖C) is shown in Figure 3.3,

in which for clarity the location label for C is omitted (this does not cause any ambiguity since

C has a single location). The corresponding refined region-automaton Rε(A||C) is shown in

Figure 3.4.

According to Algorithm 1, state (2, (x = 0, y = 1)) (where 2 is marked in A), is identified

as a tick-pending state and unmarked since its only predecessor state (1, (x = y = 1)) is a tick-

concurrent state. Similarly, state (4, (x = y = 1)) (where 4 is marked in A) is also identified as

a tick-pending state, and so is unmarked. State (2, (x = y = 1)), identified as a tick-pending

state, is duplicated to yield a marked copy (2, (x = y = 1)) and an unmarked copy (2, 0, (x =

y = 1)). The unmarked copy is reached from the forcing predecessor (3, (x = y = 1)), whereas

the marked copy is reached from nonforcing predecessor (2, (0 < x = y < 1)). The incoming

transitions of state (2, (x = y = 1)) are thus accordingly split. State (2, (x = 1, y = 0)),
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identified as an event-pending state, is also duplicated since its tick-concurrent predecessor

(2, (x = y = 1)) possesses a forcing predecessor (3, (x = y = 1)) as well as a nonforcing

predecessor; also the incoming transitions are accordingly split.
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CHAPTER 4. SUPERVISORY CONTROL OF DENSE-TIME DESs

USING DIGITAL-CLOCKS

In this chapter, we study the supervisory control of dense-time discrete event systems using

finite-precision digital-clocks to observer event occurrence times. We start by introducing the

notion of control compatible and timing-mask compatible control policies that do not disable

uncontrollable events and also respect the timing-mask associated with a digital-clock, and

show that a compatible control policy can be represented as a “digitalized”-automaton (an

untimed-automaton in which the passing of time occurs discretely in form of the occurrences

of ticks). We then introduce the notion of observability with respect to the partial observation

of time resulting from the use of a digital-clock, and show that this property together with

controllability serves as a necessary and sufficient condition for the existence of a control policy

to enforce a real-time specification on a dense-time discrete event plant. The observability con-

dition presented in the paper is very different from the one arising due to a partial observation

of events since a partial observation of time is in general nondeterministic (the number of ticks

generated in any time interval can vary from execution to execution of a digital-clock). Finally

we present a method to check the proposed observability and controllability conditions, and

also present a method to synthesize a supervisor when these conditions are satisfied. Further

we examine the lattice structure of a class of timing-mask observable languages, and show that

timing-mask observability is not preserved under intersection but preserved under union.

4.1 Compatible Control Policy

In this work we assume that plants as well as specifications are nonforcing. This is a

practical assumption since it is unclear how to even precisely know a certain time so as to
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enforce a certain event at that time.

Let Γ = {Σ̂ ⊆ Σ} denote the set of control actions. Each control action consists of events

in Σ to be enabled, and possibly ε to indicate that a passage of time is being allowed (i.e., an

event is not being forced to occur).

A control policy for a plant with a generated language L is a partial function f : L → Γ,

mapping a timed-trace to a certain control action. We use f(ν) to denote the control action

issued by f following a timed-trace ν. The generated controlled language, denoted L/f , is

defined inductively as follows:

ε ∈ L/f ; [ν ∈ L/f, ν(σ, T (ν)) ∈ L, σ ∈ f(ν)]⇔ [ν(σ, T (ν)) ∈ L/f ].

Letting Lm denote the marked plant language, the marked controlled language is given by

Lm/f := Lm ∩ L/f . A control policy f is said to be nonforcing if a passing of time is always

allowed, i.e., for any ν ∈ L, ε ∈ f(ν). It is said to be nonblocking if pr(Lm/f) = L/f .

Nonblockingness requires that any generated timed-trace of the controlled language must not

be blocked from being able to extend to a marked timed-trace of the controlled language.

To understand the restriction imposed by a timing mask on a control policy, we also consider

another type of control policy that is defined over the observations of a plant language. For

a timed-trace ν ∈ L, the set of enabled events following ν will consist of those events that

are enabled after an enabled observation in MC(ν). Additionally, if a tick can occur at T (ν),

i.e., at the very end of ν, then the set of enabled events following ν will also include those

events that are enabled following an enabled observation of ν prior to the occurrence of the

very last tick at T (ν), as those events remain enabled even at the instance T (ν) (since no other

observations occur in the interim, and so the control action cannot change).

This motivates us to introduce the set of extended timing-mask observations (or simply

extended observations) of ν, which consists of all timing-mask observations of ν, together with

the observations of ν prior to the occurrence of the very last tick at T (ν):

Definition 4 Given a digital-clock C, the extended timing-mask observation of ν, denoted

M+
C (ν), is defined as M+

C (ν) := MC(ν)∪{νc | νcτ ∈MC(ν), ∀σ ∈ Σ : νcστ ∈MC(ν(σ, T (ν)))}.
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Note the second term in the union of Definition 4 consists of the observations of ν prior

to the very last tick at T (ν). Under the non-forcingness of L, it is easy to see that M+
C (L) =

pr(MC(L)), i.e., the set of extended observations of L equals all observations of L together

with all their prefixes. Also it follows from Definition 4 that given a timed trace ν =

(σ1, t1) · · · (σn, tn), if νc = τk1σ1 · · · τknσnτ b ∈ M+
C (ν), then νc = τk1σ1 · · · τkiσi ∈ M+

C (ν)

for ν = (σ1, t1) · · · (σi, ti).

The lemma below asserts certain properties of the extended timing-mask observations,

which follow from Definitions 2 and 4.

Lemma 1 Given a digital-clock C, the following holds for σ ∈ Σ and timed-traces ν, ν(σ, T (ν)):

• ∀νc ∈M+
C (ν), ∃ν ′c ∈MC(ν(σ, T (ν)) such that either ν ′c = νcσ or ν ′c = νcστ .

• ∀ν ′c ∈MC(ν(σ, T (ν))), ∃νc ∈M+
C (ν) such that either νcσ = ν ′c or νcστ = ν ′c.

• ∀νc ∈M+
C (ν), either νc ∈MC(ν) or νcτ ∈MC(ν).

Consider a control policy f̃ : M+
C (L) → Γτ defined over the set of extended observa-

tions (equivalently, over the set of observations together with their prefixes, for M+
C (L) =

pr(MC(L))), where Γτ := {Σ̂ ⊆ Σ
τ}. Then the controlled-behavior under such a control policy

can be defined as follows:

ν = (σ1, t1) · · · (σn, tn) ∈ L, ν ∈ L/f̃ ⇔ ∃νc = τk1σ1 · · · τknσnτ b ∈M+
C (ν) s.t.

σ1 ∈ f̃(τk1), ∀i = 2, · · · , n : σi ∈ f̃(τk1σ1 · · · τki−1σi−1τ
ki).

We say that f̃ is nonforcing if for any untimed trace νc for which f̃(νc) is defined, ε, τ ∈ f̃(νc).

A nonforcing control policy f : L → Γ over a plant language is able to respect the

restrictions imposed by a timing-mask if and only if it is equivalent to a control policy

f̃ : M+
C (L) → Γτ over the extended observations of a plant language, in the sense that the

two yield the same controlled-language. For this to occur, a control policy f needs to satisfy

a certain restriction which we identify below as the property of (L,MC)-compatibility. The

basic idea is simple: If each extended-observation of ν ∈ L is either an extended-observation

of a timed-trace where σ ∈ Σ is disabled, or possesses a prefix that is an extended observation
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of a disabled timed-trace, then σ must be disabled following ν (since in this case there exists

no enabled extended observation of ν where σ is enabled).

The following definition formalizes the notion of (L,MC)-compatibility, in which [M+
C (L−

L/f)](Στ )∗ denotes the set of extended observations whose prefixes share an extended obser-

vation of a disabled trace. The definition also defines (L,Σu)-compatibility which captures the

restriction that uncontrollable events cannot be disabled.

Definition 5 Let L be a generated timed-language of a plant, Σu ⊆ Σ be a set of uncontrol-

lable events, MC be the timing-mask associated with a digital-clock C. A control policy f is

said to be

• (L,MC)-compatible, if ∀ν ∈ L/f , σ ∈ Σ such that ν(σ, T (ν)) ∈ L: if exists H ⊆ L/f

such that ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈ L−L/f , and M+
C (ν) ⊆M+

C (H)∪ [M+
C (L−L/f)](Στ )∗,

then σ /∈ f(ν).

• (L,Σu)-compatible, if ∀ν ∈ L/f , σ ∈ Σu such that ν(σ, T (ν)) ∈ L: ν(σ, T (ν)) ∈ L/f .

• (L,Σu,MC)-compatible, if f is (L,Σu)-compatible and (L,MC)-compatible.

The following example illustrates the concept of timing-mask compatibility.

Example 5 Consider the generated timed-language L of a plant G, and a digital-clock C as

shown in Figure 4.1.

1<x<2
a1 2 3

4

6 7

5
a

x=2

2<x<3

a

b

b

b
2<x<3

x=2

x=2

1

Τ,y=1,y:=0

y≤1

Figure 4.1 Timed-automata of plant G (left) and digital-clock C (right)

Suppose events a, b are controllable. Let f be a control policy that enables a after (ε, 1 <

t ≤ 2) whereas disables a after (ε, 2 < t < 3), and enables b after (a, 2) whereas disables b after
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(a, 1 < t < 2)(ε, 2). Note the extended observations of an enabled timed-trace (a, 2) ∈ L/f

are given by M+
C ((a, 2)) = {τa, τaτ, ττa} (for MC((a, 2)) = {τaτ, ττa}). Since the extended

observation ττa of (a, 2) is shared by a disabled timed-trace (a, 2 < t1 < 3) ∈ L − L/f (for

M+
C ((a, t1)) = MC((a, t1)) = {ττa}), for b to be enabled after (a, 2), it needs to be enabled

following the extended observations in M+
C ((a, 2))− [M+

C (L−L/f)](Στ )∗, i.e., {τa, τaτ}. How-

ever, b is disabled after the timed-trace (a, 1 < t2 < 2)(ε, 2) ∈ L/f for which the extended

observation is given by M+
C ((a, t2)(ε, 2)) = {τa, τaτ}. It follows that f is not timing-mask

compatible. On the other hand, if b were to be enabled following (a, t2)(ε, 2), the resulting

control policy would then be timing-mask compatible.

In the following we show that whenever f is (L,MC)-compatible, the controlled language

under f can also be achieved under f̃ , and vice versa.

Proposition 3 Let L be the generated timed-language of a nonforcing plant, MC be the

timing-mask associated with a digital-clock C.

1. Given a (L,MC)-compatible nonforcing control policy f , there exists a nonforcing control

policy f̃ such that L/f̃ = L/f .

2. Given a nonforcing control policy f̃ , there exists a (L,MC)-compatible nonforcing control

policy f such that L/f = L/f̃ .

Proof: We start by proving the first assertion. Let K := pr(MC(L/f))− [M+
C (L−L/f)](Στ )∗.

Since pr(MC(L/f)) is prefix-closed and [M+
C (L − L/f)](Στ )∗ is suffix-closed, K is prefix-

closed. From ε ∈ pr(MC(L/f)) and nonforcing-ness of L and f , ε /∈ M+
C (L − L/f). This

implies K is nonempty. Let S = (Q,Στ ,Υ, Q0, Q) be an untimed-automaton with L(S) = K.

∀νc ∈ L(S), we have νcτ ∈ L(S), i.e., νcτ
∗ ∈ L(S). This can be proved by contradiction

as follows. Suppose νcτ /∈ L(S). Then from νc ∈ pr(MC(L)) and nonforcing-ness of f ,

νcτ ∈ pr(MC(L)). Therefore νcτ ∈ [M+
C (L − L/f)](Στ )∗. Note νc /∈ [M+

C (L − L/f)](Στ )∗.

Then it must be the case νcτ ∈ M+
C (L − L/f). It follows that exists ν ′ ∈ L − L/f s.t.

νcτ ∈M+
C (ν ′). Then ∃ν ′′ ∈ pr(ν ′) s.t. ν ′′(ε, T (ν ′)) = ν ′ and νc ∈M+

C (ν ′′). Note ν ′′ ∈ L−L/f .
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Then νc ∈ M+
C (L − L/f), which yields a contradiction. Define a nonforcing control policy f̃ :

∀νc ∈ L(S), f̃(νc) := {σ ∈ Στ |νcσ ∈ L(S)} ∪ {ε}. We claim that L/f̃ = L/f .

We first show L/f ⊆ L/f̃ by contradiction. Pick ν = (σ1, t1) · · · (σn, tn) ∈ L/f (Without

loss of generality, σi ∈ Σ for i = 1, · · · , n − 1, and σn ∈ Σ). Suppose ν /∈ L/f̃ . Then ∀νc =

τk1σ1 · · · τkn ∈ M+
C ((σ1, t1) · · · (ε, tn)), if exists j ≤ n − 2 s.t. σj+1 /∈ f̃(τk1σ1 · · · τkiσiτkj+1),

then νcσj+1 /∈ L(S) for νc = τk1σ1 · · · τkiσiτkj+1 . Note νcσj+1 ∈M+
C (ν), where ν = (σ1, t1)

· · · (σj , tj)(σj+1, tj+1) ∈ pr(ν). We have νcσj+1 ∈ pr(MC(L/f)). Thereby νcσj+1 ∈ [M+
C (L −

L/f)](Στ )∗. This implies νc ∈ [M+
C (L − L/f)](Στ )∗. On the other hand, if ∀j ≤ n − 2,

σj+1 ∈ f̃(τk1σ1 · · · τkiσiτkj+1) (σ1 ∈ f̃(τk1)), then ν = (σ1, t1) · · · (σn−1, tn−1) ∈ L/f̃ and

τk1σ1 · · · τkn−1σn−1 ∈ L(S). It follows that νc ∈ L(S) and ν(ε, tn) ∈ L/f̃ . From ν /∈ L/f̃ , we

have σn /∈ f̃(νc), i.e., νcσn /∈ L(S). This further implies νcσn ∈ [M+
C (L − L/f)](Στ )∗. Note

νc ∈ L(S), νcσn ∈M+
C (L−L/f). Therefore there exists ν ′ = (σ1, t

′
1) · · · (σn, t′n) ∈ L−L/f s.t.

νcσn ∈ M+
C (ν ′). Note νc ∈ M+

C (ν ′), where ν ′ = (σ1, t
′
1) · · · (σn−1, t

′
n−1)(ε, t′n). This together

with ν ′ ∈ L and νc ∈ L(S) implies ν ′ ∈ L/f . Let H := {ν ′}. Then ∀ν ′ ∈ H, ν ′ ∈ L/f ,

ν ′(σn, T (ν ′)) ∈ L− L/f and νc ∈M+
CH. Therefore M+

C (ν) ⊆M+
C (H) ∪ [M+

C (L− L/f)](Στ )∗.

Then from (L,MC)-compatibility of f , σn /∈ f((σ1, t1) · · · (ε, tn)), i.e., ν /∈ L/f , which yields a

contradiction.

We next show L/f̃ ⊆ L/f by contradiction. Pick ν = (σ1, t1) · · · (σn, tn) ∈ L/f̃ . Suppose

ν /∈ L/f . Then ∀νc ∈ M+
C (ν), νc ∈ M+

C (L − L/f). Therefore νc /∈ L(S). However on the

other hand, from ν ∈ L/f̃ , there exists νc = τk1σ1 · · · τknσn ∈M+
C (ν) s.t. σ1 ∈ f̃(τk1), and for

i = 2, · · · , n, σi ∈ f̃(τk1σ1 · · · τki−1σi−1τ
ki). This implies νc ∈ L(S). A contradiction arrives.

Then we prove the second assertion. Define a nonforcing control policy f : ∀ν ∈ T , f(ν) :=⋃
νc∈M+

C (ν){σ ∈ Σ | σ ∈ f̃(νc)} ∪ {ε}, where νc = τk1σ1 · · · τknσnτ b ∈ M+
C (ν) s.t. σ1 ∈ f̃(τk1),

and for i = 2, · · · , n, σi ∈ f̃(τk1σ1 · · · τki−1σi−1τ
ki). We claim that L/f = L/f̃ and f is

(L,MC)-compatible .

From the definition of f and f̃ , it is easy to see L/f = L/f̃ . Next we show f is (L,MC)-

compatible. Pick ν = (σ1, t1) · · · (σn, tn) ∈ L/f , σ ∈ Σ s.t. ν(σ, T (ν)) ∈ L. Suppose ∃H ⊆ L/f

s.t. ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈ L − L/f and M+
C (ν) ⊆ M+

C (H) ∪ [M+
C (L − L/f)](Στ )∗. We need
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show σ /∈ f(ν). Pick νc = τk1σ1 · · · τknσnτ b ∈ M+
C (ν) s.t. σ1 ∈ f̃(τk1), and for i = 2, · · ·n,

σi ∈ f̃(τk1σ1 · · · τki−1σi−1τ
ki). It must be true that νc ∈ M+

C (H). This is because all the

plant events are observable. Therefore for any trace ν ′ s.t. νc ∈ M+
C (ν ′), ν ′ must be in

form of (σ1, t
′
1) · · · (σn, t′n). Note σ1 ∈ f̃(τk1), and ∀i = 2, · · ·n, σi ∈ f̃(τk1σ1 · · · τki−1σi−1τ

ki),

ν ′ ∈ L/f . Similarly for any trace ν ′ s.t. ∃νc ∈ pr(νc)∩M+
C (ν ′), we have ν ′ ∈ L/f . This implies

νc /∈ [M+
C (L−L/f)](Στ )∗. And so we have νc ∈M+

C (H). Note ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈ L−L/f .

Therefore σ /∈ f̃(νc), i.e., σ /∈ f(ν).

From the above proposition, it is clear that the timing-mask compatibility is a requirement

for a control policy defined over a plant language to be realizable as a control policy defined

over the observations of a plant language.

4.2 Representation of Compatible Control Policy

In the following, we provide a representation of a compatible control policy as a digitalized-

automaton (an untimed automaton that evolves over the events of the plant and the ticks of

the digital-clock).

We first need to define the following two compatibility properties of an untimed-automaton:

Given an untimed-automaton S = (Q,Στ ,Υ, Q0, Qm), S is said to be {τ}-compatible if ∀q ∈ Q,

∃q′ ∈ Q s.t. (q, τ, q′) ∈ Υ. Given a generated timed-language L, S is said to be (pr(MC(L)),Σu)-

compatible if ∀νc ∈ L(S), σ ∈ Σu and νcσ ∈ pr(MC(L)), then νcσ ∈ L(S).

Lemma 2 below shows that a compatible control policy can be represented by a “digitalized”-

automaton.

Lemma 2 Let L and Lm be the generated and marked timed-languages of a nonforcing plant

G, Σu be a set of uncontrollable events, and MC be the timing-mask associated with a digital-

clock C.

• Given a (L,MC)-compatible nonforcing control policy f , there exists a {τ}-compatible

untimed-automaton S = (Q,Στ ,Υ, Q0, Q) such that ΠΣ(L(G‖S‖C)) = L/f ; ΠΣ(Lm(G‖S

‖C)) = Lm/f .
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• Given a (L,Σu,MC)-compatible nonforcing control policy f , there exists a (pr(MC(L)),Σu)-

compatible and {τ}-compatible untimed-automaton S = (Q,Στ ,Υ, Q0, Q) such that

ΠΣ(L(G‖S‖C)) = L/f ; ΠΣ(Lm(G‖S‖C)) = Lm/f .

Proof: Define the language K := pr(MC(L/f)) − [M+
C (L − L/f)](Στ )∗. From the proof of

Proposition 3, we know K is nonempty and prefix-closed. Let S = (Q,Στ ,Υ, Q0, Q) be an

untimed-automaton with L(S) = K. From the proof of Proposition 3, we have S is {τ}-

compatible. We claim that given a (L,MC)-compatible control policy f , ΠΣ(L(G‖S‖C)) =

L/f .

To show ΠΣ(L(G‖S‖C)) = L/f , we first show ν ∈ ΠΣ(L(G‖S‖C)) implies ν ∈ L/f by

induction on the length of ν. ε ∈ ΠΣ(L(G‖S‖C)) ∩ L/f , establishing the base step. For the

induction step, pick ν = ν(σ, t) ∈ ΠΣ(L(G‖S‖C)). We need to show ν ∈ L/f . For σ = ε, from

nonforcing-ness of f , ν(ε, t) ∈ L/f . For σ ∈ Σ, suppose for contradiction that ν(σ, t) /∈ L/f .

Then ν(σ, t) ∈ L− L/f . Thereby ∀νc ∈M+
C (ν(ε, t)), νcσ ∈M+

C (ν(σ, t)) ⊆M+
C (L− L/f), i.e.,

νcσ /∈ L(S). On the other hand, from ν(σ, t) ∈ ΠΣ(L(G‖S‖C)), exists ν ′c ∈ M+
C (ν(ε, t)) s.t.

ν ′cσ ∈ L(S), which yields a contradiction.

We next show ν ∈ L/f implies ν ∈ ΠΣ(L(G‖S‖C)) by induction on the length of ν.

ε ∈ ΠΣ(L(G‖S‖C)) ∩ L/f , establishing the base step. For the induction step, pick ν =

ν(σ, t) ∈ L/f . We need to show ν ∈ ΠΣ(L(G‖S‖C)). For σ = ε, from induction hypothesis

ν ∈ ΠΣ(L(G‖S‖C)), ∃νc ∈ MC(ν) s.t. νc ∈ L(S), i.e., νcτ
∗ ∈ L(S). Therefore ν(ε, t) ∈

ΠΣ(L(G‖S‖C)). For σ ∈ Σ, suppose for contradiction that ν(σ, t) /∈ ΠΣ(L(G‖S‖C)). Then

∀νc ∈ M+
C (ν(ε, t)), νcσ /∈ L(S). Note νcσ ∈ pr(MC(ν(σ, t))) ⊆ pr(MC(L/f)). We have νcσ ∈

[M+
C (L−L/f)](Στ )∗. If ∃νc ∈ pr(νc) s.t. νc ∈M+

C (L−L/f), then νc ∈ [M+
C (L−L/f)](Στ )∗.

On the other hand, if ∀νc ∈ pr(νc), νc /∈ M+
C (L − L/f), then it must be the case that

νcσ ∈M+
C (L− L/f). Thereby ∃ν ′(σ, T (ν ′)) ∈ L− L/f s.t. νcσ ∈M+

C (ν ′(σ, T (ν ′))). It follows

from Lemma 1 that νc ∈M+
C (ν ′). Then since νc /∈M+

C (L−L/f) together with ν ′ ∈ L implies

ν ′ ∈ L/f , exists H := {ν ′} ⊆ L/f s.t. ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈ L − L/f and νc ∈ M+
C (H).

Therefore M+
C (ν(ε, t)) ⊆M+

C (H)∪ [M+
C (L−L/f)](Στ )∗. Then from (L,MC)-compatibility of

f , we have σ /∈ f(ν(ε, t)), which contradicts the assumption ν(σ, t) ∈ L/f .
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Next we claim that given a (L,Σu,MC)-compatible control policy f , S is (pr(MC(L)),Σu)-

compatible. Pick νc ∈ L(S), σ ∈ Σu s.t. νcσ ∈ pr(MC(L)). Suppose for contradiction

that νcσ /∈ L(S). Then ∃ν(σ, T (ν)) ∈ L s.t. νcσ or νcστ ∈ MC(ν(σ, T (ν))), which implies

νc ∈ M+
C (ν). Therefore ν ∈ ΠΣ(L(G‖S‖C)) = L/f . It follows from (L,Σu)-compatibility

of f that ν(σ, T (ν)) ∈ L/f . That is, νcσ ∈ pr(MC(L/f)). Then from νcσ /∈ L(S), we have

νcσ ∈ [M+
C (L − L/f)](Στ )∗. Note νc ∈ L(S), it must be the case that νcσ ∈ M+

C (L − L/f).

Thereby ∃ν ′(σ, T (ν ′)) ∈ L − L/f s.t. νcσ ∈ M+
C (ν ′(σ, T (ν ′))). From Lemma 1, we have

νc ∈M+
C (ν ′). Then since f is (L,Σu)-compatible and νc /∈M+

C (L−L/f) together with ν ′ ∈ L

implies ν ′ ∈ L/f , we have ν ′(σ, T (ν ′)) ∈ L/f . A contradiction arrives.

Finally, since ΠΣ(L(G‖S‖C)) = L/f and ΠΣ(Lm(G‖S‖C)) = Lm∩ΠΣ(L(G‖S‖C), we can

claim that ΠΣ(Lm(G‖S‖C)) = Lm/f .

We next show that the control exercised by a digitalized-automaton can be characterized

as a compatible control policy.

Lemma 3 Let L and Lm be the generated and marked timed-languages of a nonforcing plant

G, Σu be a set of uncontrollable events, and MC be the timing-mask associated with a digital-

clock C.

• Given a {τ}-compatible untimed-automaton S = (Q,Στ ,Υ, Q0, Q), there exists a (L,MC)-

compatible nonforcing control policy f such that L/f = ΠΣ(L(G‖S‖C)); Lm/f =

ΠΣ(Lm(G‖S‖C)).

• Given a (pr(MC(L)),Σu)-compatible and {τ}-compatible untimed-automaton S = (Q,Στ ,

Υ, Q0, Q), there exists a (L,Σu,MC)-compatible nonforcing control policy f such that

L/f = ΠΣ(L(G‖S‖C)); Lm/f = ΠΣ(Lm(G‖S‖C)).

Proof: Define a nonforcing control policy f : ∀ν ∈ T , f(ν) :=
⋃
νc∈M+

C (ν){σ ∈ Σ | νcσ ∈

L(S)} ∪ {ε}. We claim that given a {τ}-compatible untimed-automaton S, f is (L,MC)-

compatible and L/f = ΠΣ(L(G‖S‖C)).

To show L/f = ΠΣ(L(G‖S‖C)), we first show ν ∈ ΠΣ(L(G‖S‖C)) implies ν ∈ L/f by

induction on the length of ν. The base step trivially holds since ε ∈ ΠΣ(L(G‖S‖C)) ∩ L/f .
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For the induction step, pick ν = ν(σ, t) ∈ ΠΣ(L(G‖S‖C)). Then ∃νc ∈ M+
C (ν(ε, t)) s.t.

νcσ ∈ L(S), i.e., σ ∈ f(ν(ε, t)). This together with ν(ε, t) ∈ L/f implies ν ∈ L/f .

We next show ν ∈ L/f implies ν ∈ ΠΣ(L(G‖S‖C)) by induction on the length of ν. The

base step trivially holds since ε ∈ ΠΣ(L(G‖S‖C)) ∩ L/f . For the induction step, pick ν =

ν(σ, t) ∈ L/f . For σ = ε, from induction hypothesis ν ∈ ΠΣ(L(G‖S‖C)), exists νc ∈ MC(ν)

s.t. νc ∈ L(S), and further νcτ
∗ ∈ L(S). Thereby ν(ε, t) ∈ ΠΣ(L(G‖S‖C)). For σ ∈ Σ, since

∃νc ∈M+
C (ν(ε, t)) s.t. νcσ ∈ L(S), we have ν ∈ ΠΣ(L(G‖S‖C)).

To show f is (L,MC)-compatible, pick ν ∈ L/f , σ ∈ Σ s.t. ν(σ, T (ν)) ∈ L. Suppose

∃H ⊆ L/f s.t. ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈ L−L/f and M+
C (ν) ⊆M+

C (H)∪ [M+
C (L−L/f)](Στ )∗.

∀νc ∈M+
C (ν), if νc ∈ [M+

C (L−L/f)](Στ )∗, then ∃νc ∈ pr(νc) s.t. νc ∈M+
C (L−L/f). Thereby

∃ν ′ ∈ L − L/f s.t. νc ∈ M+
C (ν ′). Then since ν ′ /∈ L/f = ΠΣ(L(G‖S‖C)) implies νc /∈ L(S),

we have νcσ /∈ L(S). On the other hand, if νc ∈ M+
C (H), then ∃ν ′ ∈ H s.t. ν ′ ∈ L/f ,

ν ′(σ, T (ν ′)) ∈ L− L/f and νc ∈M+
C (ν ′). From ν ′(σ, T (ν ′)) /∈ L/f = ΠΣ(L(G‖S‖C)), we have

νcσ /∈ L(S). Therefore σ /∈ f(ν).

Next we claim that given a (pr(MC(L)),Σu)-compatible and {τ}-compatible untimed-

automaton S, f is (L,Σu)-compatible.

Pick ν ∈ L/f , σ ∈ Σu s.t. ν(σ, T (ν)) ∈ L. From L/f = ΠΣ(L(G‖S‖C)), ∃νc ∈ MC(ν)

s.t. νc ∈ L(S). Then since νcσ ∈ MC(ν(σ, T (ν))) ⊆ pr(MC(L)) and S is (pr(MC(L)),Σu)-

compatible, we have νcσ ∈ L(S). This further implies ν(σ, T (ν)) ∈ ΠΣ(L(G‖S‖C)) = L/f .

Finally, since L/f = ΠΣ(L(G‖S‖C)) and ΠΣ(Lm(G‖S‖C)) = Lm ∩ ΠΣ(L(G‖S‖C)), we

have Lm/f = ΠΣ(Lm(G‖S‖C)).

Combining the results of Lemma 2 and 3, the following theorem shows that a (L,Σu,MC)-

compatible control policy can be equivalently represented by a (pr(MC(L)),Σu)-compatible

and {τ}-compatible digitalized-automaton.

Theorem 3 Let L and Lm be the generated and marked timed-languages of a nonforcing

plant G, Σu be a set of uncontrollable events, and MC be the timing-mask associated with a

digital-clock C.

• Given a (L,Σu,MC)-compatible nonforcing control policy f , there exists a (pr(MC(L)),Σu)-
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compatible and {τ}-compatible untimed-automaton S over Στ such that ΠΣ(L(G‖S‖C)) =

L/f ; ΠΣ(Lm(G‖S‖C)) = Lm/f .

• Given a (pr(MC(L)),Σu)-compatible and {τ}-compatible untimed-automaton S over

Στ , there exists a (L,Σu,MC)-compatible nonforcing control policy f such that L/f =

ΠΣ(L(G‖S‖C)); Lm/f = ΠΣ(Lm(G‖S‖C)).

4.3 Existence of Compatible Control Policy

In this section, we introduce the properties of (L,Σu)-controllability and (L,MC)-observability,

and show that they serve as a necessary and sufficient condition for the existence of a compat-

ible control policy that enforces a given real-time specification on a dense-time discrete event

system, using digital-clocks to measure event occurrence times. Similar to the controllability

of the untimed setting, (L,Σu)-controllability of a timed specification language requires that

the execution of a feasible uncontrollable event following a legal timed-trace must also be legal.

(L,MC)-observability, on the other hand, is very different from the observability property of

the untimed setting owing to the facts that (i) a timing-mask is nondeterministic, and (ii) an

event can occur simultaneously with a tick. (L,MC)-observability requires that if σ is feasible

following ν, and if each extended-observation of ν is either an extended-observation of a timed-

trace where σ is illegal or possesses a prefix which is also an extended-observation of an illegal

timed-trace, then σ must be illegal after ν. (This is analogous to the (L,MC)-compatibility

property introduced earlier.)

Definition 6 Let L be the generated timed-language of a plant, K ⊆ L be a timed specifica-

tion language, Σu be the set of uncontrollable events, and MC be the timing-mask associated

with a digital-clock C. K is said to be

• (L,Σu)-controllable, if ∀ν ∈ pr(K), σ ∈ Σu such that ν(σ, T (ν)) ∈ L: ν(σ, T (ν)) ∈ pr(K).

• (L,MC)-observable if ∀ν ∈ pr(K), σ ∈ Σ, such that ν(σ, T (ν)) ∈ L: if exists H ⊆ pr(K)

s.t. ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈ L − pr(K) and M+
C (ν) ⊆ M+

C (H) ∪ [M+
C (L − pr(K))](Στ )∗,

then ν(σ, T (ν)) ∈ L− pr(K).
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Note that K is controllable (resp., observable) if and only if pr(K) is controllable (resp.,

observable). In the following, we show that controllability together with timing-mask observ-

ability serves as a necessary and sufficient condition for the existence of a compatible control

policy.

Theorem 4 Let L and Lm be the generated and marked timed-languages of a nonforcing

plant G, K ⊆ L be a timed specification language, Σu ⊆ Σ be a set of uncontrollable events,

and MC be the timing-mask associated with a digital-clock C.

• There exists a (L,Σu,MC)-compatible nonforcing control policy f such that L/f = K

if and only if ∅ 6= K = pr(K) ⊆ L, K is nonforcing, (L,Σu)-controllable and (L,MC)-

observable.

• There exists a (L,Σu,MC)-compatible, nonblocking, and nonforcing control policy f such

that Lm/f = K if and only if ∅ 6= K = pr(K)∩Lm, K is nonforcing, (L,Σu)-controllable

and (L,MC)-observable.

Proof: We start by proving the first assertion. To show the sufficiency, define a nonforcing

control policy f as follows: ∀ν ∈ T , f(ν) :=
⋃
νc∈M+

C (ν){σ | νcσ ∈ KC := pr(MC(K)) −

[M+
C (L−K)](Στ )∗}. Following the proof of Proposition 3, KC is prefix-closed, nonempty and

∀νc ∈ KC , νcτ
∗ ∈ KC .

To show L/f = K, we first show that ν ∈ L/f implies ν ∈ K by induction on the length

of ν. ε ∈ K ∩ L/f , establishing the base step. For the induction step, pick ν = ν(σ, t) ∈ L/f .

For σ ∈ Σu, from nonforcing-ness and (L,Σu)-controllability of K, we have ν ∈ K. For

σ ∈ Σ − Σu, suppose for contradiction that ν /∈ K, i.e., ν ∈ L −K. Then ∀νc ∈ M+
C (ν(ε, t)),

νcσ ∈ M+
C (ν(σ, t)) i.e., νcσ ∈ [M+

C (L − K)](Στ )∗. This implies νcσ /∈ KC . Thereby σ /∈

f(ν(ε, t)), i.e., ν(σ, t) /∈ L/f , which yields a contradiction.

We next show that ν ∈ K implies ν ∈ L/f by induction on the length of ν. ε ∈ K ∩ L/f ,

establishing the base step. For induction step, pick ν = ν(σ, t) ∈ K. For σ = ε, from

nonforcing-ness of f , we have ν(ε, t) ∈ L/f . For σ ∈ Σ, suppose for contradiction that

ν /∈ L/f , i.e., ν ∈ L − L/f . Then ∀νc ∈ M+
C (ν(ε, t)), νcσ ∈ M+

C (L − L/f), i.e., νcσ /∈ KC .
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Further since ν ∈ K together with νcσ or νcστ ∈ MC(ν(σ, t)) implies νcσ ∈ pr(MC(K)),

we have νcσ ∈ [M+
C (L − K)](Στ )∗. We need to analyze two cases: (i) ∃νc ∈ pr(νc) s.t.

νc ∈M+
C (L−K) and (ii) νcσ ∈M+

C (L−K). Following the proof of Lemma 2, we have either

νc ∈ [M+
C (L − K)](Στ )∗ or exists H := {ν ′} ⊆ K s.t. ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈ L − K and

νc ∈ M+
C (H). From (L,MC)-observability and prefix-closure of K, we have ν /∈ K, which

yields a contradiction.

Then we show that f is (L,Σu,MC)-compatible. To show (L,Σu)-compatibility of f , pick

ν ∈ L/f , σ ∈ Σu s.t. ν(σ, t) ∈ L. Since K is controllable and prefix-closed, ν(σ, t) ∈ pr(K) =

L/f . To show (L,MC)-compatibility of f , pick ν ∈ L/f , σ ∈ Σ s.t. ν(σ, T (ν)) ∈ L. Suppose

exists H ⊆ L/f s.t. ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈ L − L/f and M+
C (ν) ⊆ M+

C (H) ∪ [M+
C (L −

L/f)](Στ )∗. Then since K is (L,MC)-observable and prefix-closed, ν(σ, T (ν)) ∈ L− pr(K) =

L− L/f , i.e., σ /∈ f(ν).

To show the necessity, since L/f is a generated language and L/f = K, we have ∅ 6= K =

pr(K) ⊆ L. Further since f is nonforcing, so is K. To show (L,Σu)-controllability of K, pick

ν ∈ pr(K), σ ∈ Σu s.t. ν(σ, T (ν)) ∈ L. Since L/f = K = pr(K) and f is Σu-compatible,

σ ∈ f(ν(ε, t)), i.e., ν(σ, T (ν)) ∈ L/f = pr(K). To show (L,MC)-observability of K, pick

ν ∈ pr(K), σ ∈ Σ s.t. ν(σ, T (ν)) ∈ L. Suppose exists H ⊆ pr(K) s.t. ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈

L − pr(K) and M+
C (ν) ⊆ M+

C (H) ∪ [M+
C (L − pr(K))](Στ )∗. Then since L/f = K = pr(K)

and f is (L,MC)-compatible, σ /∈ f(ν), i.e., ν(σ, T (ν)) /∈ L/f = pr(K).

We next prove the second assertion. We first show the sufficiency. Since ∅ 6= K = pr(K)∩

Lm and pr(Lm) = L, we have ∅ 6= pr(K) ⊆ L. Further since K is (L,Σu)-controllable and

(L,MC)-observable, so is pr(K). Then from the first assertion, there exists a compatible

nonforcing control policy f s.t. L/f = pr(K). Thereby Lm/f = Lm∩L/f = Lm∩pr(K) = K.

We next show the necessity. Since Lm/f = K, we have ∅ 6= K. Further since f is

nonblocking, we have L/f = pr(K). Then from the first assertion, K is (L,Σu)-controllable

and (L,MC)-observable. Furthermore, K = Lm/f = Lm ∩ L/f = Lm ∩ pr(K).

Based on the results of Theorem 3 and 4, the following corollary provides a necessary and

sufficient condition for the existence of a digitalized-automaton based (nonblocking) supervisor.
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(A supervisor S is said to be nonblocking for a plant G if L(G‖S) = pr(Lm(G‖S)).)

Corollary 1 Let L and Lm be the generated and marked timed-languages of a nonforcing

plant G, K ⊆ L be a nonforcing timed specification language, Σu be a set of uncontrollable

events, and MC be the timing-mask associated with a digital-clock C.

• There exists a {τ}-compatible and (pr(MC(L),Σu)-compatible supervisor S over Στ such

that ΠΣ(L(G‖S‖C)) = K if and only if ∅ 6= pr(K) = K ⊆ L, K is nonforcing, (L,Σu)-

controllable and (L,MC)-observable.

• There exists a {τ}-compatible and (pr(MC(L),Σu)-compatible nonblocking supervisor

S over Στ such that ΠΣ(Lm(G‖S‖C)) = K if and only if ∅ 6= K = pr(K) ∩ Lm, K is

nonforcing, (L,Σu)-controllable and (L,MC)-observable.

4.4 Verification of Existence Condition

From Theorem 4, to determine the existence of a compatible (nonblocking) control

policy for a given timed specification language K, we need to check the properties of (L,Σu)-

controllability and (L,MC)-observability ofK, or equivalently of pr(K). We assume that pr(K)

can be generated by a deterministic timed-automaton R = (QR,Σ,ΞR,ΥR, IR, QR0 , Q
R). Note

determinism is required to allow its complementation. (In general timed-automata languages

are not closed under complementation [6].) In order to capture any violation of pr(K), we

need to complete R by introducing a dump state and certain transitions. The completed

specification R is constructed as follows. R = (QR∪{dump},Σ,ΞR,ΥR∪Υadd, IR, QR0, QRm),

where ∀q ∈ QR, IR(q) = IR(q), IR(dump) = true, and the set of added transitions Υadd is

defined as

• ∀q ∈ QR, ∀σ ∈ Σ, if there are n ≥ 1 out-going transitions from q labeled with σ, and

let {φ1
σ, · · · , φnσ} be the set of guard conditions associated with those n transitions, then

(q, σ,¬(∨ni=1φ
i
σ), ∅, dump) ∈ Υadd; otherwise (q, σ, true, ∅, dump) ∈ Υadd.

• ∀σ ∈ Σ, (dump, σ, true, ∅, dump) ∈ Υadd.
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It is easy to see that R can generate any timed-trace, and since R is deterministic, any timed-

trace that violates the specification pr(K) has a run that reaches the dump state. (I.e.,

L(R) = T and Lm(R) = T − pr(K).)

In the following, we present an algorithm for checking the controllability and timing-mask

observability properties. The algorithm first constructs the region-automaton R(G‖R‖C).

From the result in [54], this region-automaton generates the language pr(MC(L(G‖R))) =

pr(MC(L(G))). Thus when a plant G executes a certain timed-trace, one of its timing-masked

observation will nondeterministically be seen by a controller, and this observation can be traced

in R(G‖R‖C). Since a region-automaton is in general nondeterministic, the corresponding

states reached in R(G‖R‖C) will be non-unique. If the execution of a certain event from any

such state leads to the violation of the specification (namely, results in the reaching of a state

in R(G‖R‖C) with second coordinate as dump), then such an event must be disabled at all

such states. This idea is formalized and illustrated below, and then its correctness is formally

established.

Algorithm 2 Let L be the generated timed-language of a nonforcing plant G, K ⊆ L be a

nonforcing timed specification language represented by a deterministic timed-automaton R, Σu

be a set of uncontrollable events, and MC be the timing-mask associated with a digital-clock

C. An algorithm for checking the existence condition for a compatible control policy, i.e.,

controllability and timing-mask observability, is presented as below.

1. Construct the automaton R.

2. Construct the region-automaton R(G‖R‖C). Note each state of R(G‖R‖C) is of the

form (qG, qR, qC , r), where qG is a state of G, qR is a state of R, qC is a state of C, and

r is a clock-region.

3. Determinize R(G‖R‖C). The resulting deterministic automaton det[R(G‖R‖C)] is de-

noted as Ŝ. We call a state q
Ŝ

of Ŝ to be a dump state if exists (qG, dump, qC , r) ∈ qŜ .

4. Construct an untimed-automaton S by disabling certain transitions in Ŝ: Disable σ ∈ Σ

at q
Ŝ
∈ QŜ if its successor state is a dump state. Mark all states in resulting automaton
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S.

5. Output ‘yes’ if ΠΣ(L(G‖S‖C)) = pr(K) (note in this case S is (pr(MC(L)),Σu)-compatible);

else output ‘no’.

The following example illustrates Algorithm 2.

Example 6 Consider a prefix-closed timed-specification language K represented by a timed-

automaton R as shown in Figure 4.2, and a plant G and a digital-clock C given in Example 5.

1<z<2
a1 2

3 4
a

z=2
b

z=2

Figure 4.2 Timed-automaton of K

Suppose all events are controllable, so that K is control-compatible by default. Then we

only need to check timing-mask observability of K. From the analysis of Example 5, we have

each extended observation in M+
C ((a, 2)) = {τa, τaτ, ττa} is either an extended observation of

an illegal timed-trace (ττa ∈M+
C ((a, 2 < t < 3))) or an extended observation of a timed-trace

where b is disabled (τa, τaτ ∈ M+
C ((a, 1 < t < 2)(ε, 2))). On the other hand, since b is legal

following (a, 2) (i.e., (a, 2)(b, 2) ∈ pr(K)), we have that K is not timing-mask observable. Let

us verify this using Algorithm 2.

We first compute the region-automaton R(G‖R‖C), which is as shown in Figure 4.3. For

simplicity of illustration, the discrete-state of C and clock variable z of R are omitted (since C

has a single discrete-state and the value of z is the same as the value of the clock variable x of

G). We next construct an untimed-automaton S by disabling the events that lead to the dump

states in the determinized region-automaton det[R(G‖R‖C)]. The resulting automaton S is

shown in Figure 4.4. Note S is control-compatible by default since all events are controllable.

It can be checked that ΠΣ(L(G‖S‖C)) = {(a, 1 < t ≤ 2)(ε, t′ > t), (ε, t ≥ 0)} 6= pr(K). Then

according to Algorithm 2, K is not timing-mask observable as expected.
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Figure 4.3 Region-automaton of G‖R‖C
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Figure 4.4 Constructed untimed-automaton S
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From the construction of S and non-forcingness of L and K, the untimed-automaton S

constructed by Algorithm 2 is {τ}-compatible. The correctness of Algorithm 2 is next estab-

lished.

Theorem 5 Let L be the generated timed-language of a nonforcing plant G, ∅ 6= K ⊆ L be

a deterministic nonforcing timed specification language, Σu be a set of uncontrollable events,

MC be the timing-mask associated with a digital-clock C, and S be the untimed-automaton

constructed by Algorithm 2. Then K is (L,Σu)-controllable and (L,MC)-observable if and

only if ΠΣ(L(G‖S‖C)) = pr(K), and in which case S is (pr(MC(L)),Σu)-compatible.

Proof: We first show the sufficiency. To show (L,Σu)-controllability of K, pick ν ∈ pr(K),

σ ∈ Σu s.t. ν(σ, T (ν)) ∈ L. Then since ν ∈ pr(K) = ΠΣ(L(G‖S‖C)), exists νc ∈ MC(ν) s.t.

νc ∈ L(S). Further since S is (pr(MC(L)),Σu)-compatible and νcσ ∈ MC(ν(σ, T (ν))) ⊆

pr(MC(L)), we have νcσ ∈ L(S), which implies ν(σ, T (ν)) ∈ ΠΣ(L(G‖S‖C)) = pr(K). To

show (L,MC)-observability of K, pick ν ∈ pr(K), σ ∈ Σ s.t. ν(σ, T (ν)) ∈ L. Suppose

exists H ⊆ pr(K) s.t. ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈ L − pr(K) and M+
C (ν) ⊆ M+

C (H) ∪ [M+
C (L −

pr(K))](Στ )∗. ∀νc ∈M+
C (ν), if νc ∈M+

C (H), then ∃ν ′ ∈ H s.t. νc ∈M+
C (ν ′) and ν ′(σ, T (ν ′)) ∈

L−pr(K) /∈ ΠΣ(L(G‖S‖C)). That is, νcσ. On the other hand, if νc ∈ [M+
C (L−pr(K))](Στ )∗,

then ∃νc ∈ pr(νc) s.t. νc ∈M+
C (L− pr(K)), i.e., ∃ν ′ ∈ L− pr(K) /∈ ΠΣ(L(G‖S‖C)) s.t. νc ∈

M+
C (ν ′). So νc /∈ L(S), which implies νcσ /∈ L(S). Thereby ν(σ, T (ν)) /∈ ΠΣ(L(G‖S‖C)) =

pr(K).

We next show the necessity. We first show ν ∈ ΠΣ(L(G‖S‖C)) implies ν ∈ pr(K) by

induction on the length of ν. ε ∈ ΠΣ(L(G‖S‖C)) ∩ pr(K), establishing the base step. For

the induction step, pick ν = ν(σ, t) ∈ ΠΣ(L(G‖S‖C)). For σ ∈ Σu, from nonforcing-ness and

(L,Σu)-controllability of K, we have ν ∈ pr(K). For σ ∈ Σ − Σu, suppose for contradiction

that ν /∈ pr(K). Then ν ∈ L − pr(K). It follows that ∀ν ′c ∈ MC(ν), ν ′c /∈ L(S) (since dump

state is reached following ν ′c). Thereby ν /∈ ΠΣ(L(G‖S‖C)). A contradiction arrives.

Then we show that ν ∈ pr(K) implies ν ∈ ΠΣ(L(G‖S‖C)) by induction on the length of ν.

ε ∈ ΠΣ(L(G‖S‖C)) ∩ pr(K), establishing the base step. For induction step, pick ν = ν(σ, t) ∈

pr(K). For σ = ε, from {τ}-compatibility of S, we have ν(ε, t) ∈ ΠΣ(L(G‖S‖C)). For σ ∈ Σ,
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suppose for contradiction that ν /∈ ΠΣ(L(G‖S‖C)). Then ∀νc ∈M+
C (ν(ε, t)), νcσ /∈ L(S). We

need to consider the following two cases.

Case 1: νc ∈ L(S), νcσ /∈ L(S). Then exists a run qŜ0
νc→ (qG, qR, qC , r)

σ→ (q′G, dump, q
′
C , r

′).

Thereby νc ∈ pr(MC(pr(K))) and νcσ ∈ pr(MC(L− pr(K))).

If νc ∈ MC(pr(K)) and νcσ ∈ MC(L − pr(K)), then exists ν ′(σ, T (ν ′)) ∈ L − pr(K) s.t.

νcσ ∈ MC(ν ′(σ, T (ν ′))). It follows νc ∈ MC(ν ′). Then from qŜ0
νc→ (qG, qR, qC , r), we have

ν ′ ∈ pr(K).

If νc ∈ MC(pr(K)) and νcσ /∈ MC(L − pr(K)), then it must be the case that σ occurs

simultaneously with τ , i.e., νcστ ∈ MC(L − pr(K)). It follows that exists ν ′(σ, T (ν ′)) ∈

L − pr(K) s.t. νcστ ∈ MC(ν ′(σ, T (ν ′))). This implies νcτ ∈ MC(ν ′). Then since qŜ0
νc→

(qG, qR, qC , r), we have ν ′ ∈ pr(K).

If νc /∈MC(pr(K)) and νcσ /∈MC(L− pr(K)), then it must be the case that the last event

of νc occurs simultaneously with σ and τ , i.e., νcτ ∈MC(pr(K)) and νcστ ∈MC(L− pr(K)).

It follows that exists ν ′(σ, T (ν ′)) ∈ L− pr(K) s.t. νcστ ∈MC(ν ′(σ, T (ν ′))) and νcτ ∈MC(ν ′).

Then since qŜ0
νc→ (qG, qR, qC , r), we have ν ′ ∈ pr(K).

On the other hand, if νc /∈ MC(pr(K)) and νcσ ∈ MC(L − pr(K)), then it must be the

case that the very last tick of νc is still pending. Thereby νcσ /∈ MC(L − pr(K)), whereas

νcστ ∈MC(L− pr(K)). So this is not a possible scenario.

Case 2: νc /∈ L(S). Then since ν ∈ pr(K) implies νc ∈ L(Ŝ), it must be the case that

certain transition of νc is disabled. Thereby ∃νcσ ∈ pr(νc), σ ∈ Σ s.t. νc ∈ L(S) and

νcσ /∈ L(S). It follows that exists a run qŜ0
νc→ (qG, qR, qC , r)

σ→ (q′G, dump, q
′
C , r

′). This

implies νcσ ∈ pr(MC(L − pr(K))). Thereby ∃ν ′′(σ, T (ν ′′)) ∈ L − pr(K) s.t. νcσ or νcστ ∈

MC(ν ′′(σ, T (ν ′′))), i.e., νcσ ∈M+
C (ν ′′(σ, T (ν ′′))). This implies νc ∈ [M+

C (L− pr(K))](Στ )∗.

Therefore we have M+
C (ν(ε, t)) ⊆ M+

C (H) ∪ [M+
C (L − pr(K))](Στ )∗, where H := {ν ′} ⊆

pr(K) s.t. ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈ L−pr(K). Then since K is (L,MC)-observable, ν /∈ pr(K),

which yields a contraction.

Finally, we show that S is (pr(MC(L)),Σu)-compatible. Pick νc ∈ L(S), σ ∈ Σu s.t.

νcσ ∈ pr(MC(L)). Suppose for contradiction that νcσ /∈ L(S). Then since certain dump
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state is reached by νcσ, exists ν(σ, T (ν)) ∈ L − pr(K) s.t. νcσ ∈ pr(MC(ν(σ, T (ν)))). It

follows νc ∈ M+
C (ν), which further implies ν ∈ ΠΣ(L(G‖S‖C)) = pr(K). Since K is (L,Σu)-

controllable, ν(σ, T (ν)) ∈ pr(K). A contradiction arrives.

Remark 5 Theorem 4 additionally requires checking the nonemptiness, and prefix or relative

closure of K (which requires a language containment check). A language containment check

can be reduced to an emptiness check (under the determinism of the timed-automaton of the

larger language), and the emptiness check is well known for timed-automata languages [6].

When the proposed existence condition of Corollary 1 is satisfied, Algorithm 2 presents a

method to compute a compatible digitalized-automaton based (nonblocking) supervisor. This

is illustrated by the following example.

Example 7 Consider a prefix-closed specification K ′ as shown in Figure 4.5, and a plant G

and a digital-clock C given in Example 5. Suppose a is controllable and b is uncontrollable.

It can be checked using Algorithm 2 that K ′ is controllable and timing-mask observable. The

untimed-automaton S constructed by Algorithm 2 is shown in Figure 4.5. It serves as a {τ}-

compatible and (pr(MC(L),Σu)-compatible supervisor that satisfies ΠΣ(L(G‖S‖C)) = K ′.
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Figure 4.5 Timed-automaton of K ′ (left) and supervisor S (right)
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4.5 Properties of Timing-Masked Observability

In this section, we examine the lattice structure of a class of (L,MC)-observable lan-

guages. We show below that timing-mask observability is not closed under intersection but

closed under union. In order to show this property, we first show in the following lemma

that if a trace is accepted by the prefix language pr(K), then it must possess certain untimed

observation(s) not shared by an illegal trace of L− pr(K).

Lemma 4 Let L be the generated timed-language of nonforcing plant G, MC be the timing-

mask associated with a digital-clock C, and K ⊆ L be a (L,MC)-observable timed language.

Then for any ν ∈ pr(K), it holds that M+
C (ν) ( [M+

C (L− pr(K))](Στ )∗.

Proof: We show this by contradiction. Pick ν = (σ1, t1) · · · (σn+1, tn+1) ∈ pr(K). Suppose

M+
C (ν) ⊆ [M+

C (L − pr(K))](Στ )∗. For any νc = τk1σ1 · · · τkn+1σn+1τ
b ∈ M+

C (ν), we need

consider the following two cases.

Case 1: ∃νc = τk1σ1 · · · τkjσj ∈ pr(νc) with j ≤ n s.t. νc ∈ [M+
C (L − pr(K))](Στ )∗. This

implies τk1σ1 · · · τknσnτkn+1τ b ∈ [M+
C (L− pr(K))](Στ )∗.

Case 2: ∀νc = τk1σ1 · · · τkjσj ∈ pr(νc) with j ≤ n, νc /∈ M+
C (L − pr(K))(Στ )∗. It can be

concluded that either νc = τk1σ1 · · · τkn+1σn+1 ∈ M+
C (L − pr(K)) or νc ∈ M+

C (L − pr(K)).

Then ∃µ = (σ1, t
′
1) · · · (σn+1, t

′
n+1) ∈ L−pr(K) s.t. νc ∈M+

C (µ) or νc ∈M+
C (µ). And so exists

j ≤ n s.t. µ = (σ1, t
′
1) · · · (σj , t′j) ∈ pr(K), and µ(σj+1, t

′
j+1) ∈ L− pr(K). Suppose j ≤ n− 1.

Note ν ′c = τk1σ1 · · · τkj+1σj+1 ∈ M+
C (µ(σj+1, t

′
j+1)). We have ν ′c ∈ [M+

C (L − pr(K))]. This

conflicts with the condition of Case 2. Thus it must hold that j = n. This further implies

µ′ = µ(ε, t′n+1) ∈ pr(K). Let H = {µ′}. We have H ⊆ pr(K) and ∀µ′ ∈ H, µ′(σn+1, t
′
n+1) ∈

L − pr(K). Then if ν ∈ M+
C (µ), we have τk1σ1 · · · τkn+1 ∈ M+

C (H) and τk1σ1 · · · τkn+1τ ∈

[M+
C (L− pr(K))](Στ )∗. If νc ∈M+

C (µ), we have τk1σ1 · · · τkn+1τ b ∈M+
C (H).

Then for ν = (σ1, t1) · · · (ε, tn+1) ∈ pr(K), ν(σn+1, tn+1) ∈ L: ∀νc = τk1σ1 · · · τkn+1τ b ∈

M+
C (ν), we have νc ∈M+

C (H) ∪ [M+
C (L− pr(K))](Στ )∗. Note K is (L,MC)-observability. We

have ν ∈ L− pr(K), which yields a contradiction.

With Lemma 4 in hand, we are ready to establish the following theorem.
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Theorem 6 Let L be the generated timed-language of nonforcing plant G, MC be the timing-

mask associated with a digital-clock C, and Ki ⊆ L be (L,MC)-observable timed languages.

1. In general
⋂
Ki is not (L,MC)-observable.

2.
⋃
Ki is (L,MC)-observable.

Proof: To see the first assertion, we consider the G, K1, and K2 as shown in Figure 4.6.

We have pr(K1 ∩ K2) = {(ε, t), (a, 1)(ε, t′)} with t ≥ 0 and t′ ≥ 1, and L − pr(K1 ∩ K2) =

{(a, t1 < 1)(ε, t′1), (a,< 1 < t2 < 2)(ε, t′2)} with t′i ≥ ti for i = 1, 2. It can be checked that

K1 ∩ K2 is not (L,MC)-observable. This is because for ν = (ε, 1) ∈ pr(K1 ∩ K2), exists

H = {(ε, 0.5), (ε, 1.5)} ⊆ pr(K1 ∩ K2) s.t. ∀µ ∈ H, µ(a, T (µ)) ∈ L − pr(K1 ∩ K2). Note

M+
C (ν) = {ε, τ} = M+

C (H) and [M+
C (L − pr(K1 ∩K2))](Στ )∗ = {a(Στ )∗, τa(Στ )∗}. We have

M+
C (ν) ⊆M+

C (H)∪ [M+
C (L− pr(K1 ∩K2))](Στ )∗. Note (L,MC)-observability of pr(K1 ∩K2)

will require (a, 1) ∈ L− pr(K1 ∩K2), leading to a contradiction. And so we have pr(K1 ∩K2)

is not (L,MC)-observable.

Next we show the second assertion. Pick ν ∈ pr(
⋃
iKi) and σ ∈ Σ s.t. ν(σ, T (ν)) ∈ L.

Suppose exists H ⊆ pr(
⋃
iKi) s.t. ∀ν ′ ∈ H, ν ′(σ, T (ν ′)) ∈ L − pr(

⋃
iKi), and M+

C (ν) ⊆

M+
C (H) ∪ [M+

C (L− pr(
⋃
iKi))](Σ

τ )∗. We need show ν(σ, T (ν)) ∈ L− pr(
⋃
iKi). This can be

proved by contradiction. Suppose there exists i s.t. ν(σ, T (ν)) ∈ pr(Ki). Note pr(
⋃
iKi) =⋃

i pr(Ki), i.e. prefix-closure is closed under union, and [M+
C (L−pr(

⋃
iKi))](Σ

τ )∗ ⊆ [M+
C (L−

pr(Ki))](Σ
τ )∗. We need consider the following cases.

Case 1: H ⊆ pr(Ki). Then from (L,MC)-observability of Ki, we have ν(σ, T (ν)) ∈ L −

pr(Ki).

Case 2: H = H1∪H2 with H1 ⊆ pr(Ki) and H2 ⊆ pr(
⋃
jKj)−pr(Ki) ⊆ L−pr(Ki). Note

M+
C (H) ⊆M+

C (H1)∪M+
C (L− pr(Ki)). We have M+

C (ν) ⊆M+
C (H1)∪ [M+

C (L− pr(Ki))](Σ
τ )∗.

Then from (L,MC)-observability of Ki, we have ν(σ, T (ν)) ∈ L− pr(Ki).

Case 3: H ⊆ pr(
⋃
jKj) − pr(Ki). Note M+

C (H) ⊆ M+
C (L − pr(Ki)). We have M+

C (ν) ⊆

[M+
C (L− pr(Ki))](Σ

τ )∗. However from Lemma 4, we have M+
C (ν) ( [M+

C (L− pr(Ki))](Σ
τ )∗.

From the above analysis, we know a contradiction arrives at each case. Therefore ν(σ, T (ν)) ∈

L− pr(Ki) holds for any i, equivalently ν(σ, T (ν)) ∈ L− pr(
⋃
iKi) as desired.
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Figure 4.6 Timed-automata of G, K1 and K2

Theorem 6 shows that timing-mask observability is preserved under union but generally

not preserved under intersection. Note prefix-closure as well as controllability are closed under

union. It can be concluded that there exists a supremal closed, controllable and observable sub-

language for a given specification, however generally there does not exist an infimal controllable

and observable superlanguage.

4.6 Conclusion

We studied the supervisory control of a dense-time discrete-event plant subject to a

real-time specification, where the event occurrence times are observed by a finite-precision

digital-clock. This is a realistic scenario compared to the earlier works which assumed that

time can be measured precisely. In this work, (i) We provided a representation of a compatible

control policy, that relies on a finite-precision measurement of time, in form of a digitalized-

automaton in which time evolves discretely (in accordance with the available digital-clock).

(ii) We introduced the notion of observability with respect to a timing-mask and showed that

this property together with controllability serves as a necessary and sufficient condition for

the existence of a compatible control policy (supervisor) enforcing a real-time specification on

a dense-time discrete event plant. The observability condition presented in the paper is very

different from the one arising due to a partial observation of events since a partial observa-

tion of time is generally nondeterministic. (iii) We presented a method to verify the proposed

observability and controllability conditions, and an algorithm to compute a compatible super-

visor when such conditions are satisfied. Further we examined the lattice structure of a class of
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timing-mask observable languages, and showed that timing-mask observability is not preserved

under intersection but preserved under union.
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CHAPTER 5. DIAGNOSIS OF DENSE-TIME DESs USING

DIGITAL-CLOCKS

Diagnosis is needed to detect the occurrence of a fault so as to enable any corrective ac-

tions. For event-driven systems with timing-requirements, diagnosis involves detecting the

timing-faults, besides the sequence-faults. This requires monitoring timing and sequence of

events, both of which may only be partially observed in practice. In this chapter, we study

the diagnosis of dense-time discrete event systems using finite-precision digital-clocks to ob-

server event occurrence times. Two diagnosis problems are investigated: (i) diagnosis of timed

discrete event system modeled by timed-automaton with both timing and event observation

masks, and (ii) diagnosis with dense-time specification which specifies the nonfailure behavior.

We show that the verification of diagnosability (ability to detect the execution of a faulty

timed-trace within a bounded time delay) as well as the off-line synthesis of a diagnoser are

decidable by reducing these problems to the untimed setting. The reduction to the untimed

setting also suggests an effective method for the off-line computation of a diagnoser as well

as its on-line implementation for diagnosis. The aforementioned results are further extended

to the nondeterministic setting, i.e., diagnosis of dense-time DESs using digital-clocks under

nondeterministic event observation mask. We introduce the notion of lifting and show that

diagnosis of dense-time DESs in the nondeterministic setting can be reduced to diagnosis of

lifted dense-time DESs under deterministic event observation mask, and hence can be further

reduced to diagnosis of lifted untimed DESs under deterministic event observation mask.



58

5.1 Diagnosis under Event and Timing Masks

In this section we study the diagnosis problem of dense-time discrete event systems

modeled by timed-automata under timing as well as (deterministic) event observation masks.

Recall that the timed-language to be diagnosed is generated by a plant and hence is prefix-

closed. Similarly, a nonfaulty specification language is also prefix-closed.

Let A = (Q,Σ,Ξ,Υ, I, Q0, Qm) be the timed-automaton model of a system, MC be the

timing-mask associated with a digital-clock C, M : Σ ∪ {ε} → Λ ∪ {ε} be the event-mask,

F = {F1, F2, · · · , Fm} be the set of failure types and ψ : Σ → 2F be the fault assignment

function for each event. Given a timed-trace ν = (σ1, t1) · · · (σn, tn), if Fi ∈ ψ(σk) for some

event σk in ν (1 ≤ k ≤ n), then we say a fault of type Fi has occurred in ν and denote it as

Fi ∈ ν.

The observation of trace ν through both timing and event masks is denoted as

M ◦MC(ν) = {M(νc) | νc ∈MC(ν)}

where M(νc) has the form of τk1M(σ1) · · · τknM(σn)τ b since “tick” event is observable through

the event observation mask M , i.e., M(τ) = τ . And we have M ◦ MC(ν) = MC ◦ M(ν).

The event and timing masked (generated) language of an timed-automaton A is denoted by

M ◦MC(L(A)) = {M ◦MC(ν) | ν ∈ L(A)}.

To introduce the faults, let F = {F1, F2, · · · , Fm} be the set of fault types, ψ : Σ→ 2F be

the fault-type assignment function for each event, where ψ(σ) = ∅means σ is a nonfaulty event,

otherwise σ is a faulty event and ψ(σ) is the set of fault types associated with σ. Hereafter,

when we write that “a fault of type Fi has occurred”, it will mean that some faulty event σ with

Fi ∈ ψ(σ) has occurred. For an untimed-trace s = σ1 · · ·σn, if for some event σk(1 ≤ k ≤ n)

in the trace, Fi ∈ ψ(σk), then we say that a fault of type Fi has occurred in s, and denote it

as Fi ∈ s.

The definition of diagnosability for untimed discrete event systems is given below.

Definition 7 A language H ⊆ Σ∗ is said to be diagnosable with respect to an event mask M
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and a fault assignment function ψ if the following holds:

(∀Fi ∈ F)(∃Ni > 0)

(∀s = σ1 · · ·σj ∈ H : Fi ∈ s)

(∀s′ = sσj+1 · · ·σj+n ∈ H : n ≥ Ni or s′ deadlocks)

(∀w ∈ H : M(w) = M(s′))(Fi ∈ w)

A discrete event system is said to be diagnosable if its marked language is diagnosable.

Definition 7 states that an untimed system is diagnosable if the execution of any faulty event

can be detected within a bounded delay (bounded number of transitions) from the observa-

tions of the system behavior (i.e., no nonfaulty behavior can produce the same observation).

Polynomial algorithms for the test of the above diagnosability and the synthesis of the on-line

diagnoser can be found in [47, 146], and in [57] respectively.

Remark 6 Note Definition 7 of fault diagnosability allows not only the detection of a fault,

but also its type. If we choose to not discriminate among the fault-types (so that F is a singleton

set), then Definition 7 will reduce to a more traditional definition of fault detectability (where

the aim is to detect a fault, and not its type).

Next we give the definition of diagnosability in the timed setting.

Definition 8 A timed language L is said to be diagnosable with respect to the timing-mask

MC , the event-mask M and the fault assignment function ψ if the following holds:

(∀Fi ∈ F)(∃Bi ∈ <+)

(∀ν = (σ1, t1) · · · (σj , tj) ∈ L : Fi ∈ ν)

(∀ν ′ = ν(σj+1, tj+1) · · · (σn, tn) ∈ L : tn ≥ (tj +Bi))

(∀µ ∈ L : M ◦MC(ν ′) ∩M ◦MC(µ)) 6= ∅)(Fi ∈ µ)

A dense-time system A is said to be diagnosable if its marked timed language Lm(A) is diag-

nosable.



60

Definition 8 states that a timed system is diagnosable if the execution of any faulty event

can be detected within a bounded time delay from the event and timing-mask observations of

the system (i.e., no nonfaulty behavior can produce the same observation).

The following example illustrates the consequence of the precision with which time can be

measured on the property of diagnosability of a timed DES.

Example 8 We revisit the timed DES G of Example 2. As analyzed before, if time is measured

using a digital-clock that ticks every one unit of time, then G is undiagnosable. Whereas, if

time is measured using a digital-clock that ticks every 0.5 units of time, then G becomes

diagnosable. This is because a faulty trace (f, t0)(a, 1.6) can be distinguished from a nonfaulty

trace (u, t′0)(a, 1.2) since the former will produce 3 ticks prior to the occurrence of a, whereas

the latter will produce only 2 ticks prior to the occurrence of a.

In the following we show that the diagnosis problem of dense-time systems with both timing

and event observation masks can be reduced to the diagnosis problem of untimed systems with

only event observation mask. To establish the equivalence between the diagnosabilities of a

timed language and its timing-masked language, the following simple lemma is needed.

Lemma 5 For any timed-trace ν ∈ L, Fi ∈ ν if and only if Fi ∈ νc where νc ∈MC(ν).

Lemma 5 can be obtained by following from the fact that a timing mask does not mask

the the events (rather their timings).

Next we show that the diagnosability of a timed language is equivalent to the diagnosability

of its timing-masked language.

Theorem 7 Let L be a prefix closed and uniformly non-speeding timed language, C be a

uniformly non-speeding and non-slowing digital-clock, MC be the timing-mask associated with

digital-clock C, M be the event-mask, and ψ be the fault assignment function. L is diagnosable

with respect to timing-mask MC , event-mask M and fault assignment function ψ if and only if

its timing-masked language MC(L) is diagnosable with respect to the event mask M and the

fault assignment function ψ.
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Proof: For the sufficiency, suppose MC(L) is diagnosable, i.e., for any Fi, there exists a Ni s.t.

Definition 7 is satisfied. Since C is uniformly non-slowing, there exists an interval TCNi+1 > 0 s.t.

the number of ticks generated during the interval TCNi+1 is at least Ni + 1. Pick a faulty trace

ν = (σ1, t1) · · · (σl, tl) ∈ L with Fi ∈ ν, an extended trace ν ′ = ν(σl+1, tl+1) · · · (σm, tm) ∈ L

with tm − tl ≥ TCNi+1 and a trace µ ∈ L s.t. M ◦MC(ν ′) ∩M ◦MC(µ) 6= ∅, we need show

Fi ∈ µ.

From ν, ν ′, µ ∈ L and M ◦MC(ν ′) ∩M ◦MC(µ) 6= ∅, there exist νc = τk1σ1 · · · τklσlτ b1 ∈

MC(ν), ν ′c = νcτ
kl+1−b1τl+1 · · · τkmσmτ b2 ∈MC(ν ′), ρ = (τ, t11) · · · (τ, tkll ) · · · (τ, tkmm )(τ, t1m+1)(τ, t2m+1) ∈

L(C) and µc ∈ MC(µ) s.t. M(ν ′c) = M(µc) and ti ∈ [tkii , t
1
i+1] for i ≤ m, b1, b2 ∈ {0, 1}. Also

|ν ′c| − |νc| ≥
∑m

i=l+1 ki + b2 − b1. The following four cases need to be considered.

Case 1: b1 = b2 = 0. Then tl ∈ [tkll , t
1
l+1), tm ∈ [tkmm , t1m+1) and t1m+1−t

kl
l > tm−tl ≥ TCNi+1.

Note that C is uniformly non-slowing,
∑m

i=l+1 ki + 1 ≥ Ni + 1. So |ν ′c|− |νc| ≥
∑m

i=l+1 ki ≥ Ni.

Case 2: b1 = b2 = 1. Then tl = t1l+1, tm = t1m+1 and t2m+1 − t1l+1 > tm − tl ≥ TCNi+1. Note

that C is uniformly non-slowing,
∑m

i=l+1 ki + 1 ≥ Ni + 1. So |ν ′c| − |νc| ≥
∑m

i=l+1 ki ≥ Ni.

Case 3: b1 = 0, b2 = 1. Then tl ∈ [tkll , t
1
l+1), tm = t1m+1 and t2m+1 − t

kl
l > tm − tl ≥ TCNi+1.

Note that C is uniformly non-slowing,
∑m

i=l+1 ki+2 ≥ Ni+1. So |ν ′c|−|νc| ≥
∑m

i=l+1 ki+1 ≥ Ni.

Case 4: b1 = 1, b2 = 0. Then tl = t1l+1, tm ∈ [tkml , t1m+1) and t1m+1− t1l+1 > tm− tl ≥ TCNi+1.

Note that C is uniformly non-slowing,
∑m

i=l+1 ki ≥ Ni + 1. So |ν ′c|− |νc| ≥
∑m

i=l+1 ki− 1 ≥ Ni.

In each case, νc, ν
′
c, µc ∈ MC(L), Fi ∈ νc (from Lemma 5), |ν ′c| − |νc| ≥ Ni and M(µc) =

M(ν ′c). Note that MC(L) is diagnosable, Fi ∈ µc. And so we have Fi ∈ µ, as desired.

For the necessity, suppose L is diagnosable, i.e., for any Fi, there exists a Bi s.t. Definition 8

is satisfied. Since L and C are uniformly non-speeding, there exist NL
Bi

and NC
Bi

s.t. the

interval for generating NL
Bi

(resp., NC
Bi

) number of events by L (resp., C) is at least Bi.

Pick a faulty trace νc = τk1σ1 · · · τklσlτ b1 ∈ MC(L) with Fi ∈ νc, an extended trace ν ′c =

νcτ
kl+1−b1 · · · τkmσmτ b2 ∈MC(L) with |ν ′c| − |νc| ≥ NL

Bi
+NC

Bi
+ 1 and a trace µc ∈MC(L) s.t.

M(µc) = M(ν ′c). We need show Fi ∈ µc.

From νc, ν
′
c, µc ∈MC(L), there exist ν = (σ1, t1) · · · (σl, tl) ∈ L, ν ′ = ν(σl+1, tl+1) · · · (σm, tm) ∈



62

L and µ ∈ L s.t. νc ∈ MC(ν), ν ′c ∈ MC(ν ′), µc ∈ MC(µ) and M ◦MC(ν ′) ∩M ◦MC(µ) 6= ∅.

And there exists ρ = (τ, t11) · · · (τ, tkmm ) · · · (τ, t1m+1) ∈ L(C) s.t. ti ∈ [tkii , t
1
i+1] for i ≤ m. Also

we have |ν ′c|−|νc| = (m−l)+(
∑m

i=l+1 ki+b2−b1) if σl, σm 6= ε; (m−l−1)+(
∑m

i=l+1 ki+b2−b1)

if σl 6= ε, σm = ε or σl = ε, σm 6= ε; (m − l − 2) + (
∑m

i=l+1 ki + b2 − b1) if σl, σm = ε. Note

b1, b2 ∈ {0, 1}. The following four cases need be considered.

Case 1: b1 = b2 = 0. Then tl ∈ [tkll , t
1
l+1), tm ∈ [tkml , t1m+1). From |ν ′c|−|νc| ≥ NL

Bi
+NC

Bi
+1,

either m − l ≥ NL
Bi

(resp., m − l − 1 ≥ NL
Bi

, m − l − 2 ≥ NL
Bi

) if σl, σm 6= ε (resp., σl 6= ε,

σm = ε or σl = ε, σm 6= ε, σl, σm = ε) or
∑m

i=l+1 ki ≥ NC
Bi

+ 1. Note that L is uniformly

non-speeding, m− l ≥ NL
Bi

(if σl, σm 6= ε) implies tm − tl ≥ Bi; similarly, m− l − 1 ≥ NL
Bi

(if

σl 6= ε, σm = ε or σl = ε, σm 6= ε) implies tm − tl ≥ tm−1 − tl ≥ Bi or tm − tl ≥ tm − tl+1 ≥ Bi;

m− l − 2 ≥ NL
Bi

(if σl, σm = ε) implies tm − tl ≥ tm−1 − tl+1 ≥ Bi; Note that C is uniformly

non-speeding,
∑m

i=l+1 ki − 1 ≥ NC
Bi

implies tm − tl > tkmm − t1l+1 ≥ Bi.

Case 2: b1 = b2 = 1. Then tl = t1l+1, tm = t1m+1. From the above analysis, we have

m − l ≥ NL
Bi

(m − l − 1 ≥ NL
Bi

or m − l − 2 ≥ NL
Bi

) implies tm − tl ≥ Bi. On the other

hand,
∑m

i=l+1 ki ≥ NC
Bi

+ 1 together with uniformly non-speedingness of C implies tm − tl =

t1m+1 − t1l+1 ≥ Bi.

Case 3: b1 = 0, b2 = 1. Then tl ∈ [tkll , t
1
l+1), tm = t1m+1. From the above analysis, we

have m − l ≥ NL
Bi

(m − l − 1 ≥ NL
Bi

or m − l − 2 ≥ NL
Bi

) implies tm − tl ≥ Bi. On the

other hand,
∑m

i=l+1 ki + 1 ≥ NC
Bi

+ 1 together with uniformly non-speedingness of C implies

tm − tl > t1m+1 − t1l+1 ≥ Bi.

Case 4: b1 = 1, b2 = 0. Then tl = t1l+1, tm ∈ [tkml , t1m+1). From the above analysis, we

have m − l ≥ NL
Bi

(m − l − 1 ≥ NL
Bi

or m − l − 2 ≥ NL
Bi

) implies tm − tl ≥ Bi. On the

other hand,
∑m

i=l+1 ki − 1 ≥ NC
Bi

+ 1 together with uniformly non-speedingness of C implies

tm − tl > tkmm − t1l+1 ≥ Bi.

In each case, ν, ν ′, µ ∈ L, Fi ∈ ν (from Lemma 5), T (ν ′) − T (ν) = tm − tl ≥ Bi and

M ◦MC(ν ′) ∩M ◦MC(µ) 6= ∅. Note that L is diagnosable, Fi ∈ µ. And so we have Fi ∈ µc,

as desired.

Remark 7 It follows from Theorems 7 that the diagnosis problem of dense-time systems with
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respect to both timing and event observation masks can be reduced to the diagnosis problem

of untimed discrete event systems. Thus, the results for the diagnosis of untimed discrete event

systems like [47, 146, 57] can be applied for the test of diagnosability and the synthesis of on-

line as well as off-line diagnoser. In particular the diagnosability of a timed system with respect

to the event and timing masks can be performed quadratically in the size of the states in the

system and the digital-clock, and exponentially in the number of clocks and the encodings of

the clock constraints in the system and the digital-clock.

Example 9 Consider the model of an air conditioning (AC) unit G along with its environment

as shown in Figure 5.1 (a). When the environment temperature is “Hot”, the AC unit is

switched on within one unit of time, transmitting to “On” state. From this state either a

transition to “Cool” state occurs within one unit of time, or the AC unit fails. In the former

case, the AC unit is switched off after it has been running for one unit of time. When the AC

unit is off, it can be switched on after the occurrence of the transition hot.

A diagnoser can observe all events except the event f , which represents the failure of the

AC unit. Figure 5.1(b) depicts the model of a digital clock C that generates the tick events

observed by the diagnoser to keep track of the time. The duration between two successive

tick events is one unit of time. Figure 5.1(c) shows the composed automaton G‖C. The

corresponding clock regions are shown in Figure 5.1(d). It can be checked that the AC unit G

is uniformly non-speeding and the clock C is uniformly non-speeding and non-slowing.

From Theorem 7, the diagnosability of the AC unit G under the event and timing masks can

be checked by checking the diagnosability of its (untimed) timing-masked language MC(L(G))

under only the event mask. We first obtain the acceptor for the language MC(L(G)) by

constructing the refined region-automaton Rε(G‖C) according to Algorithm 1. Next, we check

the diagnosability of the untimed language MC(L(G)) using a known algorithm (see Remark 7).

A partial refined region-automaton, sufficient to check the diagnosability of MC(L(G)) is shown

in Figure 5.1(e). (The sequence of transitions starting from the AC unit state “Off” is omitted

since it is not relevant to diagnosability analysis.) From Figure 5.1(e), it can be verified that

if a fault (f) occurs after the occurrence of on, then all future transitions are tick transitions τ
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(since no event is executable at the “Fault” state). On the other hand if a fault does not occur

after the occurrence of on, then the cool event is observed following at most one tick transition

τ . It follows that Mc(L(G)) is diagnosable with delay bound N = 2. So from Theorem 7, L(G)

is also diagnosable. This can be independently verified by choosing delay-bound B = 1: If

following the observation of on, the cool event is not observed within B = 1 unit of time, then

we can conclude that a fault has occurred. It should be noted that the above system is not

diagnosable in the untimed setting since after the occurrence of a fault, no future observation

can occur, and thus the ambiguity between the traces on.f versus on (both of which produce

the identical observation on) is never resolved.

5.2 Diagnosis with Dense-Time Specification

In this section we study the diagnosis problem where one dense timed-automaton is

given as the system model and another dense timed-automaton as the specification model

which specifies the nonfailure behavior. The task of diagnosis is to diagnose any faulty behavior

of the system (with respect to the specification) within a bounded delay of its occurrence in

the presence of both timing and event masks. This notion of diagnosability is captured by the

following definition.

Definition 9 Given a timed systemG = (Q,Σ,Ξ,Υ, I, Q0, Qm), a specificationR = (QR,Σ,ΞR,

ΥR, IR, QR0, QRm) closed relative to G, the timing mask MC , and the event mask M , (G,R)

is said to be diagnosable with respect to MC and M if the following holds:

(∃B ∈ <+)

(∀ν = (σ1, t1) · · · (σj , tj) ∈ Lm(G)− Lm(R))

(∀ν ′ = ν(σj+1, tj+1) · · · (σn, tn) ∈ Lm(G) :

tn ≥ (tj +B))

(∀µ ∈ Lm(G) : M ◦MC(ν ′) ∩M ◦MC(µ)) 6= ∅)

(µ 6∈ Lm(R))
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Figure 5.1 Models of the AC unit and digital-clock
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Definition 9 states that a timed system and a specification of its nonfaulty behaviors are

diagnosable if any violation of the given specification can be detected within a bounded time

delay from the event and timing-mask observations of the system behavior (i.e., no nonfaulty

behavior can produce the same observation).

Note Lm(G) here represents those traces of interest that must be diagnosed. The relative-

closure property requires that all prefixes of a nonfaulty trace that need to be diagnosed (i.e.,

are accepted by G) are themselves nonfaulty. This is a natural requirement.

For any deterministic specification R, the above diagnosis problem of a pair of timed-

automata can be converted to the diagnosis problem of a single timed-automaton with a faulty

event as defined in Definition 8. For this, we first complete the specificationR by adding a dump

state and all the missing transitions. The resulting completed specification model is denoted

as R. Next, we introduce in R a faulty event f , whose occurrence indicates the execution of

a behavior violating the given specification. The resulting refined completed specification is

denoted as R
f
. Then, we reduce the diagnosis problem of the pair (G,R) to that of the system

G‖Rf . Note a nonfaulty specification can always be accepted by a trim automaton, and we

assume without loss of generality that R is trim, so that pr(Lm(R)) = L(R).

From the construction of the completed specification R (refer to Section 4.4), we can see

R accepts any timed-trace over the event set Σ and if a timed-trace leads to the state dump,

then that trace is not marked by R (when R is deterministic), in which case it indicates a

fault. In order to represent such a fault using a faulty event, we (i) “split” the dump state into

dump1 and dump2 states, (ii) make all self-loop transitions of dump as self-loop transitions

of dump2, (iii) make all incoming non-self-loop transitions of dump as incoming transitions of

dump1, and (iv) add an outgoing transition on f from dump1 to dump2.

The refined complete specificationR
f

is defined as follows. R
f

= (QR∪{dump1, dump2},Σ∪

{f},ΞR∪{ξf},ΥR∪Υf
add, I

f
R, QR0, QRm∪{dump2}), where ∀q ∈ QR, IfR(q) = IR(q), IfR(dump1) =

(ξf = 0), IfR(dump2) = true, and the set of transitions Υf
add is defined as:

• ∀q ∈ QR, ∀σ ∈ Σ, if there are n ≥ 1 out-going transitions from q labeled with σ, and

let {φ1
σ, · · · , φnσ} be the set of guard conditions associated with those n transitions, then
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(q, σ,¬(∨ni=1φ
i
σ), {ξf}, dump1) ∈ Υf

add; otherwise (q, σ, true, {ξf}, dump1) ∈ Υf
add

• ∀σ ∈ Σ, (dump2, σ, true, ∅, dump2) ∈ Υf
add

• (dump1, f, ξf = 0, ∅, dump2) ∈ Υf
add

In the composed automaton G‖Rf , we have only one failure type, i.e., F = {F1}, and the

corresponding fault assignment function ψf is defined as ψf (f) = {F1} and ψf (σ) = ∅ for any

σ ∈ Σ. The faulty event f is unobservable, i.e., M(f) = ε. Also note f 6∈ Σ, and so the faulty

event f occurs asynchronously in the composition G‖Rf (i.e., without the participation of G,

whereas all other events occur synchronously) and immediately after the occurrence a violation

of the specification.

From the construction of G‖Rf , it can be proved that (G,R) is diagnosable according

to Definition 9 if and only if G‖Rf is diagnosable according to Definition 8. (The diagnosis

problem of the timed system G‖Rf can be further reduced to the diagnosis problem of its

corresponding untimed system as described in the earlier sections.) To show this, we need the

following lemmas.

Lemma 6 Given G and deterministic and relative-closed R, it holds that ΠΣ(L(G‖Rf )) =

L(G) and ΠΣ(Lm(G‖Rf )) = Lm(G).

Proof: The first conclusion follows from the fact L(G) ⊆ ΠΣ(L(R
f
)) = (Σ×<+)∗.

Next we show the second conclusion. It follows from the definition of synchronous composi-

tion that ΠΣ(Lm(G‖Rf )) ⊆ Lm(G). To show the converse containment Lm(G) ⊆ ΠΣ(Lm(G‖Rf )),

pick ν ∈ Lm(G). If ν ∈ Lm(R), then ν ∈ Lm(G‖Rf ). On the other hand if ν ∈ Lm(G)−Lm(R),

then from the relative-closure of R and the fact pr(Lm(R)) = L(R) (since R is trim), we have

ν ∈ Lm(G) − pr(Lm(R)) ∩ Lm(G) = Lm(G) − L(R). Therefore ν must reach the dump

state in R (since R is deterministic). This implies that there exists µ ∈ L(R
f
) such that

Π(µ) = ν, and f ∈ µ. Then µ reaches the state dump2, which is a marked state of R
f
. Fur-

ther since Π(µ) = ν ∈ Lm(G), we have that µ ∈ Lm(G‖Rf ). Thus it can be concluded that

ν ∈ ΠΣ(Lm(G‖Rf )).
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Lemma 7 Given G and deterministic relative-closed R, any µ ∈ Lm(G‖Rf ) contains the

faulty event f if and only if ΠΣ(µ) ∈ Lm(G)− Lm(R).

Proof: Pick µ ∈ Lm(G‖Rf ) with f ∈ µ. From Lemma 6, ΠΣ(µ) ∈ Lm(G). Since µ contains the

faulty event f , the execution of µ in R
f

reaches state dump2. Since the projected trace ΠΣ(µ)

only erases the faulty event, the execution of ΠΣ(µ) reaches the dump state in R. Therefore

µ ∈ Lm(G‖Rf ) contains the faulty event f if and only if ΠΣ(µ) ∈ Lm(G) and its execution

reaches the dump state in R (i.e., ΠΣ(µ) 6∈ L(R) = pr(Lm(R)), for R is deterministic). Note

ΠΣ(µ) ∈ Lm(G). Further from the relative-closure property of R, we have ΠΣ(µ) 6∈ Lm(R), as

desired.

With Lemmas 6 and 7 in hand, we are ready to establish the following theorem.

Theorem 8 Given a system G, a deterministic relative closed specification R, a timing mask

MC , and an event mask M , (G,R) is diagnosable with respect to MC and M if and only if

G‖Rf is diagnosable with respect to MC , M , and ψf .

Proof: For the sufficiency, suppose G‖Rf is diagnosable, i.e., there exists B ∈ <+ such that

Definition 8 is satisfied. Pick a trace ν = (σ1, t1) · · · (σj , tj) ∈ Lm(G) − Lm(R), an extended

trace ν ′ = ν(σj+1, tj+1) · · · (σn, tn) ∈ Lm(G) with tn ≥ tj + B, and µ ∈ Lm(G) such that

M ◦MC(ν ′) ∩M ◦MC(µ) 6= ∅. We need show µ ∈ Lm(G)− Lm(R).

Since ν ∈ Lm(G) − Lm(R), ν ′, µ ∈ Lm(G), from Lemma 6 and 7, there exist ν̃, ν̃ ′, µ̃ ∈

Lm(G‖Rf ) s.t. ΠΣ(ν̃) = ν, ΠΣ(ν̃ ′) = ν ′, ΠΣ(µ̃) = µ, and ν̃ contains the faulty event f .

Since the faulty transition occurs instantaneously (see the construction of R
f
), the last events

in ν̃ and ν̃ ′ occur at the same times as the last events in ν and ν ′, i.e., T (ν̃) = T (ν) and

T (ν̃ ′) = T (ν ′). Thus the last events ν̃ and ν̃ ′ are separated by at least the duration B. Note

that f is unobservable under the event-mask M , M ◦MC(µ̃) = M ◦MC(ΠΣ(µ̃)) = M ◦MC(µ)

and M ◦MC(ν̃ ′) = M ◦MC(ν ′). Since G‖Rf is diagnosable, f ∈ µ̃. Then from Lemma 7, we

have µ ∈ Lm(G)− Lm(R).

For the necessity, suppose (G,R) is diagnosable, i.e., there exists B ∈ <+ such that Defini-

tion 9 is satisfied. Pick a faulty trace ν̃ = (σ′1, t1) · · · (σ′j , tj) ∈ Lm(G‖Rf ) where σ′i ∈ Σ ∪ {f}
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and σ′k = f for some k, an extended trace ν̃ ′ = ν̃(σ′j+1, tj+1) . . . (σ′n, tn) ∈ Lm(G‖Rf ) with

tn ≥ tj +B, and µ̃ ∈ Lm(G‖Rf ) such that M ◦MC(µ̃)∩M ◦MC(ν̃ ′) 6= ∅. We need show f ∈ µ̃.

Since ν̃, ν̃ ′, µ̃ ∈ Lm(G‖Rf ) and f ∈ ν̃, from Lemma 6 and 7, there exist ν, ν ′, µ ∈ Lm(G)

s.t. ν = ΠΣ(ν̃), ν ′ = ΠΣ(ν̃ ′), µ = ΠΣ(µ̃) ∈ Lm(G) and ν ∈ Lm(G) − Lm(R). Since the

projection ΠΣ only erases the faculty event f which occurs instantaneously, the last events in

ν and ν ′ are separated by the same duration as the last events in ν̃ and ν̃ ′, namely by at least

the duration B. Note that f is unobservable under event-mask M , M ◦MC(µ) = M ◦MC(µ̃)

and M ◦MC(ν ′) = M ◦MC(ν̃ ′). Since (G,R) is diagnosable, µ ∈ Lm(G)−Lm(R). Then from

Lemma 7, we have f ∈ µ̃.

Remark 8 It follows from Theorem 8 that diagnosability of (G,R), where G and R are such

that G‖Rf is uniformly non-speeding and further R is deterministic and relative closed, with

respect to the timing and event masks can be performed quadratically in the size of the states

in G,R and the digital-clock C, and exponentially in the number of clocks and the encodings

of the clock constraints in G,R and C.

The following example illustrates the equivalence between the diagnosability of (G,R) and

that of G||Rf .

Example 10 Consider the system G and the deterministic relative-closed specification R as

shown in Figure 5.2. Suppose the digital clock C ticks with interval of one. From the specifi-

cation R, we construct R, R
f

and G||Rf , which are shown in Figure 5.2.

Suppose M(a) = a, M(b) = b, then (G,R) is diagnosable. This is because the trace in

Lm(G), which violates the specification Lm(R), must be of the form (a, t)(ε, t′) with t < 1.

Such a trace is observed as aτ∗. On the other hand, the trace with the same event observation

and which satisfies the specification is of the form (a, t)(ε, t
′
) with t > 1. Such a trace is is

observed as τkaτ∗ for some k ≥ 1. The conclusion about diagnosability of G‖Rf can be drawn

as well by comparing a faulty trace (a, t)(f, t) with t < 1 and a nonfaulty trace (a, t′) with

t′ > 1.



70

Now suppose M(a) = M(b) = a, then (G,R) becomes undiagnosable. This is because a

faulty trace (a, 0.5) can not be distinguished from a nonfaulty trace (b, 0.7). Both produce the

same observation, a. Similarly, G||Rf is also undiagnosable since a faulty trace (a, 0.5)(f, 0.5)

can not be distinguished from a nonfaulty trace (b, 0.7) (both produce the same observation,

a).
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Figure 5.2 Automata of G,R,C,R,R
f

and G‖Rf

5.3 Extension to Nondeterministic Setting

In the above work on diagnosis of dense-time DESs using digital-clock, we assume that

sensors are reliable so that they can be modeled as a deterministic (point-valued) observation

mask. However in certain harsh environments such as nuclear systems and mobile systems,

sensors may not be reliable [121]. This results in a nondeterministic (set-valued) observation

mask. In this section, we extend the aforementioned results to the nondeterministic setting by

allowing the event observation mask to be nondeterministic so as to capture unreliability of

sensors.
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5.3.1 Introduction to Lifting

To solve the diagnosis problem under nondeterministic event observations, we need to

introduce the notion of lifting. Given an event set Σ and a nondeterministic observation mask

Mn, a lifted-event can be viewed as a pair consisting of an event and its possible observation.

The set of all lifted-events is given by Σ̃ := {σδ | σ ∈ Σ, δ ∈ Mn(σ)}. Given a plant G =

(Q,Σ,Ξ,Υ, I, Q0, Qm), its corresponding lifted-plant, denoted G̃, has the same state space as

G, whereas each of its transitions is labeled by an event together with its possible observation:

G̃ = (Q, Σ̃,Ξ, Υ̃, I, Q0, Qm), where (q, σδ, φ, r, q
′) ∈ Υ̃ if and only if (q, σ, φ, r, q′) ∈ Υ and

δ ∈Mn(σ).

The lifting operation can also be defined for languages: Lifting of a language L ⊆ T ,

denoted L̃ ⊆ T̃ , is defined as L̃ :=
⋃
s∈L s̃, where the lifting of a trace s is inductively defined

as follows:

ε̃ = {ε}; s ∈ T , σ ∈ Σ : s̃(σ, t) = s̃{(σδ, t) | δ ∈Mn(σ)}.

It can be concluded that L(G̃) = L̃(G).

An observation mask over a lifted-language is called a lifted-observation mask. Given an

observation mask Mn, its lifted observation mask, denoted M̃n, is defined by M̃n(σδ) := δ for

any σδ ∈ Σ̃. M̃n can be generalized to lifted-traces and lifted-languages in a natural way. It

can be seen that the observations of a language under an observation mask agree with those of

its lifted-language under the lifted-observation mask: Mn(L) = M̃n(L̃). Furthermore, a lifted-

observation mask M̃n is always deterministic (regardless of whether its underlying observation

mask Mn is deterministic or not).

To retrieve a physical event from its lifted version, a projection function (with a little abuse

of notation Π) Π : Σ̃→ Σ is extended to be defined in the domain of Σ̃ as Π(σδ) := σ for any

σδ ∈ Σ̃. Π can be generalized to the lifted-traces and lifted-languages in a natural way.

5.3.2 Diagnosis under Nondeterministic Event and Timing-Masks

In the following we extend the notion of diagnosability with event as well as timing

masks to the nondeterministic setting, i.e., with nondeterministic event and timing masks.
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Let A = (Q,Σ,Ξ,Υ, I, Q0, Qm) be the timed-automaton model of a system, MC be the

timing-mask associated with a digital-clock C, Mn : Σ∪{ε} → Λ∪{ε} be the nondeterministic

event-mask, F = {F1, F2, · · · , Fm} be the set of failure types and ψ : Σ → 2F be the fault

assignment function for each event. The notion of diagnosability in the nondeterministic setting

is defined as below.

Definition 10 A timed language L is said to be diagnosable with respect to the timing-mask

MC , the nondeterministic event-mask Mn and the fault assignment function ψ if the following

holds:

(∀Fi ∈ F)(∃Bi ∈ <+)

(∀ν = (σ1, t1) · · · (σj , tj) ∈ L : Fi ∈ ν)

(∀ν ′ = ν(σj+1, tj+1) · · · (σn, tn) ∈ L : tn ≥ (tj +Bi))

(∀µ ∈ L : Mn ◦MC(ν ′) ∩Mn ◦MC(µ)) 6= ∅)(Fi ∈ µ)

A dense-time system A is said to be diagnosable if its marked timed language Lm(A) is diag-

nosable.

Definition 10 is the similar to Definition 8 except that in Definition 10 the event observation

mask is allowed to be nondeterministic.

Given the set of fault types F , let F̃ := {Fε | F ∈ F} denote the lifted fault types. (Note

∀F ∈ F , Mn(F ) = ε.) The lifted fault assignment function is defined by ψ̃ : Σ̃ → 2F , and

ψ̃(σδ) = ψ(σ) for any σ ∈ Σ, δ ∈Mn(σ).

In the following we show that diagnosis of dense-time systems with both nondeterminis-

tic timing and event observation masks can be reduced to that of dense-time systems with

deterministic event observation mask and nondeterministic timing observation mask (that is

studied in the previous section). To establish the equivalence between the diagnosability of a

timed language and that of its lifted timed language, the following simple lemma is needed.

Lemma 8 For any timed-trace ν ∈ L, Fi ∈ ν if and only if Fiε ∈ ν̃ where ν̃ ∈ L̃.

Lemma 8 can be obtained from the definition of lifting.
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Next we show that the diagnosability of a timed language is equivalent to the diagnosability

of its lifted timed language.

Theorem 9 Let L be a prefix closed and uniformly non-speeding timed language, C be a

uniformly non-speeding and non-slowing digital-clock, MC be the timing-mask associated with

digital-clock C, Mn be the nondeterministic event-mask, and ψ be the fault assignment func-

tion. L is diagnosable with respect to timing-mask MC , event-mask Mn and fault assignment

function ψ if and only if its lifted timed language L̃ is diagnosable with respect to timing-mask

MC , event mask M̃n and the lifted fault assignment function ψ̃.

Proof: We start by showing the sufficiency. Pick Fi ∈ F , ν = (σ1, t1) · · · (σj , tj) ∈ L : Fi ∈ ν,

ν ′ = ν(σj+1, tj+1) · · · (σn, tn) ∈ L : tn ≥ (tj +Bi), and µ ∈ L : M ◦MC(ν ′) ∩M ◦MC(µ)) 6= ∅.

Then there exist ν̃, ν̃ ′, µ̃ ∈ L̃ s.t. Π(ν̃) = ν, Π(ν̃ ′) = ν ′, Π(µ̃) = µ, Fiε ∈ ν̃ (from Lemma 8),

and M̃n ◦MC(ν̃ ′) ∩ M̃n ◦MC(µ̃)) 6= ∅ (from M̃n ◦MC(ν̃ ′) = M ◦MC(ν̃ ′), and M̃n ◦MC(µ̃) =

M ◦MC(µ̃)). Note L̃ is diagnosable with respect to timing-mask MC , event mask M̃n and the

lifted fault assignment function ψ̃. Then we have Fiε ∈ µ̃, equivalently, Fi ∈ µ.

Next we show the necessity. Pick Fiε ∈ F̃ , ν̃ = (σ1δ1 , t1) · · · (σjδj , tj) ∈ L̃ : Fiδi ∈ ν̃,

ν̃ ′ = ν̃(σj+1, tj+1) · · · (σn, tn) ∈ L̃ : tn ≥ (tj +Bi), and M̃n ◦MC(ν̃ ′) ∩ M̃n ◦MC(µ̃)) 6= ∅. Then

there exist ν, ν ′, µ ∈ L s.t. Π(ν̃) = ν, Π(ν̃ ′) = ν ′, Π(µ̃) = µ, Fi ∈ ν (from Lemma 8), and

Mn ◦MC(ν ′) ∩Mn ◦MC(µ)) 6= ∅) (from Mn ◦MC(ν̃ ′) = M̃n ◦MC(ν̃ ′), and Mn ◦MC(µ̃) =

M̃n ◦MC(µ̃)). Note L is diagnosable with respect to timing-mask MC , event mask Mn and

the fault assignment function ψ. Then we have Fi ∈ µ, equivalently, Fiε ∈ µ̃.

The following example illustrates Theorem 9.

Example 11 Consider the system G and the digital clock C as shown in Figure 5.3. Suppose

the nondeterministic observation mask Mn is defined as Mn(a) = {a1, a2}, Mn(a1) = a1,

Mn(a2) = a2, Mn(b) = b, and Mn(f) = ε. The lifted plant G̃ is shown in Figure 5.3 (c).

From Definition 10, we have G is diagnosable. This is because in a nonfaulty trace where a1

is observed, event b can be observed within 1 time unit upon the observation of a1, whereas

in a faulty trace where a1 is also observed, event b can never be observed. Similarly, we have
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the lifted timed language L(G̃) is also diagnosable. However if event b is unobservable, then G

becomes non-diagnosable since a nonfaulty trace (a, 0.5)(b, 1) cannot be distinguished from a

faulty trace (a1, 0.3)(f, 0.6)(ε, 1) (both produce the observation a1τ). Note the lifted nonfaulty

trace (aa1 , 0.5)(bε, 1) and the lifted faulty trace (a1a1 , 0.3)(fε, 0.6)(εε, 1) are indistinguishable,

and so we have L(G̃) is not diagnosable.
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Figure 5.3 Automata of G,C, G̃

It follows from Theorem 9 and Theorem 7 that diagnosis of dense-time DESs in the non-

deterministic setting can be further reduced to diagnosis of lifted untimed DESs in the deter-

ministic setting. In result, the extensive results of diagnosis of untimed DESs can be applied

to diagnosis of dense-time DESs under nondeterministic event and timing masks.

5.3.3 Diagnosis with Dense-Time Specification under Nondeterministic Event

Mask

In the following we extend the prior result of diagnosis with dense time specification to

the nondeterministic setting. The notion of diagnosability with respect to a given dense-time

specification and nondeterministic observation mask is defined as below.

Definition 11 Given a timed system G = (Q,Σ,Ξ,Υ, I, Q0, Qm), a specification R = (QR,Σ,

ΞR,ΥR, IR, QR0, QRm) closed relative to G, the timing mask MC , and the nondeterministic

event mask Mn, (G,R) is said to be diagnosable with respect to MC and Mn if the following
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holds:

(∃B ∈ <+)

(∀ν = (σ1, t1) · · · (σj , tj) ∈ Lm(G)− Lm(R))

(∀ν ′ = ν(σj+1, tj+1) · · · (σn, tn) ∈ Lm(G) :

tn ≥ (tj +B))

(∀µ ∈ Lm(G) : Mn ◦MC(ν ′) ∩Mn ◦MC(µ)) 6= ∅)

(µ 6∈ Lm(R))

Definition 11 states that a timed system and a specification of its nonfaulty behaviors

are diagnosable if any violation of the given specification can be detected within a bounded

time delay from the event and timing-mask observations of the system behavior. This is

similar to Definition 9 except that in Definition 11 the event observation mask is allowed to

be nondeterministic.

Next we show that diagnosability of a timed language in the nondeterministic setting is

equivalent to diagnosability of its lifted timed language in the deterministic setting. To show

this, we need the following lemmas.

Lemma 9 Given G and deterministic and relative-closed R, it holds that ΠΣ(L(G̃‖R̃f )) =

L(G) and ΠΣ(Lm(G̃‖R̃f )) = Lm(G).

Note in Lemma 9, R̃
f

denotes the lifted refined complete specification. Lemma 9 can be

obtained following from Lemma 6 and the fact ΠΣ(L(G̃‖R̃f )) = ΠΣ(L(G‖Rf )).

Lemma 10 Given G and deterministic relative-closed R, any µ̃ ∈ Lm(G̃‖R̃f ) contains the

faulty event fε if and only if ΠΣ(µ) ∈ Lm(G)− Lm(R).

Lemma 10 can be shown from the construction of a lifted automaton and the fact ΠΣ(µ̃) =

ΠΣ(µ).

With Lemmas 6 and 7, we are able to establish the following theorem.
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Theorem 10 Given a system G, a deterministic relative closed specification R, a timing mask

MC , and a nondeterministic event mask Mn, (G,R) is diagnosable with respect to MC and

Mn if and only if G̃‖R̃
f

is diagnosable with respect to MC , M̃n, and ψ̃f .

Proof: For the sufficiency, suppose G̃‖R̃f is diagnosable. Pick a trace ν = (σ1, t1) · · · (σj , tj) ∈

Lm(G) − Lm(R), an extended trace ν ′ = ν(σj+1, tj+1) · · · (σn, tn) ∈ Lm(G) with tn ≥ tj + B,

and µ ∈ Lm(G) such that Mn ◦MC(ν ′)∩Mn ◦MC(µ) 6= ∅. We need show µ ∈ Lm(G)−Lm(R).

Since ν ∈ Lm(G) − Lm(R), ν ′, µ ∈ Lm(G), from Lemma 9 and 10, there exist ν̃, ν̃ ′, µ̃ ∈

Lm(G̃‖R̃f ) s.t. ΠΣ(ν̃) = ν, ΠΣ(ν̃ ′) = ν ′, ΠΣ(µ̃) = µ, and fε ∈ ν̃ (from Lemma 8). Since

the faulty transition occurs instantaneously, the last events in ν̃ and ν̃ ′ occur at the same

times as the last events in ν and ν ′, i.e., T (ν̃) = T (ν) and T (ν̃ ′) = T (ν ′). Thus the last

events ν̃ and ν̃ ′ are separated by at least the duration B. Note that f is unobservable under

the event-masks Mn and M̃n, M̃n ◦MC(µ̃) = M̃n ◦MC(ΠΣ(µ̃)) = Mn ◦MC(µ) and similarly

M̃n ◦MC(ν̃ ′) = Mn ◦MC(ν ′). From diagnosability of G̃‖R̃f , fε ∈ µ̃. Then from Lemma 10, we

have µ ∈ Lm(G)− Lm(R).

For the necessity, suppose (G,R) is diagnosable. Pick a faulty trace ν̃ = (σ′1δ1 , t1) · · · (σ′jδj , tj)

∈ Lm(G̃‖R̃f ) where σ′k = f for some k (1 ≤ k ≤ j), an extended trace ν̃ ′ = ν̃(σ′j+1δj+1
, tj+1) . . .

(σ′nδn , tn) ∈ Lm(G̃‖R̃f ) with tn ≥ tj+B, and µ̃ ∈ Lm(G̃‖R̃f ) s.t. M̃n◦MC(µ̃)∩M̃n◦MC(ν̃ ′) 6= ∅.

We need show fε ∈ µ̃.

Since ν̃, ν̃ ′, µ̃ ∈ Lm(G̃‖R̃f ) and fε ∈ ν̃, from Lemma 9 and 10, there exist ν, ν ′, µ ∈ Lm(G)

s.t. ν = ΠΣ(ν̃), ν ′ = ΠΣ(ν̃ ′), µ = ΠΣ(µ̃) ∈ Lm(G) and ν ∈ Lm(G) − Lm(R). Since the

projection ΠΣ only erases the lifted faculty event fε which occurs instantaneously, the last

events in ν and ν ′ are separated by the same duration as the last events in ν̃ and ν̃ ′, namely

by at least the duration B. Note that f is unobservable under event-masks Mn and M̃n,

Mn ◦MC(µ) = M̃n ◦MC(µ̃) and Mn ◦MC(ν ′) = M̃n ◦MC(ν̃ ′). From diagnosability of (G,R),

µ ∈ Lm(G)− Lm(R). Then from Lemma 10, we have fε ∈ µ̃.
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5.4 Conclusion

We study the diagnosis problem of timed discrete event systems where the system as

well as the nonfailure specification is modeled by a dense timed-automaton [6]. While it is

meaningful for a system as well as its specification of nonfailure behavior to have a dense-time

semantics, it is not practical for a diagnoser to be able to measure dense-time precisely. An

imprecision in measurement of time can be viewed as partial observability of “time” just as

the presence of imprecise sensors leads to a partial observability of events. A key observation

we make is that diagnosability is preserved under timing mask. Based on this observation we

have shown that diagnosis of dense-time systems can be reduced to one of untimed systems.

Consequently, the results of untimed setting such as those reported in [47, 57] can be applied

to perform the diagnosis of a dense-time system against a dense-time specification in the

presence of partial observation of events as well as imprecise measurement of time. We further

study the diagnosis problem in the nondeterministic setting, i.e., diagnosis of dense-time DESs

using digital-clocks under nondeterministic event observation mask. We introduce the notion

of lifting and show that diagnosis of dense-time DESs in the nondeterministic setting can

be reduced to that of lifted dense-time DESs under deterministic event observation mask,

and hence can be further reduced to that of lifted untimed DESs under deterministic event

observation mask.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1 Summary of Dissertation

In this dissertation, we studied supervisory control and diagnosis of dense-time dis-

crete event systems which employ digital-clocks of finite-precision to observe event occurrence

times. This is a realistic scenario compared to the prior work which assumed that time can be

measured precisely. The main contributions of this dissertation are summarized as follows.

1. We introduced the notion of timing-mask associated with a digital-clock and formally

defined a timing-masked language. A timing-masked language consists of all the possible

untimed observations of timed traces in which the event occurrence times are observed

using finite-precision digital-clocks. In contrast to the conventional partial observation of

events, a timing-mask arising due to the use of digital-clocks to measure event occurrence

times is set-valued, and hence is nondeterministic. The proposed notion of timing-mask

captures the nondeterminism of the untimed observations as observed through using

digital-clocks explicitly. And since plant events and clock ticks can occur simultaneously,

a timing-masked language of a timed language is generally not prefix-closed (even if the

timed language is prefix-closed).

2. We showed that a timing-masked language of a timed-automaton is regular, i.e. can

be represented by an untimed automaton (over plant events and tick). An algorithm

to construct the untimed automaton to accept the timing-masked language was also

presented.

3. We formalized the notion of control and timing-mask compatible control policy that

issues the control actions based on the observations of evens and their occurrence times
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as measured using a finite-precision digital-clock. We showed that such control policy can

be equivalently represented as a digitalized-automaton, namely, an untimed automaton

that evolves over plant events and clock ticks.

4. We introduced the notion of observability with respect to the partial observation of time

resulting from the use of digital-clocks, and showed that the proposed observability to-

gether with controllability serves as a necessary and sufficient condition for the existence

of a supervisor to enforce a real-time specification on a dense-time discrete event plant.

The observability condition proposed in our work (based on extended timing-mask) is

different from the one arising due to a partial observation of events since a partial obser-

vation of time is in general nondeterministic (the number of ticks generated in any time

interval can vary from execution to execution of a digital-clock). Further we examined

the lattice structure of a class of timing-masked observable languages, and showed that

the proposed observability is not preserved under intersection but preserved under union.

5. We proposed an algorithm to verify the proposed observability and controllability con-

dition for the existence of a supervisor for dense-time DESs using digital-clocks. The

algorithm requires a language containment check, which can be reduced to an emptiness

check (under the determinism of the timed-automaton of the larger language). When the

proposed existence conditions are satisfied, the proposed algorithm presents a method to

compute compatible (nonblocking) supervisor.

6. We formalized the notions of dignosability for dense-time DESs under event and timing

masks and diagnosability for dense-time DESs with a dense-time specification. The

former requires the execution of any fault event can be detected within a bounded time

delay from the event and timing-masked observations of the system behavior, whereas

the latter requires any violation with respect to the specification can be detected within

a bounded time delay in the presence of both event and timing masks.

7. We established an equivalence between diagnosability of a timed DES employing a digital-

clock to observe event occurrence times and that of untimed DESs, and showed that the
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verification of diagnosability as well as the off-line synthesis of a diagnoser are decidable.

The reduction to the untimed setting also suggests an effective method for the off-line

computation of a diagnoser as well as its on-line implementation for diagnosis: the results

of diagnosis in untimed setting reported in the prior works can be applied to perform

diagnosis of a dense-time system against a dense-time specification in the presence of

partial observations of events as well as imprecise measurement of time.

8. The results were further extended to diagnosis in the nondeterministic setting, i.e., diag-

nosis of dense-time DESs using digital-clocks under nondeterministic event observation

mask. We introduced the notion of lifting and showed that diagnosis of dense-time DESs

in the nondeterministic setting can be reduced to diagnosis of lifted dense-time DESs

under deterministic event observations, and hence can be further reduced to diagnosis of

lifted untimed DESs in the deterministic setting.

6.2 Summary of Other Research Done during PhD

The research that were conducted and published during my Ph.D. studies but not

included in this dissertation are summarized as follows.

6.2.1 Desynchronization

In this work, we studied the problem of “desynchronization”, i.e., semantics-preserving

“asynchronous implementation” of a “synchronous design”. In a synchronous design, system

components (which we model as input-output automata (I/O-automata)) communicate over

synchronous channels, whereas in an asynchronous implementation, communication among

components occurs over asynchronous channels (which we also model as I/O-automata). The

presence of asynchronous communication can result in additional behavior that is not present

under synchronous communication and can thus cause the semantics of a synchronous design

not to be preserved under asynchronous implementation. We presented a framework based

on I/O-automata, their compositions and their input/output responses to clearly formulate

the notion of correctness: the set of responses to any input sequence must be the same in
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the synchronous design and in the asynchronous implementation. We defined the simulation

of I/O-automata, and argued that the simulation of the asynchronous implementation by a

synchronous design is sufficient to guarantee the correctness of desynchronization. This is

a new way of characterizing the correctness of desynchronization (as compared to the “iso-

/endo-chrony” type conditions proposed in previous works). Under the practical assumption

that the communication delay is bounded, the proposed simulation condition is algorithmically

verifiable [143].

6.2.2 Asynchronous Implementation

Discrete event control is typically designed under the synchronous hypothesis that sens-

ing and actuation incur zero delays, i.e., there exists zero delay between an event execution at

a plant site and its observation at a controller site, and also between a control computation

at a controller site and its enforcement at a plant site. An actual implementation, however,

is asynchronous, introducing delays in sensing as well as actuation. A natural question that

arises is what additional property must a given specification satisfy so that it remains im-

plementable in spite of the delays introduced by an underlying asynchronous implementation

platform. In this work, we formulated the problem of asynchronous implementation of syn-

chronous control when both the sensing and actuation delays are bounded. Compared to our

prior work [143] in which the main reason for the loss of semantics is that not all variables

are present in all communications and the absence of certain variables can not be detected in

asynchronous communication, in this work, the variables are present in all the communications

and the reason for the loss of semantics is sensing as well as actuation delays. We introduced

the notion of bounded-delay asynchronous composition to characterize the behavior of a con-

trolled plant when the sensing and actuation delays are bounded. We introduced the notion of

bounded-delay implementability and showed that this together with the existence conditions

of the synchronous setting (namely controllability, closure, and nonemptiness) serves as a

necessary and sufficient condition for the existence of a controller so that the controlled behav-

ior under the asynchronous implementation remains the same as that under the synchronous



82

implementation. We presented an algorithm for checking the property of bounded-delay im-

plementability, whose complexity is linear (resp., quadratic) in the size of the plant (resp.,

specification), and exponential in the delay bounds. We also examined the lattice structure

of a set of bounded-delay implementable languages, and showed that it possesses maximal

sublanguages and infimal superlanguages [140].

6.2.3 Distributed State Estimation

Knowledge of the current system state is crucial to many discrete event systems (DESs)

applications such as control, diagnosis and prognosis. Due to limited sensing capabilities, the

current state information is generally not available and needs to be estimated. In this work,

we proposed a novel distributed state estimation algorithm for discrete event plants. Under

the proposed algorithm, local sites maintain and update local state estimates based on their

local observations of the plant behavior and the observations of the plant behavior sent from

the other sites over communication channels with delays. For efficiency of storage, redundant

history information about the possible plant evolution is truncated each time a local state

estimate is updated. At each local site, the truncation is performed independently requiring

no synchronization among the sites. The state estimate maintained at each of the local sites is

shown to remain finite regardless of whether the system can execute an unbounded sequence of

unobservable events. It is also shown that the proposed algorithm is sound and complete, i.e.,

each local estimate always contains the true current states (soundness), and it only contains

the reachable states of the traces which give rise to a same history of observations (as received

from the plant and the other local sites) as does the one executed by the plant (completeness).

Also the proposed algorithm can support an architecture in which there is no communication

from a certain site to certain other sites [141].

6.2.4 Control under Nondeterministic Event-Mask

In this work, we studied the supervisory control of a discrete event plant under nondeter-

ministic partial observations. This has applicability in scenarios where sensors are unreliable,
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thereby introducing nondeterminism in observations. Most prior work on control of discrete

event systems assume that sensors are reliable so that they can be modeled as a deterministic

(point-valued) observation mask. However in certain harsh environments such as nuclear sys-

tems, sensors may not be reliable. This results in a nondeterministic (set-valued) observation

mask. In our setting, we allow the observation mask to be nondeterministic to capture unrelia-

bility of sensors. We introduced the notion of lifting, and converted the control problem under

nondeterministic observations to the control problem of the lifted domain under deterministic

observations. We showed that a supervisor exists if and only if exists a lifted specification

that satisfies closure, safety, controllability, observability, together with a new property called

conformity. The class of such lifted languages is not closed under union or intersection, but

is closed under union over an increasing chain. The existence of a nonempty, closed, safe,

conforming, controllable and observable lifted-specification serves as a constructive condition

for the existence of a supervisor. However, finding such a lifted-specification can be difficult.

We proposed a work around this difficulty by replacing the property of observability with the

stronger property of normality. The corresponding class of languages is shown to be closed

under union, and the nonemptiness of the supremal element serves as a constructive sufficient

condition for the existence of a supervisor. We also provided an automaton representation of

a control policy based on a nondeterministic observation mask [142].

6.2.5 Network Synthesis

The complexity of networked control/embedded systems is rising due to an increase in

the number of nodes that must be interconnected. Therefore it is greatly desirable that au-

tomated methods be developed for the synthesis of embedded networks that are cost-effective

and correct-by-construction. Since the routes assigned to various connections may overlap,

scheduling of connections needs to be considered for network synthesis. In this work, we in-

cluded the decisions of connection scheduling as part of the network synthesis problem so as

to synthesize an embedded network, which not only can satisfy the end-to-end communication

requirements, but also can satisfy the scheduling requirements, for networked control sys-
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tems. We formulated the scheduling constraints using binary decision variables, and proposed

a formal automated approach for the synthesis of a cost-effective and correct-by-construction

communication network for embedded applications subject to a set of end-to-end communi-

cation constraints of latency, bandwidth, and error-rate, the geometry constraints arising due

to a desired geographical placement of the network, and a set of scheduling constraints. We

also applied the proposed approach for network synthesis with scheduling to the synthesis of

wireless networks for centralized and distributed state estimation in building automation and

control [97].

6.3 Future Work

6.3.1 Real-Time Control under Partial Event Observation

In the supervisory control problem, of dense-time discrete event systems using digital-

clocks to observe event occurrence times, studied in this dissertation, we did not take the

partial observation of events into account. However, in many situations it is difficult, or even

impossible, for a supervisor to observe all the plant events due to lack of sensors or their high

cost. Further, in certain harsh situations such as nuclear systems and mobile systems, sensors

may not be reliable. And so a supervisor may not observe an event deterministically. Such

nondeterminism of event observations can be captured by a nondeterministic event observation

mask. Due to the nondeterminism of partial observations of time as measured using digital-

clocks, the observation under timing-mask as well as deterministic/nondeterministic event-

mask is also nondeterministic. The natures of the control problem under complete event

observations and partial timing observations (as studied in this dissertation) and that of the

control problem under partial event as well as timing-masked observations are quite different.

For real-time control under complete event observations and partial time observations, we are

able to identify the feasible observations of a timed-trace based on the plant behavior and the

given specification: For any untimed observation νc of a legal timed-trace ν, if νc is shared
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by an illegal timed-trace ν ′, then νc could not be a feasible observation of ν. However under

partial observations on plant behavior as well as event occurrence times, control of discrete

event systems has the additional challenge of deciding which observations of a trace of the

specification must be enabled, i.e., the feasible observations. This is not straight forward since

in this case an untimed observation of an illegal timed-trace could be shared by a legal timed-

trace. Therefore it is difficult to identify the infeasible untimed observations from the violations

with respect to the given specification.

Recently, the authors of [126] examined supervisory control of untimed DESs modeled by

Mealy Machine in which control actions are determined based on nondeterministic output func-

tions. The existence conditions for two kinds of special supervisors, namely, permissive and

anti-permissive supervisors were proposed in [126]. Under permissive supervisors, a control

action σ can be enabled following a trace s if there exists a trace s′ which is indistinguishable

from s such that σ can be enabled following s′. Whereas under anti-permissive supervisors, a

control action σ has to be disabled following a trace s if there exists a trace s′ which is indis-

tinguishable from s such that the execution of σ following s′ is illegal. The existence condition

proposed in [126] is only sufficient for the existence of a supervisor. In [142], we investigated

supervisory control of untimed DESs modeled by automaton under nondeterministic observa-

tion mask. We proposed a necessary and sufficient condition for the existence of a supervisory

by converting control in the nondeterministic setting to control in the deterministic setting of

lifted DESs. The idea of lifting can be applied to study the supervisory control problem of

dense-time DESs with nondeterministic event as well as timing observation masks. A possible

approach to solve the control problem under partial event and timing mask observations is to

first focus on deterministic event observation mask and then extend the research to the non-

deterministic setting. For control under nondeterministic event observation, one could lift the

plant model and specification language by associating each plant event with its observation,

and next check for the existence of a lifted specification which satisfies certain properties such

as controllability and observability in the lifted setting. By this means we can convert control

under nondeterministic event mask to control of lifted DESs under deterministic event mask.
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6.3.2 Bounded Communication Delay

In this dissertation, we assumed that there is no communication delay in the control

loop. However many real control systems are physically distributed and hence asynchronous,

introducing delays in sensing as well as actuation. And with the rise of the complexity of

the real control systems, maintaining global synchrony becomes quite expensive or infeasible.

This leads to a disconnection between the design based on the synchronous assumption and a

physical asynchronous implementation. Therefore an extended research on control/diagnosis

of dense-time DESs using digital-clocks with bounded sensing and actuation delays is neces-

sary. In our previous work [140] we introduced the notion of bounded-delay asynchronous

composition to characterize the behaviors of an untimed controlled plant when the sensing

and actuation delays are bounded. We assumed that the sensing and actuation delays are

bounded by d1 and d2 respectively. That is, between the execution of an event by a plant and

its observation by a supervisor, the plant can execute at most d1 more events, whereas between

the issuance of a control command by a supervisor and its reception by a plant, the plant can

execute at most d2 more events. And the control computation delay, if any, can be lumped

with the actuation delay. The intuition behind the asynchronous composition is as follows:

Suppose a plant G under the control of a supervisor S has executed a trace s ∈ L(G) thus far

and has evolved to a state x. Then a prefix t of s such that the length of the suffix trace s\t

is at most d1 + 1 would have been observed by supervisor S, and S would have evolved to a

state y1. Owing to the sensing delay, the plant has executed the trace s\t but its observation

by the supervisor is still pending. At state y1, the supervisor enables all events in the set

Σ(y1). Due to the delay of actuation, the control witnessed by the plant however lags the one

implied by the current state y1 by at most d2 steps. The state of S that actually determines

the control at the current time is a state y2 that S would have visited at most d2 steps in past,

when a prefix u of t such that the length of the suffix trance t\u is at most d2 + 1 would have

been executed by S. Here the suffix trace t\u denotes the trace that has already executed but

whose control influence is yet to be witnessed by G owing to the actuation delay. Thus when

at a current state x, plant G witnesses the control implied by the state y2 of S, i.e., the set of
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currently enabled events given by Σ(y2). The notion of asynchronous composition of untimed

discrete event systems due to sensing and actuation delays defined in [140] is to capture the

aforementioned three kinds of transitions: plant transition, supervisor current state updating

transition, and supervisor control state updating transition. In order to formalize the effects of

sensing and actuation delays on dense-time discrete event systems, we first need to formalize

the controlled behavior of timed discrete event systems under bounded sensing and actuation

delays. The notion of asynchronous composition defined in [140] can be extended to the timed

setting by replacing the sensing and actuation delays in form of the number of transitions by

the real-time delays. With the asynchronous composition in timed setting defined, we can

further check whether the sensing and actuation delays can be equivalently aggregated into

a single bounded delay for simplification. Then the problem is to study the existence of a

supervisor/diagnosor of the dense-time discrete event system with bounded delays. For the

control problem, a possible way is to check the existence of a delayed language of the given

specification which is controllable and timing-mask observable. And for the diagnosis problem,

a possible way is to combine the sensing delay with the behavior of the plant and then convert

the diagnosis problem with bounded delay to diagnosis of the delayed plant which captures

the plant behavior together with the sensing delay.

6.3.3 Implementable Control/Diagnosis under Finite-Precision Measurement of

Time

In this dissertation the control/diagnosis problem we investigate is given a digital-clock

and a specification if there exists a supervisor/diagnosor for the given discrete event plant. In

practical applications, timed-activities such as computation/communication actions allow for

a certain granularity for their occurrence-times and also a certain tolerance-bound. Given this,

the clocks used for keeping track of time should be allowed certain granularity and tolerance

of drift/jitter. Then an interesting question to ask could be: Given a real-time plant G and

specification K, what is the clock-granularity (i.e., precision) and tolerance (i.e., drift/jitter)

that can be allowed so that K can be enforced on G under the finite-precision measurement
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of time (i.e., remaining controllable and timing-mask observable), or alternatively given a

real-time plant G and a finite-precision digital-clock C, which class of specifications K can

be implemented over G and C. Such challenging questions would require the analysis of the

timed-model of digital-clocks and the flexibility in specification languages. We could first focus

on the simple digital-clock that ticks at the rate of one time unit and has a drift of ∆, and

then analyze the toleration of a specification, i.e., the duration of enabling/disabling an event.

6.3.4 Decentralized/Distributed Control and Diagnosis

The control and diagnosis problems studied in this dissertation focus on the centralized

control/diagnosis architecture. However due to the physically distributed nature of certain

systems, decentralized/distributed control/diagnosis may be desired. Therefore an interest-

ing direction of the future research would be to study decentralized/distributed supervisory

control and diagnosis problem of dense-time DESs using different digital-clocks. For decen-

tralized/distributed supervisory control under complete event observation and partial time

observations, a possible approach is to extend the proposed notion of timing-mask observabil-

ity to co-observability with respect to the timing masks arising due to the use of different local

digital-clock at each local site. For diagnosis under complete event observation and partial

time observation, a possible approach is to check the reduction of co-diagnosability of timed

DESs using digital-clocks to the untimed setting.

6.3.5 Temporal Logic

Temporal logic provides an effective means of specification. It is easier to specify and

more user-friendly than the formal language/automata-based specifications. Temporal logic-

based specification can capture the failures representing the violation of both liveness and

safety properties, whereas the prior formal language/automaton-based specifications can only

capture the failures representing the violation of the safety properties (such as the occurrence of

a faulty event or the arrival at a failed state) [56, 51, 44]. An interesting direction of the future

works could be to extend the prior work on control and diagnosis to dense-time DESs under
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finite-precision timing observations with respect to the specifications in the timed temporal

logic setting such as real-time temporal logic RTTL and timed computation tree logic TCTL.

6.3.6 State Explosion

In this dissertation timed-automaton is used to study supervisory control and diagnosis

of dense-time DESs using digital-clocks. Timed-automaton suffers from the well known state

explosion problem since the size of a timed-automaton is exponential to the number of its clock

variables and maximum constant of the constraints. Therefore the computational complexity,

especially for the applications to large scale discrete event systems, is an important issue. The

approaches based on more computationally efficient representations of region-automaton such

as Set-Exp automaton [59] and grid automaton [86] should be explored in the future.
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