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Theorem 5. To guarantee the ε-approximation error in Snapshot-Basic, the total number

of entries 2x+y
ε reaches the minimum value when x = y = 3.

Proof. We want to minimize the objective function

f(x, y) = 2x+ y. (3.8)

We have positive constraints for x and y that x, y > 0. Similar to the proof of Theorem 4, the

estimation error must be bounded by

εN

y
+

2N
x
ε

≤ εN, (3.9)

and we get
1
y

+
2
x
≤ 1. (3.10)

Therefore

y ≥ x

x− 2
, (3.11)

and

x > 2. (3.12)

When y = x
x−2 , f(x, y) can reach its minimum value. So

f(x, y) ≥ 2x+
x

x− 2
=
x(2x− 3)
x− 2

= g(x). (3.13)

dg(x)
dx

=
2x2 − 8x+ 6

(x− 2)2
=

2(x− 1)(x− 3)
(x− 2)2

. (3.14)

When x = y = 3, dg(x)
dx = 0, and f(x, y) reaches its feasible minimum value 9.

Therefore, when we bound the number of item entries to 3
ε , and snapshoot positions for

each εN
3 identical items, we use the minimum number of entries in the worst case. For instance,

if we set x = 4, then y = 2, and x + 2y = 10, which is larger than the minimum value. In

practice, the item entry and snapshot entry may spend different sizes of space. For instance,
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if we want to estimate the number of packets from each source IP in an IPv6 network over a

sliding window with 20-bit size, then each item identifier will use 128 bits, while a snapshot

entry will use about 20 bits. In this case, we can rewrite the objective function by multiplying

the space size of different entries, and calculate the optimal parameters of x and y. We also

need consider the data structure overhead for each entry in the objective function.

Although Snapshot-Basic can maintain ε-approximate frequency estimation over sliding

windows using O(1
ε ) entries, it needs O(1

ε ) operations for each arrival item in the worst case.

Both Step 1 and Case 3 of Step 2 need O(1
ε ) operations. Even though we can use a binary tree

to manage the item list, the decrease operation in Case 3 of Step 2 still needs O(1
ε ) operations

in the worst case. Therefore, Snapshot-Basic is not adequate to process large data streams

with high rates.

3.2.2.2 Advanced Algorithm

We propose an advanced algorithm Snapshot-Advanced which can maintain ε-approximate

frequency estimation over sliding windows using O(1
ε ) entries and O(1) operations. It uses

more sophisticated data structure to maintain item entries and snapshot entries such that all

operations can run in O(1) time.

First, we use a hash table T to manage all item entries. Then the operation of finding the

existence of an item can be performed in O(1) time.

To reduce the running time of inserting a new snapshot, deleting an expired snapshot, or

finding a given snapshot, all snapshot entries of all items are inserted into a doubly-circularly-

linked list S. When the current position needs to be snapshot, it is inserted to the head of

S. When the oldest snapshot entry expires, it is exactly the tail of S. Therefore, S is an

automatically sorted list, with the oldest snapshot in the tail, and the newest snapshot in

the head. All operation on the list S, i.e., inserting the current snapshot, deleting the oldest

snapshot, and deleting a given snapshot, can be performed in O(1) time.

The most difficult operation in terms of time complexity is how to decrease each frequency

estimate by 1 and delete the items and snapshots that have no need to keep (which corre-
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sponding counts go down to 0). To solve this issue, we first designate snapshots into two

groups, complete snapshots and partial snapshots. A snapshot is complete if the item’s

counter increases at least εN
3 after (including) that snapshot. A snapshot is partial if the

item’s counter dose not increase as many as εN
3 after that snapshot. In the previous data

stream example shown in Figure 3.5, the up arrows ↑c and ↑p indicate a complete snapshot

and a partial snapshot respectively (when looking from position 22). Notice that all complete

snapshots were partial snapshots at the beginning. But once a partial snapshot updates to a

complete snapshot, it will remain complete until it is expired and deleted no matter whether

the decrease operation happens or not later.

For each item i in hash table T , we use three auxiliary counters, cntci, cntoi and cntb,

combined together to represent its frequency estimate. Here cntci is the number of complete

snapshots that item i has, and cntoi is an offset counter which records the offset to cntb, where

cntb is a shared base counter for all items which is first set to 0 before processing the data

stream. Once a decrease operation happens, instead of decreasing all items’ offset counters by

1, cntb is increased by 1 mod εN
3 . If an arrival item i is an old item without a partial snapshot

or a new item, its offset counter is set by

cntoi = (cntb+ 1) mod
εN

3
. (3.15)

If an arrival item i is an old item with a partial snapshot, its offset counter is increased by

1 mod εN
3 . The frequency estimate of an item i is calculated by

f̂i = cntci ·
εN

3
+ ((cntoi − cntb) mod

εN

3
). (3.16)

All partial snapshots which have the same offset counter value cntox are grouped into a

doubly-linked list Pcntox , which is called a local partial snapshot list. To save space, we keep

only one cntox for each Pcntox instead of keeping cntox for each item in this list. All such

local lists are managed by an automatically sorted doubly-circularly-linked list P . That is,

all the heads in all local partial snapshot lists are linked in P , which is called a global partial
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snapshot list. If a partial snapshot is in a local list Pcntox , we say that it is also in global list

P . As mentioned above, both complete snapshots and partial snapshots are inserted into the

snapshot list S. However, only partial snapshots are inserted into P .

At the beginning, both item table T and snapshot list S are empty. cntb is set to 0, and the

global partial snapshot list P has an entry Pcntb which is empty. The head of P always points

to Pcntb no matter whether Pcntb is empty or not, and Pcntb is called garbage list. Instead of

bounding the number of item entries in Snapshot-Basic, we bound the number of partial

snapshot entries in P to 3
ε in Snapshot-Advanced. Let |Pcntox | denote the number of partial

snapshot entries in Pcntox which have offset counter value cntox, then
∑ εN

3
−1

cntox=0 |Pcntox | ≤ 3
ε .

Step 1: Delete expired snapshot and item.
Let s denote the snapshot on the tail of S, and suppose s belongs to item j.
If s is not expired, goto Step 2.
Delete s from S.
If s is a complete snapshot, decrease cntcj by 1.
If s is a partial snapshot, delete it from Pcntoj .
If cntcj = 0 and j has no partial snapshot, delete item j from T .

Step 2: Process the arrival item i.

Case 1: i is an old item with partial snapshot.
Delete its partial snapshot entry from Pcntoi .
Let k = (cntoi + 1) mod εN

3 .
If k 6= cntb, insert this entry into Pk;
Otherwise, increase cntci by 1 and set this entry as complete snapshot.

Case 2: i is an old item without partial snapshot or a new item, and P is not full.
If i is a new item, create an item entry for item i with cntci = 0, and insert it into T .
Create a partial snapshot entry recording the current position, and insert it into the head
of S and P(cntb+1) mod εN

3
.

Case 3: i is an old item without partial snapshot or a new item, and P is full.
If P(cntb+1) mod εN

3
exists, move head of P to it and delete Pcntb.

Increase cntb by 1 mod εN
3 .

Step 3: Garbage Collection.
If Pcntb is not empty, delete its head entry from Pcntb and S.
If the corresponding item has no complete snapshot, delete this item entry from T .

Figure 3.9 Snapshot-Advanced Algorithm Description
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Figure 3.9 gives the algorithm description of Snapshot-Advanced. Figure 3.7 and Figure

3.8 show an example of how Snapshot-Advanced works. In this example, N = 18 and ε = 1
2 ,

and the input data stream is shown in Figure 3.5. The partial snapshot list will keep at most

6 entries, and positions are snapshot for each 3 identical items. The up arrows “↑c” and ‘↑p”

in Figure 3.5 indicate that the corresponding snapshot is a complete snapshot or a partial

snapshot respectively (when looking from position 22). Figure 3.7(a) shows the hash table T

when n = 19, and there are 6 item entries in the hash table T , 5 partial snapshot entries in the

global partial snapshot list P , and totally 8 snapshot entries in the snapshot list S. We do not

draw the sorted snapshot list S to save paper space. These 5 partial snapshots are grouped

according to their offset counters as shown in 3.8(a). Now cntb = 0, the garbage list P0 is

empty and its next list is P1. When the 20th item i7 arrives, no snapshot expires. The new

item i7 is inserted into the hash table T as shown in Figure 3.7(b). As its hash value is equal

to that of i3, i7 and i3 are in the same item list. A new partial snapshot entry psi7 is inserted

into the head of the corresponding local partial snapshot list P1 as shown in Figure 3.8(b).

It is also inserted into the head of snapshot list S. Now there is no room left in the partial

snapshot list. When the 21st item i8 arrives, the complete snapshot si2,1 on position 3 which

belongs to i2 expires and is deleted from the tail of snapshot list S, and cntci2 is decreased by

1. Because i8 is not present in the item list and there is no room for creating a new partial

snapshot entry, cntb is increased by 1 mod εN
3 . The down arrow “⇓” in Figure 3.5 shows that

there is such a “decrease operation” in this position. The garbage list updates to P1, and P0

is deleted. The partial snapshot psi7 in the head of P1 is deleted. psi7 is also deleted from

snapshot list S. The other 3 partial snapshots in the garbage list will be released one by one

when the following 3 items arrive. i7 is deleted from the item list as cntci7 = 0 and it has no

partial snapshot. The items and partial snapshots surrounded by dotted lines in Figure 3.7(c)

and Figure 3.8(c) show that these entries should be released.

Notice that, when “decrease operation” happens, not all present items in T will decrease

their estimates by 1. Only the items with a partial snapshot perform this operation. For

example, in Figure 3.5, there is a snapshot on position 7 for item i5. It converts from a partial
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snapshot to a complete snapshot after the 17th item arrives, and f̂i5 = 3. When the 21st item

arrives, i5 has no partial snapshot and does not decrease its estimate.

Now we prove the correctness of the Snapshot-Advanced algorithm, and give the space

requirement and running time.

Theorem 6. For any item i, no matter whether it appears in the data stream or not, Snapshot-

Advanced can maintain ε-approximate frequency estimation over sliding windows with size at

most N . Furthermore, Snapshot-Advanced uses O(1
ε ) space and O(1) running time when

processing each arrival item and answering any query.

Proof. Approximation:

The proof of approximation correctness is similar to that in Theorem 4 for Snapshot-

Basic. The error of frequency estimate still comes from two sources: One is the operation in

Step 1, and the other is the operation in Case 3 of Step 2. Similarly, the error introduced by

Step 1 is a negative error at most εN
3 − 1. When Case 3 of Step 2 happens, all items with

partial snapshots must decrease their frequencies by 1, and the arrival item cannot be counted.

Therefore, this operation will introduce a negative error equal to 1 for certain items. With the

same deduction, such an operation can only perform at most 2εN
3 times in any window with

size N or less. Finally, for any item i, we get

0 ≤ fi − f̂i < εN (3.17)

Consistence:

To keep the constant time complexity in the garbage collection step, each time we only

release one garbage entry. Therefore we must consider the consistence issue. First, cntb will not

change before all garbage entries are released. Each time Step 3 will release a partial snapshot

entry which can be used to insert the next new item, so Case 3 of Step 2 will never happen

before the garbage list is empty. It is possible that an item’s partial snapshot is in the garbage

list and waiting for release while an identical item arrives. In this scenario, this partial snapshot

is removed from the garbage list to the list with offset counter value (cntb + 1) mod εN
3 . A
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partial snapshot can be removed out from the garbage list, however, no partial snapshot can

enter the garbage list. The reason is that once a partial snapshot’s offset counter updates from

(cntb − 1) mod εN
3 to cntb, according to Case 1 of Step 2, this partial snapshot converts to a

complete snapshot and deleted from the partial snapshot list.

Space Requirement:

Snapshot-Advanced keeps snapshot entries in linked lists and item entries in a hash

table. The number of partial snapshots is bounded to 3
ε (including the partial snapshots in

the garbage list). The number of complete snapshots is no more than N
εN/3 = 3

ε as Step 1

guarantees that no expired snapshot exists in the space. Also, each item entry has at least

one snapshot, so the number of item entries is no more than the number of all snapshots.

Therefore, the total space requirement of Snapshot-Advanced is O(1
ε ).

Complexity:

As discussed above, all operations listed in Figure 3.9 can be performed in O(1) time and

there is no loop in the algorithm, therefore the complexity of Snapshot-Advanced to process

each arrival item is just O(1).

To answer an arbitrary query concerned about item i, if item i cannot be found in the

hash table, then we return 0 as its frequency estimate. If the queried item i is present in the

hash table, we can easily retrieve cntci, cntoi and cntb in O(1) time, and use equation (3.16)

to calculate its frequency estimate. Therefore, the complexity of Snapshot-Advanced to

answer a query is O(1).

3.2.3 Experimental Evaluation

In our experimental studies, we use real world Internet traffics provided by CAIDA [6] to

evaluate the performance of Snapshot-Basic and Snapshot-Advanced. The data set is

from one of CAIDA’s OC48 traces5, which records all packets’ header information collected at

one large Internet Service Provider (ISP) in San Jose, California on April 24, 2003. The OC48

network trace we used in our experiments have totally 84,579,312 packets from 225,488 unique
5OC48 is a network line with transmission speeds of up to 2488.32 Mbit/s.
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source IP addresses. The packet number distribution is shown in Figure 3.10, which indicates

that most source IPs have small number of packets and some elephant IPs hide in them. For

instance, more than half IPs have less than 10 packets.

All experiments were run on a computer with 3.2GHz Pentium IV CPU and 2GB RAM,

which operation system is Windows XP Professional. All algorithms are implemented using C

language.
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Figure 3.10 Packet Number Distribution.

3.2.3.1 Estimation Error

To evaluate the correctness of our algorithms, we set the window size N to 1,000,000, and

the relative estimation error ε to 0.001. Therefore, we expect that the estimation error of our

algorithms is within 1000 (= εN) during last 1,000,000 packets at any position for any source

IP. Figure 3.11 shows the experimental results. Since it is hard and unnecessary to draw all

225,488 source IPs’ frequencies, to make readable figures, we only show the 24 frequent source

IPs which have at least 10,000 packets in a certain window of 1,000,000 packets when the sliding

window slides over the 84,579,312 packets. 6 Figure 3.11(a) shows the exact frequencies of

the 24 frequent source IPs in sliding windows. The X-axis denotes the last packet’s index

number in current sliding window, and here 1M equals 1,000,000; The Y -axis denotes the

exact frequencies (number of packets from a distinct frequent source IP). As shown in the

figure, the most frequent source IP has about 41,000 packets in a sliding window.

The estimation errors of these 24 frequent IP flows using Snapshot-Basic and Snapshot-

6Other source IP flows have similar pattern as these 24 frequent IP flows.



63

Advanced are shown in Figure 3.11(b) and 3.11(c) respectively. The X-axes of them denote

the same as the X-axis in Figure 3.11(a); The Y -axes denote the estimation error (fi − f̂i),

where fi is the exact frequency of source IP i and f̂i is its frequency estimation. As expected,

the estimation error (fi − f̂i) is one-sided error, and the largest estimation error is about

500 which is far away from the theoretical bound (εN = 1000). The estimation errors of

Snapshot-Basic and Snapshot-Advanced have similar patterns. Most of the estimation

errors vibrate between range [170,500]. The reason is that the “decrease operation” happens

about 170 times during the range of 1,000,000 packets in this data set, and the deletion of an

expired position always introduces a sudden error of εN
3 ≈ 330 to that item.
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Figure 3.11 Experimental Results (N = 1, 000, 000. ε = 0.001)

3.2.3.2 Space Requirement

Although there are many linked lists in Snapshot-Basic and Snapshot-Advanced, and

an additional hash table in Snapshot-Advanced, there are only 2 kinds of entries maintained

in memory: item entries and snapshot entries. We set N = 1, 000, 000 and calculated the
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maximum number of each kind of entries in memory with different ε. The results shown in

Table 3.1 support that both Snapshot-Basic and Snapshot-Advanced require O(1
ε ) space.

Table 3.1 Space Requirement

1
ε

Snapshot-Basic Snapshot-Advanced

max # max # max # max #

of items of snapshots of items of snapshots

102 300 323 303 322

102.25 534 591 538 591

102.5 949 1098 955 1102

102.75 1688 2089 1699 2093

103 3000 4071 3017 4092

3.2.3.3 Running Time

We implemented the Lee-Ting algorithm [65] and compared with Snapshot-Basic and

Snapshot-Advanced. In Snapshot-Advanced, we set the size of the hash table T to 3
ε (i.e.,

the average length of T is slightly larger than 1). We use (int32(IP address) mod sizeof(T )) as

the hash function. For instance, suppose ε = 0.001 and the size of T is 3000, an item with IP

address 1.2.3.4 is hashed to the entry with index (1 · 224 + 2 · 216 + 3 · 28 + 4)%3000 = 1060.

In our experiments, we set N = 1, 000, 000, and profiled the running time of these algorithms

with different ε.

Figure 3.12 shows the results. We made the observation that both Lee-Ting and Snapshot-

Basic have nearly linear running time with respect to 1
ε , and Snapshot-Basic is faster than

Lee-Ting. However, the running time of them is unacceptable if we need more precise es-

timation with smaller ε. In this case, Snapshot-Advanced has significant advantage over

Lee-Ting and Snapshot-Basic since its running time is nearly constant as shown in Figure

3.12.

3.2.4 Extensions

As an application, we extend our algorithms to another problem – how to estimate flow

size. Here a flow is defined as a substream which items have the same item identifier. In this

problem, each arrival item is associated with a positive integer (e.g., the number of bytes in
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an Internet packet). we need to estimate the accumulation of these positive numbers of each

distinct item. For example, in an Internet packet stream collected from an ISP with millions

of different source IP addresses, all packets from an identical source IP are combined into a

flow, and each packet may contain more than one byte of payload. We are interested in how

to estimate the payload bytes sent out from distinct source IP addresses.

There may be two definitions of the sliding windows in this case, and hence two problems

on how to maintain ε-approximate frequency. The first sliding window is defined to cover the

most recent N payload bytes, and the second is defined to cover the most recent N packets.

Because of page limitation, we only give sketches of the solutions.

Problem 1. Given a packet stream, a window size N and an error bound ε, how to estimate

the size of any flow with error no more than εN bytes in the sliding window of the most recent

N payload bytes?

Sketch Solution: Under this sliding window definition, we can replace each packet as a

series of payload bytes with adjacent position indices. For instance, we receive a packet of flow

i with a payload of x bytes. Suppose the position index of the last payload byte of the previous

packet is n, then these new bytes will be indexed as n+ 1, n+ 2, . . ., n+x. The naive solution

is to seem these x bytes as x identical items and call our algorithms x times. However, it is

time consuming. We can just run our algorithms one time with the following changes. When

checking expired snapshots in step 1, more than one snapshot may be expired and deleted.
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When processing an old item, there may be more than one position that need to be snapshot

(when x > εN
3 ). When performing decrease operation, we perform decrease operation x times,

or until an entry is deleted after k times. We then insert the new item with a counter x− k.

Problem 2. Given a packet stream, a window size N and an error bound ε, how to estimate

the size of any flow with error no more than εN bytes in the sliding window of the most recent

N packets?

Sketch Solution: Under this sliding window definition, let c denote the maximum number

of packet payload bytes. We must assume that c << εN . Otherwise, any deterministic

algorithm must keep each packet’s information in memory to maintain ε-approximation in the

worst case. When c << εN , we just bound the number of flow entries to 3c
ε , and snapshoot

positions for each εN
3 payload bytes of identical packets.

3.2.5 Conclusions

In this research, we address the problem of estimating ε-approximate frequency in data

streams over sliding windows. Two novel deterministic algorithms, Snapshot-Basic and

Snapshot-Advanced are proposed which only need O(1
ε ) space. Furthermore, Snapshot-

Advanced is the first efficient algorithm which can achieve O(1
ε ) space requirement and only

need O(1) running time to process each item in the data stream and to answer a query. Our

experimental studies show the advantages of our algorithms when processing large-scale data

sets. In addition, as an application of our algorithms, we extend them to solve the problem

of estimating flow size. In the future, we will continue to study the problems of gathering

characteristics of data streams over different types of sliding windows.

3.3 Geometric Estimation over Sliding Windows

3.3.1 Introduction

Geometric computation has been widely studied by many researchers in different domains

and utilized in many different applications in recent decades. Many geometric problems have
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had optimal solutions. However, the same geometric problem may lack efficient algorithm if it

is reconsidered under data stream model. Recently, data streams have received considerable

attention [56, 18, 82]. If we have sufficient large space and do not have time constraints, we

can precisely answer any geometric queries. However, the issue in computing geometry in large

data streams is that in many cases we probably only have one chance to process each point in

the data streams. We cannot store all data because of constraints in memory space or privacy

issue. Therefore, in these cases we have to gather the interested geometry information with

only one pass.

An even greater challenge is to compute geometry over sliding windows. An algorithm

which works over sliding windows can not only gather the data streams’ geometry informa-

tion, but also update the geometry information by inserting new points and deleting expired

points. Unfortunately, many previous geometry computation algorithms cannot work over

sliding windows. In this research, we are interested in estimating diameter, convex hull and

skyline over sliding windows.

3.3.1.1 Motivation

Geometric computation has many applications, such as computer graphics, computer-aided

design and manufacturing (CAD/CAM), geographic information systems (GIS), integrated

circuit geometry design and verification, etc. Also, geometric computation becomes an im-

portant issue in network security after distributed networks (e.g., sensor networks) are widely

researched and deployed. For instance, in the early age of worm propagation, after receiv-

ing thousands of alarms from distributed network monitors, a geometric map is necessary to

show which regions have been affected so that countermeasures can be executed to interrupt

the worm propagation. Diameter can scale how far the worm has propagated, and convex

hull can reflect the boundary of the affected hosts. Furthermore, geometric computation is

required not only in the domain of geometric coordinates, but also in many other fields in

network security. For instance, network logs contain a lot of hosts which volume, connection

numbers, etc. are recorded, and we want to analyze and detect the dominant hosts in some
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terms which should have more chance to be attackers. The skyline calculation can be applied

to this purpose.

In recent years, some geometric computation problems are considered under sliding window

models. The advantage of an algorithm which works over sliding windows is that it can get

rid of the stale points and only consider the fresh points, which is meaningful in many cases.

For instance, in an intrusion detection system (IDS), the current status of the network is

usually more important than that of one day ago. The geometry information gathered over

sliding windows may provide a more fresh and smooth view of the data stream. Recently,

several geometry algorithms over sliding windows are proposed [45, 28, 68, 103]. However,

the algorithms for diameter and convex hull estimation over sliding windows still need some

improvement. To the best of our knowledge, skyline estimation over sliding windows still lacks

efficient algorithms. In this research, we are trying to design efficient algorithms for diameter,

convex hull and skyline estimation over sliding windows.

3.3.1.2 Problem Definition

ε-Approximate Diameter Estimation

Suppose we have a stream of points in set P . The diameter of P is defined as

max
∀p,q∈P

(‖p− q‖), (3.18)

i.e., the maximum Euclidean distance between any pair of points in P . Let D and D̂ denote

the true diameter and estimated diameter respectively. A diameter estimation algorithm is an

ε-approximate algorithm if it guarantees

|D − D̂| ≤ εD. (3.19)
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ε-Approximate Convex Hull Estimation

Suppose we have a stream of points in set P . The convex hull of P is the smallest polygon

that contains all points in P . Let H denote the set of all points within the true convex hull,

and Ĥ denote the set of all points within the estimated convex hull. A convex hull estimation

algorithm is an ε-approximate algorithm if it guarantees

‖H − Ĥ‖ = max
∀p∈H

( min
∀q∈Ĥ

(‖p− q‖)) ≤ εD, (3.20)

where D is the diameter of set P .

ε-Approximate Skyline Estimation

Suppose in d-dimension, we have a stream of points in set P . For two points a =

(a(1), a(2), . . . , a(d)) and b = (b(1), b(1), . . . , b(d)) in P , a dominates b if a(i) ≤ b(i) for 1 ≤ i ≤ d.

The skyline is the set of points which are not dominated by any other point in P . Let S

denote the set of points on the true skyline, and Ŝ denote the set of points on the estimated

skyline. A skyline estimation algorithm is an ε-approximate algorithm if it guarantees that

‖S − Ŝ‖ = max
∀p∈S

(min
∀q∈Ŝ

(‖p− q‖)) ≤ εD, (3.21)

where D is the diameter of set P .

Sliding Window

A sliding window , first introduced by Datar et al. [35], only contains the last N items

in the data stream, which is updated once a new element comes and an old element expires.

Here N is the width of the sliding window.

Problem Statement

In this research, we consider the problems stated as follows:

Given an arbitrary window size N and an error bound ε,
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• How to maintain ε-approximate diameter estimation of a data stream of points over

sliding windows with size N in one pass?

• How to maintain ε-approximate convex hull estimation of a data stream of points over

sliding windows with size N in one pass?

• How to maintain ε-approximate skyline estimation of a data stream of points over sliding

windows with size N in one pass?

3.3.1.3 Our Contributions

To our knowledge, the best existing algorithm for the problem of estimating ε-approximate

diameter in data streams over sliding windows requires O((1
ε )

d+1
2 log R

ε ) space [28], where R is

the ratio between the largest distance and the smallest distance of a pair of points, and d is the

dimension. We first present an improved algorithm which only requires O((1
ε )

d+1
2 logR) space.

We then extend our algorithm to solve convex hull estimation problem over sliding windows,

and prove that the exact diameter algorithm can get the ε-approximate convex hull estimation

directly. Finally, we propose a novel algorithm to estimate skyline which requires O( 1
εd

logR)

space.

3.3.2 Diameter Algorithm

3.3.2.1 Chan and Sadjad’s Previous Algorithm

We first briefly review Chan and Sadjad’s algorithm on diameter estimation over sliding

windows [28]. In one-dimension, they proposed an optimal algorithm to maintain the ap-

proximate maximum and minimum. As an instance, to maintain the maximum, let Q =<

q1, q2, . . . , qk > be a subsequence of P such that q1 < q2 < . . . < qk, where P is the set of input

points. Let predQ(p) denote the maximum value in Q that is at most p, and succQ(p) denote

the minimum value in Q that is at least p. Q is called a summary sequence of P if

1. Q is in decreasing order of arrival time.

2. For all p, predQ(p) is not older than p if existing.
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3. For all p, either ‖p− predQ(p)‖ ≤ εDp or succQ(p) is not older than p.

Here Dp denotes the diameter of all points in P which are not older than p. The summary

sequence Q is enough to maintain the ε-approximate maximum of P . When inserting a new

point p, all points in Q that are not greater than p are removed, and p is put at the beginning

of Q. After 1
ε logR new points are inserted, a refine process is executed to reduce the points

in Q.

Refine in Chan and Sadjad’s Algorithm:
Let q1 and q2 be the 1st and 2nd points in Q respectively. Let q := q2.
while q is not the last element of Q do

Let x and y be the elements before and after q in Q.
if ‖y − x‖ ≤ ε‖x− q1‖

then remove q from Q.
Continue with q equal to y.

To estimate one-dimensional diameter, two similar data structures that approximate the

maximum and minimum of the points are maintained. Chan and Sadjad’s algorithm in one-

dimension needs O(1
ε logR) space and O(1) running time in worst case (by running refine in

a ”lazy” mode). It is proved that this algorithm is optimal in one-dimension. To extend their

algorithm to higher fixed dimensions, they use Θ((1
ε )

d−1
2 ) lines in d-dimension which guarantee

that for each vector x in d-dimension, the angle between x and some line is at most arccos( 1
1+ε).

The one-dimension summary sequence structure is maintained on each line by projecting all

points to the line, and the maximum expansion on these lines are returned as the approximated

diameter, which is an ε-approximate.

Chan and Sadjad observed a problem that naively projecting points to the lines can make

the spread of the one-dimensional points arbitrarily big, since the distance of two projected

points could be much smaller compared with their distance in d-dimension. To solve this

problem, they always keep the location of the two newest points p1 and p2. Let Q(l) =<

q1, q2, . . . , qk > be the summary sequence of projected points on line l. All qi’s that satisfies

‖qi − q1‖ ≤ ε‖p1 − p2‖ are removed before the refine algorithm, since q1 can represent them.

After the removal, the distance between q1 and next point in Q is at least ε‖p1 − p2‖, and the
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refine algorithm guarantees the size of Q(l) is O(1
ε log R

ε ). Consequently, Chan and Sadjad’s

algorithm can maintain ε-approximate of diameter in d-dimension using O((1
ε )

d+1
2 log R

ε ) space

and O((1
ε )

d−1
2 ) running time.

3.3.2.2 Improved Algorithm

Although Chan and Sadjad’s algorithm has significant improvement compared with the

algorithm in [45], it is still not optimal when applied in higher dimensions.

We propose an algorithm which only needs O((1
ε )

d+1
2 logR) space. Similarly, we still main-

tain Θ((1
ε )

d−1
2 ) lines in d-dimension which guarantee that for each vector x in d-dimension, the

angle between x and some line is at most arccos( 1
1+ε). Let L denote the set of these Θ((1

ε )
d−1

2 )

lines. The one-dimension summary sequence structure is maintained on each line l ∈ L by

projecting all points to the line l, and the maximum expansion on these lines are returned

as the approximated diameter, which is an ε-approximate. However, we use a different refine

process which is more efficient.

Refine:
Let p1 and p2 be the 1st and 2nd points in P respectively. Let q1 and q2 be the 1st and
2nd projections in Q respectively. Let q := q2.
while q is not the last element of Q do

Let x and y be the elements before and after q in Q.
if ‖y − x‖ ≤ max(ε‖x− q1‖, ε‖p1 − p2‖)

then remove q from Q.
Continue with q equal to y.

Figure 3.13 shows an example of how our refine process works. All points are projected

onto line l, and suppose that currently Q(l) =< q1, q2, . . . , q9 >. During refine, projections q2

and q3 are removed because ‖q4−q1‖ ≤ ε‖p1−p2‖. Similarly, projection q5 is removed because

‖q6 − q4‖ ≤ ε‖q4 − q1‖, and projection q8 is removed because ‖q9 − q7‖ ≤ ε‖q7 − q1‖. After

refine, Q(l) =< q1, q4, q6, q7, q9 >.

Now we prove the correctness of our algorithm, and give the space requirement and running

time.
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2p

14 qq −⋅ε
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l

21 pp −⋅ε 17 qq −⋅ε

Figure 3.13 An Example of How Refine Process Works

Theorem 7. Our algorithm can maintain ε-approximate diameter estimation over sliding

windows in d-dimension. Furthermore, it uses O((1
ε )

d+1
2 logR) space7, and the worst running

time to process a new point is O((1
ε )

d−1
2 ).

Proof. Approximation:

We prove that our algorithm can maintain a sequence Q with the three properties of a

summary sequence.

For property 1, suppose that before inserting a projection p, the current Q is in descendant

order of arrival time. Since all points in Q that are not greater than p are removed, and p

is put at the beginning of Q, Q remains descendant order. The following refine only removes

points from Q, therefore Q is always in decreasing order of arrival time.

Property 2 is also obviously true in our algorithm, since any point’s old predecessor can

only be replaced by newer points.

Now we consider property 3. First, the insertion of new points cannot destroy this property.

If a projection p’s successor is removed by the insertion of a new projection, then the new

projection will be p’s new successor which is newer than p. If p’s predecessor is removed by
7Since the space requirement is independent with the sliding window size N , it is not necessary to delete

expired points. This is also true for our convex hull algorithm and skyline algorithm.
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the insertion of a new projection, then the new projection will be p’s new predecessor which

is closer to p than previous one. Second, the refine cannot destroy this property. Suppose p’s

predecessor or successor is removed during refine. Let x and y be p’s current predecessor and

successor respectively. Our algorithm guarantees that ‖y − x‖ ≤ max(ε‖x − q1‖, ε‖p1 − p2‖).

Since ‖x− q1‖ ≤ Dp, and ‖p1 − p2‖ ≤ Dp, we have

‖p− x‖ ≤ ‖y − x‖ ≤ εDp. (3.22)

Therefore, property 3 is still true.

Consequently, our algorithm guarantees that Q is a summary sequence. Therefore, suppose

projection p is exactly the maximum value in all projections not older than p on line l ∈ L,

we can use its predecessor to approximate p with error bounded by εDp. Similarly, we can

maintain another sequence which can approximate the minimum value on line l ∈ L. Suppose

projections p and q are the maximum value and minimum value in all projections on line l in

current sliding window respectively, then our algorithm can return p′ and q′ to represent p and

q respectively, and

0 ≤ ‖p− q‖ − ‖p′ − q′‖ = ‖p− p′‖+ ‖q − q′‖ ≤ 2εD, (3.23)

where D is the diameter of all points within current sliding window.

Let pa, pb ∈ P be the furthest pair of points in P , and ‖pa − pb‖ = D. Suppose line l ∈ L

has the least angle θ to line segment pq. Then θ ≤ arccos( 1
1+ε). Let pal and pbl denote the

projection of pa and pb on line l. Suppose projections p and q are the maximum value and

minimum value in all projections on line l ∈ L in current sliding window respectively. We get

‖pa − pb‖ =
‖pal − pbl‖

cos θ
≤ (1 + ε)‖pal − pbl‖ (3.24)

≤ (1 + ε)‖p− q‖ (3.25)

≤ (2ε+ 2ε2)D + (1 + ε)‖p′ − q′‖ (3.26)

= (2ε+ 2ε2)‖pa − pb‖+ (1 + ε)‖p′ − q′‖. (3.27)
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And

‖p′ − q′‖ ≥ 1− 2ε− 2ε2

1 + ε
‖pa − pb‖. (3.28)

We get

0 ≤ ‖pa − pb‖ − ‖p′ − q′‖ ≤ ε
3 + 2ε
1 + ε

‖pa − pb‖ (3.29)

≤ 3ε‖pa − pb‖ (3.30)

= O(ε)‖pa − pb‖ (3.31)

= O(ε)D. (3.32)

Since our algorithm can return ‖p′− q′‖ as the approximated diameter, it is an ε-approximate

algorithm.

Space Requirement:

To maintain maximum projection on line l ∈ L in our algorithm, after running refine,

suppose Q(l) =< q1, q2, . . . , qk >. When 1 ≤ i ≤ k− 2, for any two projections qi and qi+2 that

have one projection between them, we have

‖qi+2 − qi‖ > max(ε‖qi − q1‖, ε‖p1 − p2‖). (3.33)

where p1 and p2 are the 1st and 2nd points in P respectively. Therefore, on line l, when

‖qi − q1‖ ≤ ‖p1 − p2‖, we have

‖qi+2 − qi‖ > ε‖p1 − p2‖. (3.34)

Consequently, on the line segment between q1 and q1+‖p1−p2‖, there are at most 2
ε +1 = O(1

ε )

points after refine process.

Let qj be the first projection after q1 + ‖p1 − p2‖. Then for each j < i ≤ k − 2, we have

‖qi+2 − qi‖ > ε‖qi − q1‖. (3.35)
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Therefore, with a factor (1+ε), the expansion ‖qi−q1‖ exponentially increases with the number

of projection pairs, and the base is at least ‖p1 − p2‖. Consequently, we have

k − j ≤ 2 log1+ε

D

‖p1 − p2‖
≤ 2 log1+εR = O(

1
ε

logR). (3.36)

Since j is at most O(1
ε ), there are at most O(1

ε logR) projections on each line l ∈ L. The

number of lines in L are Θ((1
ε )

d−1
2 ). Therefore, our algorithm uses O((1

ε )
d+1

2 logR) space.

Running Time:

The proof is similar to that of Theorem 1 in [28], and we skip it to save paper.

3.3.3 Convex Hull Estimation

Our diameter estimation algorithm can be directly applied to estimate convex hull in sliding

windows. For convex hull problem, we maintain a similar data structure on Θ((1
ε )

d−1
2 ) lines,

and just return the points which are extremes in any line as the vertex of the estimated convex

hull.

Ĥ 1H H 2H

Figure 3.14 Example of H, Ĥ, H1 and H2 in Two-Dimension

Now we prove the correctness of our algorithm, and give the space requirement and running
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time.

Theorem 8. Our algorithm can maintain ε-approximate convex hull estimation over sliding

windows. Furthermore, it uses O((1
ε )

d+1
2 logR) space, and the worst running time to process a

new point is O((1
ε )

d−1
2 ).

Proof. Since the convex hull algorithm is exactly the same as the diameter algorithm, it has

the identical space requirement and running time. We only need to prove that this algorithm

can maintain ε-approximate convex hull estimation over sliding windows.

Let H be the real convex hull in current sliding window, and Ĥ be the estimated convex

hull using our algorithm. Obviously, Ĥ ⊆ H. For each line l ∈ L, let p be its extreme, and

we draw a supporting line (or plane) of l through p, and these supporting lines (or planes)

construct a convex hull H1 which contains Ĥ. We expand H1 by moving each edge (or plane)

out with distance ε
1−εD̂ and let H2 denote this new convex hall. From Theorem 7, we know

that D − D̂ = O(ε)D, and we assume that D − D̂ ≤ εD. We have

D̂ ≥ (1− ε)D, (3.37)

and ε
1−εD̂ ≥ εD. Therefore, any vertex on H must be included in H2, and

Ĥ ⊆ H ⊆ H2. (3.38)

Obviously,

‖H − Ĥ‖ ≤ ‖H2 − Ĥ‖ ≤ ‖H1 − Ĥ‖+ ‖H2 −H1‖. (3.39)

If we can prove that the maximum distance between Ĥ and H2 satisfies ‖H2 − Ĥ‖ = O(ε),

then our algorithm can maintain ε-approximate convex hull. Figure 3.14 shows an example of

H, Ĥ, H1 and H2 in two-dimension.

We first consider ‖H1−Ĥ‖. Since Hershberger and Suri [57] have proved that the maximum

gap between Ĥ and H1 is O(ε) in two-dimension, we only consider higher-dimensional spaces.

For any line l′ in d-dimensional space, let θ be the minimum angle to a line l ∈ L. Obviously,
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Figure 3.15 Example of Ĥ and H1 in Three-Dimension

θ = O(ε). For each plane G of Ĥ, it has exact d vertices v1, v2, · · · , vd, which are extremes at d

different directions. From each vi, we draw a supporting plane Fi perpendicular to its extreme

direction. These d supporting planes generate an intersection point u which is a vertex in H1.

Figure 3.15 shows an example in three-dimension. Obviously, the angle between G and any

supporting plane is at most θ. Let v be the projection of u on plane G. Since uv ⊥ G, and vi

is an intersection of G and the supporting plane Fi, then 6 uviv is at most the angle between

G and Fi. Therefore, 6 uviv ≤ θ. Since vvi ∈ Ĥ, we have ‖vi − v‖ ≤ D. Consequently,

‖u− v‖ ≤ ‖vi − v‖ · tan θ = O(ε)D. (3.40)

Since the distance between any vertex u ∈ H1 and Ĥ is O(ε)D, we get ‖H1 − Ĥ‖ = O(ε)D.

Now we consider ‖H2 − H1‖. For each vertex ui ∈ H1, it has a corresponding vertex

wi ∈ H2. Then

‖H2 −H1‖ ≤ max(‖wi − vi‖). (3.41)

The length of the projection of line segment viwi on any line l ∈ L is at most ε
1−εD̂ according

to the construction of H2. Since there exists a line l ∈ L which has a angle of at most θ with
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line segment viwi, we have

‖wi − vi‖ ≤
ε

1−εD̂

cos θ
= O(ε)D. (3.42)

Therefore, ‖H2 −H1‖ = O(ε)D, and ‖H2 − Ĥ‖ = O(ε)D.

3.3.4 Skyline Algorithm

To estimate skyline of the stream of input points P in sliding window, we maintain a

subsequence Q of points which is in descendant order of arrival time. Let Dp be the diameter

of all points in P not older than p, and D̂p be the ε-approximation of Dp using our diameter

approximation algorithm.

The restricted zone Zp of a point p = (p(1), p(2), · · · , p(d)) is the zone bounded by

[bp(i)

wp
cwp, (b

p(i)

wp
c+ 1)wp) in each dimension i = 1, 2, · · · , d, where

wp =
1√
d

2blog εD̂pc (3.43)

is the width of p’s restricted zone. Figure 3.16 shows an example of restricted zones in two-

dimension.

When a new point p comes, we simply insert it to the header of Q. After 1
εd

logR points

are inserted, we run the following refine process.

Refine:
Let p be the first point in Q. Let Ŝ = Φ.
while p is a point of Q do

Use our diameter algorithm to update D̂p.
If p is dominated by current skyline Ŝ, remove p from Q.
If Ŝ intersects with p’s restricted zone, remove p from Q. Otherwise, insert p into Ŝ,

and remove any points in Ŝ which are dominated by p.
Continue with p equal to next point in Q.

Figure 3.16 shows an example of how refine works in two-dimension. Suppose after inserting

several new points, Q = {p1, p2, p3, p4, p5, p6, p7} and pi is newer than pj when 1 ≤ pi < pj ≤ 7.
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Figure 3.16 Example of Restricted Zones and How Refine Works in
Two-Dimension

When the refine starts, p1 is inserted into Ŝ. Since p2 is dominated by Ŝ, p2 is removed from

Q. Also, p3 is removed from Q because Ŝ intersects with Zp3 . Then p4 is inserted into Ŝ and p1

is removed. Similarly, p5 is removed from Q, and p6 is inserted into Ŝ. Notice that compared

with the newer points, the width of Zp6 doubles since now D̂p6 is larger. p7 is removed from

Q because Ŝ intersects with Zp7 . Finally, after refine process, Q = {p1, p4, p6}, and Ŝ is the

skyline decided by p4 and p6, although the real skyline S contains p4 p5, p6 and p7.

After refine, we have the following facts.

Fact 1. Ŝp is dominated by Sp.

Fact 2. For any pair of points p and q in Q, suppose q is newer than p. Then either Zq ⊆ Zp

or Zq ∩ Zp = Φ.

Proof. Let Zp(i) = [bp(i)

wp
cwp, (b

p(i)

wp
c+ 1)wp) be the expansion of Zp in dimension i (1 ≤ i ≤ d).

Let Zq(i) = [b q(i)wq
cwq, (b

q(i)
wq
c + 1)wq) be the expansion of Zq in dimension i (1 ≤ i ≤ d). We

prove that in each dimension i, either

Zp(i) ∩ Zq(i) = Φ, (3.44)

or

Zq(i) ⊆ Zp(i). (3.45)
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Since q is newer than p, then D̂p ≥ D̂q. Therefore, wp ≥ wq. Furthermore, since wp
wq

=

2blog εD̂pc−blog εD̂qc, wpwq can only equal 2x, where x is a non-negative integer. Then in dimension

i, we have the following 3 cases.

Case 1: b q(i)wq
cwq < b

p(i)

wp
cwp

We get

b
q(i)

wq
c < b

p(i)

wp
cwp
wq
. (3.46)

Since both sides in inequality (3.46) are integers, we get

b
q(i)

wq
c+ 1 ≤ b

p(i)

wp
cwp
wq
, (3.47)

and

(b
q(i)

wq
c+ 1)wq ≤ b

p(i)

wp
cwp. (3.48)

Therefore, Zp(i) ∩ Zq(i) = Φ.

Case 2: bp(i)

wp
cwp ≤ b

q(i)
wq
cwq < (bp(i)

wp
+ 1)cwp

We get

b
q(i)

wq
c < (b

p(i)

wp
c+ 1)

wp
wq
. (3.49)

Since both sides in inequality (3.49) are integers, we get

b
q(i)

wq
c+ 1 ≤ (b

p(i)

wp
c+ 1)

wp
wq
, (3.50)

and

(b
q(i)

wq
c+ 1)wq ≤ (b

p(i)

wp
c+ 1)wp. (3.51)

Therefore, Zq(i) ⊆ Zp(i).

Case 3: b q(i)wq
cwq ≥ (bp(i)

wp
+ 1)cwp

Obviously we get Zp(i) ∩ Zq(i) = Φ.

Therefore, either Zq ⊆ Zp or Zq ∩ Zp = Φ.
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Fact 3. After refinement, for any two points p and q in Q, their restricted zones have no

overlap, i.e., Zp ∩ Zq = Φ.

Proof. Suppose before refinement, there are two points p and q in Q, which restricted zones

have overlap. Without loss of generality, suppose q is newer than p. From Fact 2, we know

that q’s restricted zone is included in p’s restricted zone. Our refinement will remove point

p if q is still in Q. Therefore, after refinement, any two points in Q have no overlap in their

restricted zones.

Now we prove the correctness of our algorithm, and give the space requirement. We set

the design of an efficient data structure for our algorithm as our future work.

Theorem 9. Our algorithm can maintain ε-approximate skyline estimation over sliding win-

dows. Furthermore, it uses O( 1
εd

logR) space.

Proof. Approximation:

Obviously, estimation error is introduced only in refine process when a point p is removed

from Q, while p is actually on the skyline S. However, the error is bounded in our algorithm.

Since D̂p ≤ Dp, then

wp =
1√
d

2blog εD̂pc ≤ 1√
d

2log εDp =
1√
d
εDp. (3.52)

Let D(Zp) be the diameter of Zp, then

D(Zp) =
√
d · wp ≤ εDp. (3.53)

For any point q ∈ S, it is removed if and only if Ŝp intersects with Zq. Therefore, the distance

from p to Ŝp is at most D(Zp) which is no more than εDp.

With the sliding of current window, before p expires, if Ŝp does not dominate p, it tends

to be closer to p. Therefore, the error distance from p to Ŝp never exceeds εDp.

Space Requirement:

Let p be the first point and D0 be the minimum distance between any pair of points

in P . Let p be the center, and we draw a set of virtual zones with width 1√
d
2iD0, where
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Figure 3.17 Example Virtual Zones in Two-Dimension

i = 1, 2, · · · , dlog
√
dRe. Since R is the ratio between the largest distance and the smallest

distance of a pair of points, then all points in the data stream are included in the largest

zone with width 1√
d
2dlog

√
dReD0. Figure 3.17 shows an example of such a set of zones in

two-dimension space. The possible widths of restricted zones for all points can only be in set

{ 1√
d

2blog εD0c,
1√
d

2blog εD0c+1, · · · , 1√
d

2blog εD0c+dlog
√
dRe−1}. (3.54)

Let Va(i) be the volume of the virtual zone with width
√
d2iD0. Let Vb(i) be the volume of

the restricted zone with width 1√
d
2blog εD0c+i. We have

Va(i) = (
1√
d

2iD0)d, (3.55)

and

Vb(i) = (
1√
d

2blog εD0c+i)d. (3.56)

Any point which restricted zone’s width is 1√
d
2blog εD0c+i must be within the virtual zone with
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width 1√
d
2i+1D0. From Fact 3, after refinement, any two points’ restricted zones cannot have

overlap. Therefore, the number of points which restricted zone’s width is 1√
d
2blog εD0c+i is at

most
Va(i+ 1)
Vb(i)

= (
2D0

2blog εD0c
)d ≤ (

2D0

2log εD0−1
)d = (

4
ε

)d. (3.57)

Therefore, when d is a small constant, the number of points after refinement is at most

(
4
ε

)ddlog
√
dRe = O(

1
εd

logR). (3.58)

Here we provide a lower bound of space requirement to maintain ε-approximate skyline

estimation over sliding windows.

Theorem 10. The lower bound of space requirement to maintain ε-approximate skyline esti-

mation over sliding windows is Ω( 1
εd−1 log εR).

Proof. We construct a special case to show that the lower bound of space requirement to

maintain ε-approximate skyline estimation over sliding windows is Ω( 1
εd−1 log εR). Let p and q

be the pair of points which have the minimum distance D0, and hence the maximum distance

of a pair of points is RD0. Let p be the center, and draw a series of surface si with radius

1
εD0, 1

ε (1 + ε)D0 + δ, · · · , 1
ε (1 + ε)iD0 + iδ, · · · , until the radius reaches 1√

dRD0
. Here δ is a

infinitely small quantity. It is guaranteed that the maximum distance of a pair of points is

RD0. On each surface si, we evenly distribute O( 1
εd

) points. Obviously, all these points in

the same surface do not dominate each other. These points are placed carefully so that the

distance of any point to the skyline by other points are at least (1 + ε)iD0 + δ. Suppose p is

the newest point and the points on surface si become older with the increase of i. Therefore,

all these points must be kept to guarantee ε-approximate. There are total O(log εR) surfaces,

and each surface has O( 1
εd−1 ) points. Consequently, we have the lower bound of Ω( 1

εd−1 log εR).
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Figure 3.18 Example Virtual Zones in Two-Dimension

3.3.5 Conclusions

In this research, we addressed several ε-approximate geometric estimation problems in data

streams over sliding windows. We proposed a diameter approximate algorithm which only uses

O((1
ε )

d+1
2 logR) space, and the worst running time to process a new point is O((1

ε )
d−1

2 ). We

proved that our diameter algorithm can be applied to estimate convex hull over sliding windows.

Finally, we studied the skyline estimation problem over sliding windows, and proposed a novel

algorithm which uses O( 1
εd

logR) space. A lower bound of this problem is provided. In the

future, we will continue to study the geometric estimation problems over sliding windows.
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CHAPTER 4. RESEARCH IN ATTACK ATTRIBUTION PART II:

TRACEBACK TECHNIQUES

4.1 Stepping Stone Attack Attribution

4.1.1 Introduction

The number of network based attacks is growing because attackers can very easily hide

their identities, and thereby reduce the chance of being captured and punished. It has become

difficult and complicated to discover the true identity of attackers when they relay their attacks

through stepping stones (intermediary hosts). The attack flow from the origin of the attack

may travel through a chain of stepping stones before it reaches the victim. It is difficult for

the victim to learn anything about where the attack comes from except that she can see the

attack traffic from the last hop of the stepping stone chains. Therefore, it is desirable to design

effective and efficient stepping stone attack detection schemes to attribute the attackers.

Several approaches have been designed to detect stepping stone attacks [23, 39, 98, 100,

106, 107, 108, 113, 119]. If the contents in the connections in the network are plain-text (i.e.

unencrypted), it may be used to trace back to the origin of the attacker. Staniford-Chen and

Heberlein [98] used thumbprints which are short summaries of the contents of a connection.

The thumbprints can be compared to determine whether two connections contain the same

text and are therefore likely to be part of the same connection chain. Wang et al. [108]

injected detectable watermarks into the unencrypted traffic echoed back to the attacker, so

that the attack can be traced back. For encrypted stepping stone connections, content based

approaches cannot work any more. Neither do packet-size based approaches, if all packets are

padded to the same size. Zhang and Paxson [119] proposed the first timing-based method which
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only uses the packets’ arrival time information. After that, several timing-based approaches

were proposed [23, 39, 100, 106, 107, 113]. However, the attacker still can conceal its identity

by destroying the time correlation between stepping stone connections. None of the current

methods can effectively defend against delay and chaff perturbations simultaneously.

In this research, we discuss two different scenarios when delay and chaff perturbations

exist, and propose three schemes [118]. We provide the upper bounds on the number of

packets required to confidently detect stepping stone connections from non-stepping stone

connections with any given probability of false attribution. We compare our schemes with

previous approaches, and experimental results show that our schemes are more effective in

these two scenarios.

4.1.2 Problem Definition

To avoid detection, an attacker may attack the victim using an encrypted link through

several stepping stones, where the encrypted attack packets may show different contents among

stepping stones while being padded to the same size. This indicates that one cannot use packet

contents or packet sizes to detect and identify the attacker.

Several approaches have been proposed which only use the timing information. However,

the attacker may evade detection by perturbing the timing information. It may introduce

random delay before each packet departs from a stepping stone, or insert superfluous packets

as chaff into the original attack flow on a stepping stone. In this research, we mainly consider

two scenarios on stepping stone attribution problem:

Scenario 1: Only delay perturbation is introduced and no chaff perturbation exists.

Scenario 2: Delay and chaff perturbations exist simultaneously.

Not only can the attacker introduce delay and chaff perturbations, but the network itself

may produce such perturbations. When packets travel through the network, the propagation

delay of these packets is unavoidable. In anonymous networks, it is common that the attack

connection is captured somewhere with several other connections which cannot be differentiated

from the attack flow. Then these normal connections can seem to be as chaff to the attack
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Table 4.1 Previous Schemes’ Assumptions

Scheme 1 2 3 4

ON/OFF Yes No – Yes

Deviation No No – Yes

IPD No No – Yes

Watermark No Yes – Yes

State-Space Yes No – Yes

Multiscale Yes Yes Yes Yes

Detect-Attacks & Detect-Attacks-Chaff Yes Yes Yes Yes

flow. Therefore, the delay and chaff perturbations introduced to the attack flow may have two

sources: one is the attacker, and the other is the network itself. No matter where the delay

and chaff perturbations come from, we propose our solutions under the following assumptions:

1) The skew between the clocks of hosts where packets are captured is known.1

2) The total delay must be in the range of [0, ∆), where ∆ is the maximum probable

delay2.

3) The chaff perturbation is independent with the original flow.

4) No original packet is dropped, which means that each original packet will appear in both

sides of the stepping stone connection.

Table 4.1 shows previous schemes’ assumptions together, where ‘–’ means that these schemes

do not consider the scenario of chaff perturbation.

4.1.3 Our Schemes

To simplify the description of our schemes, let flow A denote the flow which contains only

the original packets, and flow B denote a flow captured in the network. Flow B may be

unrelated to flow A, or a related flow which contains all the original packets with or without

chaff perturbation. Considering flows A and B in a stepping stone connection chain, our

knowledge of the directional information between A and B has three possibilities:
1The hosts’ clocks are different from each other. For simplicity, we assume the skew between different clocks

is known such that we can compare the packets’ timestamps from different hosts.
2In fact, the delay should be in the range of [∆min, ∆max), where ∆min is the minimum probable delay and

∆max is the maximum probable delay and 0 ≤ ∆min < ∆max < ∞. For instance, if the two flows are linked
through a satellite, ∆min may be more than 1 second. However, we can change the delay range to [0, ∆) by
skewing one flow left or right by ∆min, and setting ∆ = ∆max−∆min. To simplify the analysis in this research,
we use the delay range [0, ∆) instead of [∆min, ∆max).
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1) A can only be an upstream flow of B;

2) A can only be a downstream flow of B;

3) A can be either B’ upstream or downstream flow.

Sometimes we know the directional information. For instance, if flow A is the attack flow

received by the victim, then B can only be A’s upstream flow if they are correlated. If flow

A is the response flow sent by the victim, then B can only be the downstream flow of A if

they are correlated. However, if we do not know much about the causality of links, we have

to consider both possibilities of flows sequence. To simplify the description of our schemes, we

suppose that we have enough information that flow A has to be B’s upstream flow if they are

in a stepping stone connection chain. We expand our schemes to the other two cases later in

this section.

4.1.3.1 Scheme S-I (for Scenario 1)

According to the assumption that maximum probable delay is bounded, each original packet

i in flow A with arrival time ui must have a corresponding packet in flow B within [ui, ui+∆).

In our scheme, we use ∆′ to estimate ∆, because ∆ may not be known by our scheme, and ∆′

should be no less than ∆.

Scheme Description:

First, we set ∆′ using foreknowledge. For the first observed original packet in flow A with

arrival time u1, we select the first arrival packet after u1 in flow B as its corresponding packet.

After the first corresponding packet is determined, each following original packet’s correspond-

ing packet is the successor of the previous original packet’s corresponding packet. We observe

whether all original packets’ corresponding packets are in their probable arrival time range. If

so, report CORRELATED and terminate. Otherwise, we repeat the observation with deferring

each original packet’s corresponding packet to the next one until we report CORRELATED,

or until the arrival time difference between an original packet and its corresponding packet is

larger than ∆′ and we report UNCORRELATED.

In this scenario, if ∆′ ≥ ∆, the false negative rate of scheme S-I is 0%. Now we provide
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a tight bound on the number of original packets that are required to be observed to achieve

any given bounded false positives. Blum et al. [23] provide the upper bounds of their schemes.

They first analyze the bounds by assuming that any normal flow can be modeled as a Poisson

process with fixed Poisson rate. They then relax this assumption by assuming that any normal

process can be modeled as a sequence of Poisson processes with varying rates and over varying

time periods. In our analysis, we follow their steps and derive the expression of a tight bound.

We must point out that the importance of the bound is not on the detailed value, but on

the limits of the ability of attackers to evade detection by simply introducing delay and chaff

perturbations.

We first assume all connections behave as Poisson processes and then generalize the as-

sumption as Blum et al. do. Suppose original flow A and the other flow B are two unrelated

flows with fixed Poisson rate λA and λB respectively. We begin to observe from time 0 and

observe n packets in original flow A. Let u1, u2, · · · , un denote each original packet’s arrival

time in flow A. Then the probability function of these n packets arrival times is:

f(u1, · · ·un) =

 λnAe
−λAun , if un ≥ · · · ≥ u1 ≥ 0 (4.1a)

0, otherwise. (4.1b)

Let v1 be the first packet’s arrival time after u1 in flow B, and v2, v3, · · · , vm be the following

packets’ arrival times. Then the conditional probability function of these m packets arrival

time on u1, · · · , un is:

f(v1, · · · , vm|u1, · · · , un) = λmB e
−λB(vm−u1), if vm ≥ · · · ≥ v1 ≥ u1 ≥ 0 (4.2a)

0, otherwise. (4.2b)

Therefore we can obtain the joint probability function of u1, · · · , un, v1, · · · , vm:

f(u1, · · · , un, v1, · · · , vm)

= f(v1, · · · , vm|u1, · · · , un)f(u1, · · · , un). (4.3)
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Let Zn denote the event that an unrelated flow is reported correlated by our scheme when

we observe n original packets. Therefore the event Zn’s probability P (Zn) is equal to the false

positive rate, and

P (Zn) =
∫
S

(1)
n ∪···∪S

(∞)
n

f(u1, · · · , un, v1, · · · , v∞)

dv∞ · · · dv1dun · · · du1 (4.4)

≤
∫
S

(1)
n ∪···∪S

(n)
n

f(u1, · · · , un, v1, · · · , v2n−1)

dv2n−1 · · · dv1dun · · · du1 (4.5)

+(1−
n∑
k=0

(λB∆′)k

k!
e−λB∆′),

where

S(i)
n =



0 ≤ u1 ≤ · · · ≤ un <∞

u1 ≤ v1 ≤ · · · ≤ v2n−1 <∞

u1 ≤ vi ≤ u1 + ∆′

· · ·

un ≤ vn+i ≤ un + ∆′


(4.6)

is the integral field when the ith packet after u1 in flow B is selected as the first original packet’s

corresponding packet.

It is clear that the false positive rate decreases as the number of original packets we observe

increases. For any given false positives, we may calculate the bound of the needed number

of packets. Furthermore, we can prove that the bound of S-I is tighter than that of Detect-

Attacks[23], which means S-I needs less packets than Detect-Attacks to achieve the same false

positive rate.

Although it is difficult to calculate the bound using above formulas, we simulate S-I over

millions of Poisson flows and obtain a computer simulated bound shown in Figure 4.1(a) when

false positive rate is set to 1%. We make the following observations:

• For a given λA and ∆′, the maximum bound occurs when λB ≈ λA.

• For a given λA and λB , the bound increases quickly with the increase of ∆′.
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• When λA∆′ ≤ 7.5, using less than 50 packets can achieve 1% false positive rate.

• Even when λA∆′ = 25, using less than 450 packets can achieve 1% false positive rate.
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Figure 4.1 Bounds of S-I and S-II

4.1.3.2 Scheme S-II (for Scenario 2)

Scheme Description:

First, we set ∆′ using foreknowledge. For each original packet i in flow A with arrival time

ti, we select the first arrival packet in the range [ti, ti + ∆′) in flow B as its corresponding

packet. If the packet has been selected by the previous original packet, select the first unselected

packet. If we cannot select a corresponding packet in flow B for an original packet in flow A,

we report UNCORRELATED. Otherwise, we report CORRELATED.

Let vi be the arrival time of the ith original packet’s corresponding packet in flow B. Then

v1 only depends on u1, and vi only depends on vi−1 and ui when i ≥ 1, so

f(v1|u1) =

 λBe
−λB(v1−u1), if v1 ≥ u1 ≥ 0 (4.7a)

0, otherwise, (4.7b)

and

f(vi|ui, vi−1) =
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λBe

−λB(vi−ui), if vi ≥ ui ≥ vi−1 (4.8a)

λBe
−λB(vi−vi−1), if vi > vi−1 > ui (4.8b)

0, otherwise. (4.8c)

We then obtain the joint probability function of u1, · · · , un, v1, · · · , vn:

f(u1, · · · , un, v1, · · · , vn)

= f(v1, · · · , vn|u1, · · · , un)f(u1, · · · , un) (4.9)

= f(vn|un, vn−1)f(vn−1|un−1, vn−2) · · · f(v2|u2, v1)

f(v1|u1)f(u1, · · · , un). (4.10)

Let Zn denote the event that an unrelated flow is reported correlated by our scheme when

we observe n original packets. Therefore, the event Zn’s probability P (Zn) is equal to the false

positive rate, and

P (Zn) =
∫
Sn

f(u1, · · · , un, v1, · · · , vn)dvn · · · dv1dun · · · du1, (4.11)

where

Sn =



0 ≤ u1 ≤ · · · ≤ un <∞

v1 ≤ · · · ≤ vn <∞

u1 ≤ v1 ≤ u1 + ∆′

· · ·

un ≤ vn ≤ un + ∆′


(4.12)

is the integral field.

Besides this tight bound on the number of original packets needed, we may also provide a

loose bound:

Theorem 11.

P (Zn) ≤ (1− e−λB∆′)n, for n ≥ 1. (4.13)
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Proof. We use mathematical induction to prove this theorem. First,

P (Z1) = 1− e−λB∆′ . (4.14)

Suppose that for i ≥ 1,

P (Zi) ≤ (1− e−λB∆′)i, (4.15)

then

P (Zi+1) ≤ P (Zi) · P (at least one packet appears within

[ui+1, ui+1 + ∆′) in flow B|Zi) (4.16)

≤ (1− e−λB∆′)i(1− e−λB∆′) (4.17)

= (1− e−λB∆′)i+1. (4.18)

When we observe log
1−e−λB∆′ δ packets, the false positive rate is at most δ.

We simulate S-II on millions of Poisson flows generated by computer and get a computer

simulated bound shown in Figure 4.1(b) when false positive rate is set to 1%. We make the

following observations:

• For a given λA and ∆′, the bound increases quickly with the increase of λB .

• For a given λA and λB , the bound increases quickly with the increase of ∆′.

• For a given λB and ∆′, the bound decreases with the increase of λA.

4.1.3.3 Scheme S-III (for Scenario 2)

Though the scheme S-II is simple enough, it requires that ∆′ ≥ ∆. If our foreknowledge

cannot tell us what ∆ should be, we have to set ∆′ to a large ‘safe’ value, for instance, 100

seconds. However, according to our analysis on the bound of number of needed packets, as

∆′ increases, the needed number of packets increases quickly, which means that for a given

number of packets, the false positives rise with the increase of ∆′.
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Here we propose a scheme to reduce false positives when the number of original packets is

limited and ∆′ is large. According to the probable delay bound, each packet of the original flow

has a limited number of probable candidate packets in the other flow. That is, for an original

packet i with arrival time ui, only packets whose arrival times are in the range [ui, ui + ∆) on

the other flow have the possibility to be the corresponding packet. Since the number of the

original packets in flow A is limited, and each packet’s number of candidates in flow B is also

limited, we may reconstruct a limited number of probable flows from flow B with the same

number of packets as the original flow A. The real corresponding flow of the reconstructed ones

must be one of them. However, our goal is not to try and find the real corresponding flow, but

to conclude whether the two flows are correlated or not. We then calculate the correlation of

each probable flow with the original flow A using a certain correlation criterion, and use the

largest correlation value to make the final decision.

Scheme Description:

First, we use Scheme S-II on the two flows and get a report. If it is reported uncorrelated,

we return UNCORRELATED. Otherwise, we find all probable corresponding flows and choose

a certain criterion to compute the correlation value between these two flows. We then make a

decision.

This scheme is quite time consuming. Let n denote the total packets number in original

flow A, and ni denote the number of candidate packets for each original packet i. Let N be

the total number of probable corresponding flows. Then

N ≈
n∏
i=1

ni, (4.19)

which is unacceptable in most cases. Therefore, for certain criteria, we hope to find some fast

solutions.

We find that when we choose deviation as the criterion, we may construct a fast solution

which reduces the number of probable corresponding flows required to calculate correlation

to no more than
∑n

i=1 ni. Let v
(j)
i denote the ith corresponding packet’s arrival time in

the jth probable corresponding flow. Then the deviation between flow A and the probable



96

corresponding flow j is defined by3

dev(j) =
1
n

n∑
i=1

(v(j)
i − ui)− min

1≤i≤n
(v(j)
i − ui), (4.20)

and the deviation between flow A and B is defined by

dev = min
1≤j≤N

(dev(j)). (4.21)

Fast Solution:

1 For each original packet i in flow A with arrival time ui, we select the first arrival packet in the range [ui,
ui + ∆′) in flow B as its corresponding packet. If the packet has been selected by the previous original
packet, then select the first unselected packet. This obtains the initial probable corresponding flow.

2 We search the original packet which has the minimum arrival time difference from its corresponding packet.
This original packet updates its corresponding packet and selects the next packet in the flow. If the new
corresponding packet to be selected has been selected by the next original packet, the next original packet
in the flow needs to update its corresponding packet to the next one, and so on. We then obtain a new
probable corresponding flow.

3 Repeat Step 2 until one of the original packets cannot select a corresponding packet.

Using the fast solution, we obtain a series of probable corresponding flows which are about∑n
i=1 ni. Furthermore, because each selected probable corresponding flow differs from the

previous one with only 1 or several packets, then dev(j) can be derived from dev(j−1) easily. It

can be proved that this fast solution achieves the same performance as the original scheme for

the deviation criterion.

Theorem 12. If deviation is chosen to be the correlation criterion, the fast solution achieves

the same performance as the original scheme.

Proof. Let u1, u2, · · · , un be the original packets arrival time of flow A, w1, w2, · · · , wm be the

packets arrival time of flow B, and v1, v2, · · · , vn be the packets’ arrival time of the correspond-

ing flow which achieves the minimum deviation. According to the deviation definition, if the

minimum gap min1≤i≤n(vi − ui) = wk − uj , which means that the minimum gap is achieved

by the pair of original and corresponding packet (uj , wk), then the corresponding flow with
3We provide the definition of deviation here because it is slightly different with that in [113].
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the minimum deviation must exactly be the flow that each original packet i chooses the first

appeared packet in the range [ui+wk−uj , ui+∆) which has not been chosen by its predecessor.

The fast solution traverses all the probable combination of the pair of packets (uj , wk) with

minimum gap, so it really achieves the corresponding flow with the minimum deviation.

4.1.3.4 Complexity Analysis

Suppose we observe n packets in flow A and m packets in flow B. In the worst case of

scheme S-I, the first packet in A has up to m candidate packets, so we must check such many

rounds. In each round, we must check up to n packet pairs. Therefore the time complexity in

the worst case is O(n ·m). For fast solution of S-III, directly from what we discussed before,

the time complexity is also O(n · m). However, both schemes normally have much better

performance than their worst cases. For S-II, we need to select the corresponding packets

among m packets in flow B, and each packet in B only needs to be checked once. Therefore

the time complexity in the worst case is O(m).

4.1.3.5 Directional Information Discussion

In the above description of our schemes, we assume that we know the directional information

of case 1 that the original flow A has to be B’s upstream flow if they are in a stepping stone

connection chain. It is very simple to expand our schemes to the other two cases. In case 2

that we can confirm A is a downstream flow of B, we just simply add ∆′ to the arrival time of

each packet in flow B, and then execute the same schemes. In case 3 that we cannot confirm

the direction between A and B, we simply run the schemes two times, one with directional

information of case 1, the other with directional information of case 2. If both of the results

are UNCORRELATED, we report UNCORRELATED. Otherwise, we report CORRELATED.
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Table 4.2 Parameters Set

Scheme Parameter Value

Tidle 0.5s

δ 80ms

ON/OFF γ 0.3

γ′ 0.02

mincsc 2

Deviation Threshold 6s

s 20

IPD δcp 0.9

δ 0.6

State-Space weight updating rate 0.1

Threshold 0.5

ψ bump

Multiscale s 64s

Threshold 0.7

Detect-Attacks & ∆ 20s

Detect-Attacks-Chaff δ 0.01

S-I, S-II & S-III ∆′ 30s

S-III Threshold 6s

4.1.4 Experimental Evaluation

To make comparison, we implement the following six approaches: ON/OFF [119], Deviation

[113], IPD [107], State-Space [100], Multiscale [39] and Detect-Attacks/Detect-Attacks-Chaff 4

[23]. We do not compare these passive schemes with Watermark which is the only active

approach. We compare these six present schemes with scheme S-I in Scenario 1, and with

schemes S-II and S-III in Scenario 2.

We list the values of all used parameters of these nine approaches in Table 4.2. These

values are the original values used by the authors or typical values if the authors do not clearly

indicate. We omit the meaning of these parameters which may be found in their original papers.

Table 4.2 also shows that S-I and S-II have the smallest number of control parameters, so

they can be easily implemented. In contrast, ON/OFF has five control parameters, and it is

hard to train and test whether they are set to the optimum values.

In our experiments, we use the data set of Auckland-IV traces in NLANR PMA Daily

Traces Archive [2]. We extract 293 Telnet/SSH flows which have more than 1000 packets,
4Detect-Attacks is used in experiments for Scenario 1, and Detect-Attacks-Chaff is used in experiments for

Scenario 2.
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and totally 1.3 million packets. These flows’ packet rate distribution is shown in Figure 4.2.

However, most of these flows are not overlapped, and therefore any scheme with Assumption

1 can get high score, which is unfair to other schemes. Therefore, in our experiments, we

randomly adjust the flows’ start time such that they always overlap. Furthermore, in all our

experiments, we only consider such pairs of test flows that the one seemed as original flow A

is totally covered by the other one. We have also built a stepping stone attack attribution

test-bed environment consisting of 40 machines and developed an automated interactive traffic

(Telnet, SSH, etc.) generator [111]. We modified telnetd and sshd source code so that they

can introduce random delay and chaff perturbations with various controllable distributions

into stepping stone traffic.
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Figure 4.2 Packet Rate Distribution

4.1.4.1 Experiments Set 1

This set of experiments is designed to answer the following questions:

1) How effectively can different schemes detect stepping stones in Scenario 1 with different

delay perturbations added?

2) How effectively can different schemes detect stepping stones in Scenario 2 with different

chaff perturbations added?

For scenario 1, we add uniform distributed delay to each original flow and get 293 delayed

flows. Then we calculate the correlation between each original flow and each delayed flow.
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Figure 4.3 Scenario 1 with Different Delay Perturbations

Thus we get 293 stepping stone connection pairs and 66, 140 non-stepping stone connection

pairs. We consider 10 different kinds of uniform delays, and their maximum delays increase

from 2 seconds to 20 seconds with a step of 2 seconds. To avoid the influence of different packets

number of flows, each scheme must return its result after they receive 250 original packets.

Figure 4.3 shows the false negative rates and false positive rates of these seven approaches. We

make the following observations:

• Only Detect-Attacks and S-I can detect all stepping stone attacks. However, the false positive rate

of Detect-Attacks is much higher than that of S-I. The reason is that S-I has a tighter bound than

Detect-Attacks.

• Using only 250 packets, S-I can achieve as low as 0.82% false positive rate even when the maximum delay

is 20 seconds.

To simulate Scenario 2 that delay and chaff perturbations exist simultaneously, we first add

uniform distributed delay with maximum of 10 seconds. We then generate Poisson distributed

chaff with packet rate 0.5 packet/s, 1 packet/s, ..., 4 packet/s. For each scheme, 1000 original

packets are used. Figure 4.4 shows the false negative rates and false positive rates of these

eight approaches. We make the following observations:

• Only S-II and S-III can detect all stepping stone attacks. S-III is a bit better than S-II.

• ON/OFF and Deviation always report there is no attack.



101

0

10

20

30

40

50

60

70

80

90

100

0.5 1.5 2.5 3.5

Packet Rate of Poisson Distributed Chaff (packet/second) 

Fa
ls

e 
N

eg
at

iv
e 

R
at

e 
(%

)

ON/OFF
Deviation
IPD
Multiscale
State-Space
Detect-Attacks-Chaff
S-II
S-III

(a) False Negative Rate

0

10

20

30

40

50

60

70

80

90

100

0.5 1.5 2.5 3.5
Packet Rate of Poisson Distributed Chaff 

(packet/second)

Fa
ls

e 
Po

si
tiv

e 
R

at
e 

(%
)

ON/OFF
Deviation
IPD
Multiscale
State-Space
Detect-Attacks-Chaff
S-II
S-III

(b) False Positive Rate

Figure 4.4 Scenario 2 with Different Chaff

• Detect-Attacks-Chaff totally loses detecting ability. The reason is that the added chaff perturbation

exceeds its detection bound.

• The false positive rates of S-II and S-III increase with the packet rate of chaff, which complies our

previous analysis. They need more original packets to achieve arbitrary low false positives when chaff

perturbation is heavy.

4.1.4.2 Experiments Set 2

This set of experiments is designed to answer the following questions:

1) How effectively can different schemes detect stepping stones in Scenario 1 with different

number of available original packets?

2) How effectively can different schemes detect stepping stones in Scenario 2 with different

number of available original packets?

For scenario 1, we add uniform distributed delay with maximum of 10 seconds. The number

of available packets increases from 50 to 1000. Figure 4.5 shows the false negative rates and

false positive rates of these seven schemes. We make the following observations:

• Deviation, Detect-Attacks and S-I can detect all stepping stone attacks. However, the false positive rates

of Deviation and Detect-Attacks are higher than that of S-I.

• Using only 150 packets, S-I can achieve as low as 0.54% false positive rate.
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Figure 4.5 Scenario 1 with Different Number of Original Packets
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To simulate Scenario 2 that delay and chaff perturbations exist simultaneously, we use the

real flows as the source of chaff perturbation. We chose the longest 30 flows from these 293

original flows. We combine one of the residual 263 flows with one of these 30 flows together and

get 263× 30 = 7, 890 combined flows. We then add uniform distributed delay with maximum

of 10 seconds to these combined flows. We calculate the correlation between each original flow

and each combined flow. In these combined flows, the packets from one of the 30 flows may be

seemed as chaff perturbation to the other flow. We finally get 7, 890 stepping stone connection

pairs and 1, 649, 870 non-stepping stone connection pairs. Figure 4.6 show the false negative

rates and false positive rates of these eight approaches. We make the following observations:

• Only S-II and S-III can detect all stepping stone attacks. The false positive rates of S-II and S-III

totally overlap in Figure 4.6(b). It means that when used in real flows, S-II is good enough and we need

not to use S-III which is more time consuming.

• Detect-Attacks-Chaff totally loses detecting ability.

• Multiscale can achieve 10% false negative rate when using more than 500 packets. However, its false

positive rate is about 40%.

• S-II and S-III can achieve about 1% false positive rate using 1000 packets.

4.1.5 Conclusion

Network based attackers often launch attacks through stepping stones to evade detection,

who also make detection even more difficult by encrypting attack traffic and introducing delay

and chaff perturbations. Several approaches have been proposed to detect stepping stone

attacks. However, none of them performs effectively when delay and chaff perturbations exist

simultaneously.

In this research, we discuss two different stepping stones scenarios and proposed three

schemes to attribute stepping stone attacks. Two of the three schemes can effectively detect

stepping stones even when delay and chaff perturbations exist simultaneously. We analyze

our schemes and provide the bounds on the number of packets needed to confidently detect

stepping stone connections from non-stepping stone connections with any given probability of
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false attribution. We compare our schemes with previous ones and experiments show that our

schemes are more effective in detecting stepping stones in the two scenarios.

Our mathematical analysis and experimental results show that although the attackers can

make detection more complicated by introducing delay and chaff perturbations, if the attack

connections are long enough, they cannot evade detection only by introducing limited and

independent delay and chaff perturbations. Attackers may be forced to introduce dependent

delay and chaff perturbations, and reduce the number of attack packets. As a next step, we

are continuing the research on attributing stepping stone attacks with message merge and split

[112].

4.2 Topology-aware Single Packet Attack Traceback

4.2.1 Introduction

With the phenomenal growth of the Internet, more and more people enjoy and depend

on the convenience of its provided services. Unfortunately, the number of network-based at-

tacks is also increasing very quickly. The consequences are serious and, increasingly, financial

disastrous, but ironically, only few of the attackers have been captured and thereby punished

because of the stateless nature of the Internet. Network-based attackers can easily hide their

identities through IP spoofing, stepping stones, network address translators (NATs), Mobile IP

or other ways, and thereby reduce the chance of being captured. The current IP network infras-

tructure lacks measures which can effectively deter and identify motivated and well-equipped

attackers. As a result, due to the lack of effective attack attribution techniques and concerns

for negative publicity, the percentage of organizations reporting computer intrusions to law

enforcement has continued its multi-year decline [52]. Therefore, it is desirable to design ef-

fective and efficient IP traceback systems to attribute attackers and help to reconstruct cyber

crime scenes.

Building systems that can reliably trace attack packets back to their real origins in the

current IP networks is a first and important step in making cyber criminals accountable. There

are many forms of network-based attacks. While the most-widely reported DDoS attacks
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are conducted by flooding networks with large amounts of traffic, there are network-based

attacks that require significantly smaller packet flows. Some attacks (e.g., Teardrop) can even

succeed by using only one well-targeted packet. In building such traceback systems, there are

a number of significant challenges including which packets to trace, how to trace long-lifetime5

and short-lifetime6 attacks, and how to minimize router processing overhead and storage space

requirements, while satisfying applications’ and network users’ privacy requirements.

Several IP traceback schemes have been designed to attribute the origin of IP packets

through the Internet. We roughly categorize them into four primary classes: (i) Active Prob-

ing [25, 99], (ii) ICMP Traceback [21, 71, 110], (iii) Packet Marking (including deterministic,

probabilistic, and algebraic packet marking) [20, 36, 85, 93, 96], and d) Log-based Traceback

[66, 74, 94, 95]. The IP traceback systems built atop of approaches of Active Probing, ICMP

traceback and Packet Marking usually require a sufficiently large set of attack packets to

make traceback possible, which are not effective to traceback short-lifetime or single packet

attacks. Log-based traceback schemes seem suitable to attribute individual packet to its origin.

However, several log-based methods such as [74] require recording the entire network traffic for

future attack traceback. Obviously, such methods have overly high storage space requirements,

which make them impractical to be used for current high-speed IP networks, especially those

with heavy traffic.

Thereafter, to address the problem of log-based IP traceback systems’ overly large stor-

age space requirement, two IP traceback systems [94, 95] were designed using Bloom filters

[22], a space-efficient data structure for representing a set of elements to respond member-

ship queries. However, although Bloom filters are space-efficient data structures in responding

membership queries, they have inherent unavoidable collisions which produce false positives,

and thus restrain the effectiveness of these systems.

In this research, we propose a Bloom filter-based topology-aware single packet IP traceback

system, namely TOPO, which utilizes router’s local topology information, i.e., its immediate
5By long-lifetime, we mean that there are a sufficiently large number of attack packets available for traceback

systems.
6By short-lifetime, we mean that there are a significantly smaller number of attack packets available for

traceback systems. Some attacks might only use a single packet.
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predecessor information, to traceback [114]. Our theoretical analysis and experimental evalu-

ation show that TOPO can significantly reduce the number and scope of unnecessary queries

and thus, significantly decrease the false attributions to innocent nodes.

Furthermore, we consider the practicability of Bloom filter-based IP traceback systems. In

some real world networks, it is difficult or even impossible to install an IP traceback system

on all the routers on the network. Therefore, partial deployment is an important and desired

property when designing and implementing IP traceback systems. We analyze and show that

TOPO is suitable to be partially deployed while maintaining its traceback capability.

Finally, we discuss an issue on utilizing Bloom filters which has never been studied. When

Bloom filters are applied in IP traceback systems, it is difficult to decide their optimal control

parameters a priori and thus achieve the lowest false positive rate. Based on our analytical

results, we design a k-adaptive mechanism to dynamically adjust parameters of Bloom filters

such that our IP traceback system can achieve the best performance in terms of false attribution

rates and storage space requirement.

4.2.2 Problems and Goals

4.2.2.1 Problems in Existing Traceback Schemes

To prevent the Internet from being attacked, it is desirable to design effective and efficient

IP traceback systems to attribute the attackers and help reconstruct cyber crime scenes. IP

traceback problem is to traceback the network path(s) the attack traverses and identify the real

attackers.

Active Probing, ICMP traceback and packet marking schemes are designed to traceback

those long-lifetime attacks, and they are not suitable to traceback single packet attacks or

short-lifetime attacks. SPIE is designed to trace the origin of a single IP packet delivered by

the network in the recent past. In SPIE, when an intrusion detection system (IDS) detects an

attack, it sends out a query message to SPIE. SPIE then dispatches the query message to the

relevant routers for processing. After a router receives a query about whether it has forwarded

a packet with a specific arrival time, it checks its Bloom filter for that time interval. If the result
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is ‘present’ in the Bloom filter, the router must continue to query all its upstream neighbors.

Consequently, there would be a lot of unnecessary queries sent to innocent routers. The

unnecessary queries force the routers to spend CPU time and other resources to respond, and

thus reduce the performance of their tasks as routers. Furthermore, these unnecessary queries

can introduce innocent nodes into the attack graph because of the unavoidable false positives

of Bloom filters, which in turn cause false attributions. Consequently, it is desirable to design

new mechanisms to control the unnecessary queries and thus reduce the false attributions to

innocent nodes.

For any proposed IP traceback systems, besides traceback effectiveness, practicability is

also an important and desired property in evaluating their system performance. In some real

world networks, it is difficult or even impossible to install Bloom filter-based IP traceback

systems, such as SPIE [95], PAS [94] and TOPO proposed in this research, on all routers.

Although some routers in these networks may easily install and activate a Bloom filter-based

IP traceback system, there are some routers such as core routers that are hardly to be updated

because of the high overhead involved or other administrative issues.

If a Bloom filter-based IP traceback system can be partially deployed without losing (or

compromising a little) traceback capability compared with the fully deployed system, then it

will have the following potential advantages:

• Low cost: Such a system may avoid wasting money and labor on updating routers which

are difficult and expensive to update. In addition, it is possible to reduce memory space

required by the whole traceback system [69].

• Flexibility: Such a system may be implemented on networks which have routers that are

impossible to be updated. Furthermore, it also provides flexibility to the administrator

who launches traceback or investigation of a particular attack. She may enable only a

portion of network routers and thereby avoid alerting the attacker.

Therefore, an IP traceback system which can be practically deployed should have the property

of partial deployment.
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Bloom Filters have been used in many network applications. In some applications, the

element number n that should be inserted is known a priori before the construction of Bloom

filters. For instance, Bloom filters are used to store a dictionary of unsuitable passwords for

security purposes, where the number of passwords is countable [97]. With the fixed element

number n, given any required false positive rate f and the memory size m, the optimal hash

function number k can be calculated by equation (2.2). However, in IP traceback systems,

the traffic volume that needs to be recorded varies significantly, especially when the network

is under attacks. This indicates that the packet number n is unknown a priori, when m and

k have to be decided in advance before traceback system is deployed. For different values of

n, there are different optimal values of k. Therefore, a Bloom filter-based IP traceback system

faces the problem of how to adaptively adjust parameter k to achieve a better false positive

rate.

4.2.2.2 System Model

We consider IP networks (the Internet) where TCP/IP architecture and protocols are being

used. An IP network consists of a number of host computers and network devices (e.g., routers

or switches), which are connected by physical links on which packets are forwarded. We make

the following assumptions in IP networks:

• Most routers are reliable.

• Some routers’ software and hardware can be updated.

4.2.2.3 Threat Model

With the phenomenal growth of Internet, more and more people enjoy and depend on

the convenience of its provided service. Meanwhile, the number of network-based attacks is

increasing very quickly. The reality is that only few of the attackers have been captured

and punished due to the stateless nature of the Internet and the readily available tools and

techniques on the Internet that are easily taken to conceal themselves from being discovered.
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It is well-documented that many attackers use spoofed IP source addresses in their attack

packets. As these packets traverse the Internet, little useful information is left for the victims

to identify their true origins. Some attackers also launch their attacks behind a chain of

compromised machines which are called “stepping stones”. Some attacks, such as SYN flood

Denial-of-Service (DoS) attack, need to flood network links with large amounts of packets,

while there are other attacks which require significantly smaller packet flows. Furthermore,

some sophisticated attackers can start and finish their attacks using a single well-targeted

packet, such as LAND attack [3], Ping of Death attack [4] and Teardrop attack [5].

4.2.2.4 Problem Definition and Our Goals

In this research, we aim at designing a Bloom filter-based topology-aware single packet IP

traceback system, namely TOPO, to solve the problems discussed above. We set the following

as our goals in the design of TOPO:

1. To design a single packet IP traceback system which has fewer unnecessary query mes-

sages and fewer false attributions to innocent nodes.

2. To design a single packet IP traceback system which needs not to be fully deployed in

the entire network.

3. To design a mechanism which helps achieve the best performance of Bloom filters by

adaptively adjust parameter k.

4.2.3 System Description

In this subsection, we first introduce topology-aware IP traceback mechanism which is the

baseline idea of TOPO, and then discuss the partial deployment issue and the design of the

k-adaptive mechanism for dynamically adjusting parameters of Bloom filters to achieve better

performance.

4.2.3.1 Topology-aware IP Traceback

We first define three terminologies used in this research:
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• Packet Signature is defined as the information to identify individual packet from each

other.

• Packet Predecessor is defined as the immediate upstream neighbor which sends the

packet to the current router.

• Predecessor Identifier is defined as the information to identify the predecessor of a

packet from other upstream neighbors.

As we discussed above, we need to find a way to control the production of unnecessary

queries. This can be achieved if the routers have the ability to identify which upstream routers

should be queried and which else should not be queried. Therefore, if we can check not only

the presence of each packet but also the packet predecessor information, we can only query the

exact predecessor and thus significantly reduce the unnecessary queries. This requires that we

record not only the packet signature but the predecessor information.

An intuitive way to record packet predecessor information is to separate the incoming

packets into several Bloom filters, each of which only store the packets coming from a distinct

predecessor. Snoeren et al. [95] discussed that a router may maintain separate Bloom filters

for each of its input port, because different upstream neighbors typically use different input

ports. Although this complicates the query process, the input port isolation may reduce the

number of upstream neighbors that need to be queried. However, the number of predecessors

(or active ports) within a certain time interval is an unknown parameter: Most routers cannot

decide how many upstream neighbors will send packets to it within a time interval in a real

world network. Even though we may estimate the maximum probable number of predecessors,

another problem appears that how to divide the limited memory on the router for the Bloom

filters of individual predecessors. We do not know how many packets will be received from a

certain predecessor. As we learn from equation (2.1), the false positive rate of Bloom filters

depends on m/n. If we divide the memory equally, then the Bloom filter which a large amount

of packets are inserted into will have high false positive rate. Therefore, it is not an effective

and practical solution to divide the limited memory into several separate Bloom filters.
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Another way of recording predecessor information is to create a list for each bit which is

set to 1 in the Bloom filter. This list is used to record all the predecessors which have set this

bit. With these lists, the presence of a packet is that all the k corresponding bits are set to 1,

and there is at least one common predecessor which appears on all the k corresponding lists.

However, the extra lists will consume a lot of memory, and thus degrade the Bloom filter’s

performance or increase the system memory requirement.

We propose that the router still only maintains one Bloom filter at a time. The Bloom

filter not only keeps the packet signature, but also the predecessor identifier. The predecessor

identifier can be hashed into the Bloom filter with the packet signature together. Such an

operation really can record the topology information without increasing false positive rate or

requiring larger memory space.

Now we introduce TOPO which is based on the above idea. TOPO is constructed on

some special routers which are equipped with Bloom filters, and we call them TOPO-equipped

routers. When a packet travels through the network where TOPO is deployed, no matter

whether it is an attack packet or not, the TOPO-equipped routers on its path record the

packet signature and predecessor information. If an attack packet is identified by the victim,

the victim’s address, packet signature, and packet arrival time, are reported to TOPO as a

traceback request. TOPO then begins traceback by sending a query message to the TOPO-

equipped router responsible for the region containing the victim. This router then checks its

record and continues to query other TOPO-equipped routers if necessary. Finally, all responses

from queried TOPO-equipped routers are gathered by TOPO to generate the attack graph.

The attack graph is used for further analysis and corresponding actions.

We show the details of TOPO-equipped router’s behaviors when it records a packet and

responds a query in Figure 4.7 and 4.8 respectively.7

Record a Packet

• When a TOPO-equipped router receives a packet, it first extracts the packet signature
7We do not discuss the topic of malicious behaviors of compromised routers, which is beyond the scope of

this research. We also do not discuss the packet transformation issue, which is well discussed in [95].
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and predecessor identifier.

• The predecessor identifier is inserted into an extra predecessor list if the predecessor has

not been inserted before.

• The router calculates the k hash values of the combination of packet signature and

predecessor identifier, and inserts them into its Bloom filter by setting the corresponding

bits to 1.

• At the end of the anticipated time interval, the current Bloom filter and the predecessor

list are archived by flushing the oldest ones, and a new Bloom filter and predecessor list

start.

Respond a Query

• When a TOPO-equipped router receives a query message, it first retrieves the Bloom

filter and the predecessor list for the relevant time interval using the given attack packet

arrival time in the query message.

• Each predecessor identifier on the list is combined with the packet signature provided by

the query message, and the combination is hashed using the same k hash functions to

check if it is present in the Bloom filter.

• The router will respond the query that it forwarded this packet before if there is at least

one presence found. If so, it only continues to query the predecessor(s) which is (are)

present in the Bloom filter.

For a router which is not TOPO-equipped, when receiving a packet, it just simply forwards

it to the next hop in the path; when receiving a query message, it simply forwards it to all of

its upstream neighbors.

4.2.3.2 Partial Deployment

Ideally we can equip TOPO on all routers on the network, and thus can trace back single

packet effectively. However, many legacy routers cannot be updated, or there is no enough
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money to update all routers. Therefore, with resource and policy restriction, in most cases we

have to partially deploy an IP trace back system. One simple partial deployment mechanism

is that Bloom filter-based IP traceback system is only installed on edge routers and all internal

routers remain unchanged. Under such architecture, all edge routers will be queried for any

traceback request. Therefore all innocent end nodes have the possibility to be considered

attackers, and thus introduce more false positives. Furthermore, there are two other drawbacks

using such a partial deployment mechanism. First, the victim cannot get a full attack graph;

second, the query burden on each edge router might be very heavy. Therefore, it is necessary

to deploy Bloom filters at least on part of internal routers if the full attack graph is desired or

traceback requests are frequently delivered.

To partially deploy TOPO, we need to find a way to select particular routers to equip

TOPO to achieve the highest traceback performance with the lowest cost. We call it TOPO-

equipped routers placement problem. Actually, this problem should be solved as an optimization

problem. For instance, given the network map, the network traffic information, the distribution

of attacks, and the costs of updating routers to TOPO-equipped, we optimize the traceback

system with respect to the total cost and traceback performance (i.e., a combination of cost,

false positives and false negatives). When the number of candidate routers is huge, it is time-

consuming to find the optimized result. Furthermore, it is hard to get the distribution of

attacks before deployment of TOPO.

In this research, we propose an intuitive but effective method to place the TOPO-equipped

routers. The basic idea is that if the distribution of attacks is not available, intuitively an

evenly distributed IP traceback system should have better performance. We assume that we

know all the possible paths of the network, which can be achieved through some known network

mapping tools [31, 53, 58]. To evenly distribute N TOPO-equipped routers on the network,

we first sort all paths in descending order. We then equip TOPO on the median router of the

longest path. Each path through this router is divided into two shorter paths. We sort all

paths again and choose the median router of the longest path. We repeat these steps until we

equip TOPO on N routers. We provide the performance analysis of partially deployed TOPO
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in the next subsection.

4.2.3.3 k-Adaptive Mechanism for Bloom Filters

When a new Bloom filter starts to record the arriving packets, the exact number of packets

that would be inserted into this Bloom filter is unknown. As shown in formula (2.1), the false

positive rate is decided by n and k when m is fixed. Although we can estimate a possible value

of n using historical knowledge about network statistics and choose a corresponding k, in some

scenarios n may dynamically change in a large range, especially when the network is under

attacks. In such cases, the false positive rate will be (greatly) higher than the optimal rate, as

shown in Figure 4 of [43]. However, we cannot reconstruct a Bloom filter with the optimal k

after we finally know the packet number n, because when we notice that we should use a better

k, the previous packets have passed because of the limited memory on routers. Therefore, we

have no chance of selecting a better k and hashing all the previous packets again.

Someone may argue that when a Bloom filter is saturated, it can be archived and a new

filter starts. However, when the memory is limited, there may not be extra memory space for

those unexpected packets. For instance, a router in the IP traceback system is designed to

trace the traffic within 1 hour with the granularity of 1 minute, and divides its memory into 61

slices (1 slice is used to store the packets in the current minute, and the other 60 slices are for

these 60 archived Bloom filters in the recent past.). If the router finds that the current Bloom

filter saturates after 30 seconds, it cannot archive the current Bloom filter by flushing the

oldest archived filter, because such an operation makes the router fail to respond the queries

of the previous packets between 59 minute 30 second and 60 minute ago, and thus violates

the traceback system goals and requirements. Otherwise, after an attacker finishes a serious

attack, it can easily flood the network and flush its previous attack traffic before the system

is aware of its attack and starts the traceback. Therefore, we need a mechanism to adjust

the hash function number k with respect to the dynamic n to achieve the best performance of

Bloom filters.

A direct solution is to construct several Bloom filters simultaneously which have different



116

numbers of hash functions. After all elements are inserted, we archive the Bloom filter with

the optimal k and throw away all others. Obviously, this solution requires much more memory

for the extra Bloom filters, and thus perhaps decreases the entire performance eventually.

We propose an effective k-adaptive mechanism as shown in Figure 4.9 which uses a table

v with m Q-bit entries to record the results of K m-bit Bloom filters with different numbers

of hash functions, if every smaller hash function set is the subset of larger ones, where

Q = dlog2(K + 1)e. (4.22)

Let H1, H2, · · · , HK be the K hash function sets which have k1, k2, · · · , kK hash functions

respectively, and k1 < k2 < · · · < kK .

H1 = {h1, . . . , hk1},

H2 = {h1, . . . , hk2},

. . .

HK = {h1, . . . , hkK}.

Therefore H1 ⊂ H2 ⊂ · · · ⊂ HK . For each hash function hi among the total kK hash functions,

let si denote the number of hash sets it belongs to in H1, H2, · · · , HK . For instance, if hi /∈ Hj

and hi ∈ Hj+1, then si = K − j. si is a number between 1 and K.

At the beginning, the whole table v is initialized to 0. When a packet arrives, the packet

signature pkt and predecessor identifier pid are extracted and hashed using each hash function

hi. si is written into entry hi(pkt, pid), if si is larger than the entry’s current value. After cur-

rent time t passes the required end time tend, the optimal kj is calculated among k1, k2, · · · , kK

which minimizes false positive rate f based on the actually inserted element number n using

formula (2.1). The next job is to restore and archive the Bloom filter b with the optimal kj

hash functions. Each entry’s value v(i) is compared with K − j. If v(i) is larger than K − j,

the corresponding bit b(i) in Bloom filter is set to 1.

We use the following example to demonstrate the k-adaptive mechanism in detail. Let
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( 1) Initialize the table v and Bloom filter b to 0

( 2) n← 0

( 3) while (t < tend AND receive a new packet pkt with pid)

( 4) n← n+ 1;

( 5) for (i← 1 to kK)

( 6) j ← hi(pkt, pid)

( 7) v(j)← max(v(j), si)

( 8) Find the index j of kj which minimizes f in k1, k2, · · · , kK

( 9) for (i← 1 to m)

(10) if (v(i) > K − j)

(11) b(i)← 1

Figure 4.9 k-adaptive Procedure

m = 106, Q = 2 and K = 3. Suppose we want to choose the best k among k1 = 1, k2 = 3 and

k3 = 4, and the hash function sets are H1 = {h1}, H2 = {h1, h2, h3}, H3 = {h1, h2, h3, h4}.

Instead of recording 3 m-bit Bloom filters b1, b2 and b3 in the memory which use the hash set

H1, H2, and H3 respectively, we only keep a table v with m 2-bit entries. Now we show that

we can restore b1, b2 and b3 using v. We observed that if finally an entry b1(i) is set to 1, then

the entries b2(i) and b3(i) must also be 1, because H1 ⊂ H2 ⊂ H3. Therefore, there are only 4

possible value combinations of the 3 entries b1(i), b2(i) and b3(i). As shown in Table 4.3, we

can find a bijection between b1(i), b2(i), b3(i) and the number of 1s in them, and thus we can

use only 2 bits to represent the 3 entries. In this case, s1 = 3, s2 = s3 = 2, and s4 = 1, and

they represent the number of 1s that the corresponding hash function will set in the 3 Bloom

filters. If finally we receive n = 2.5 ∗ 105 packets, we get the following false positive rates using

formula (2.1): fb1 = 0.221, fb2 = 0.147, fb3 = 0.160. Therefore, we choose k = k2 = 3 and

restore Bloom filter b2. We compare each entry v(i) with K − 2 = 1 and set b(i) to 1 if v(i) is

larger.8

8When K = 3, we can effectively use logical operations instead of comparison operations to restore any
desired Bloom filter from the table. b1 can be restored by AND of the two bits in each entry of v; b2 is just the
most significant bit of v; b3 can be restored by OR of the two bits in each entry of v.
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Table 4.3 Bijection Between K = 3 Bloom Filters and 2-bit Table

b1(i) b2(i) b3(i) v(i) (# of 1s)

0 0 0 0

0 0 1 1

0 1 1 2

1 1 1 3

We must point out that this k-adaptive mechanism can be used not only in Bloom filter-

based IP traceback, but in other Bloom filter applications that the element number is not

known a priori.

4.2.4 Theoretical Analysis and Experimental Evaluation

In this subsection, we first analyze and evaluate the traceback performance of fully deployed

TOPO, and then analyze TOPO when it is partially deployed. We focus on the performance

comparison between TOPO and SPIE. We finally analyze the performance of our k-adaptive

mechanism for Bloom filters.

4.2.4.1 Analysis under Full Deployment of TOPO

Theoretical Analysis In the Bloom filter-based IP traceback systems, the traceback

request is initiated by the victim (or IDS) when it detects intrusions. Finally the victim will

get an attack graph from the IP traceback system which not only contains the real attack path,

but also some extra innocent nodes because of the false positives of Bloom filters.

In SPIE’s analysis [95], an upper bound of the expected number of extra nodes ex all in

the attack graph G is given by:9

ESPIE(ex all) =
Ldf

1− df
, (4.23)

where d is the maximum number of each router’s predecessors on the network, and L is the

number of routers on the attack path. This formula requires that 0 ≤ df < 1, otherwise it

will not converge. However, this formula does not answer all the questions we exactly desire
9We get a slight different bound in Theorem 13.
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to know: How many unnecessary queries are sent out into the network? How many innocent

end nodes are there in the attack graph? A good IP traceback system must have no or less

unnecessary queries and innocent end nodes.

Let ex query denote the total number of extra (unnecessary) queries that are sent out into

the network, and ex end denote the number of extra end nodes in the attack graph. We can

easily get the following theorem for SPIE:

Theorem 13.

ESPIE(ex query) =
L(d− 1)
1− df

. (4.24)

ESPIE(ex all) = f
L(d− 1)
1− df

(4.25)

= f · ESPIE(ex query). (4.26)

ESPIE(ex end) = (1− f)df
L(d− 1)
1− df

(4.27)

= (1− f)d · ESPIE(ex all). (4.28)

Proof. Figure 4.10 demonstrates the tree structure of predecessors (d = 3 in this case) viewing

along the reverse attack path: V ictim→ R1 → . . .→ RL → Attacker. In real world it should

be a merged net instead of a tree, because many routers share the same predecessors. Figure

4.10 shows the worst possible scenario, since we want to calculate the upper bound of the

expectations. Each level consists of the innocent nodes which have the same probability to be

queried. As shown in Figure 4.10, the number of nodes on level q is

L(d− 1)dq−1. (4.29)

According to SPIE, the probability that an innocent node on level q is queried, the probability

that it is falsely included in the attack graph, and the probability that it is end node in the

attack graph are

f q−1, (4.30)

f q, (4.31)
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and

(1− f)df q (4.32)

respectively. Therefore, we get equation (4.24), (4.25) and (4.27).

R1

...

... ...... ... ...

...

...

Victim AttackerR2 RL-1 RL

Level 1: L(d-1)

... ...... ... ......

Level 2: L(d-1)d

Level 3: L(d-1)d2

Level q: L(d-1)dq-1

...

Figure 4.10 Tree Structure of Predecessors

Now we analyze the traceback performance of TOPO. Let F = 1 − (1 − f)d. If df << 1,

F ≈ df . If we ignore the memory consumed by the predecessor list, we can get the following

theorem.10

Theorem 14.

ETOPO(ex query) = f · ESPIE(ex query). (4.33)

ETOPO(ex all) = F · ESPIE(ex all). (4.34)

ETOPO(ex end) = (1− fF )dETOPO(ex all) (4.35)

≈ F · ESPIE(ex end). (4.36)

Proof. In TOPO, the probability that an innocent node on level q is queried, the probability

that it is falsely included in the attack graph, and the probability that it is end node in the

attack graph are

f q, (4.37)
10Please refer to the discussion in Section 4.2.5.3 to understand why the predecessor list memory size may be

ignored.
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Ff q, (4.38)

and

(1− fF )dFf q (4.39)

respectively. Therefore, we get equation (4.33), (4.34) and (4.35), and

ETOPO(ex end) =
F (1− fF )dESPIE(ex end)

(1− f)d
(4.40)

≈ F · ESPIE(ex end).

As indicated in Theorem 14, the number of unnecessary queries in TOPO is only f times

to that in SPIE, which is a significant improvement. Also, the numbers of extra nodes and

extra end nodes reduce to F times to those in SPIE. If f = 0.0001, and d = 100, F ≈ 0.01,

which means that, compared with SPIE with the same resource, only 1% nodes will appear in

the attack graph using TOPO.

Experimental Study In our theoretical analysis, we have assumed that all routers have

equal degree of predecessors. However, it is not realistic in real world networks, where the

degrees of routers are different. In this experimental study, we use real world Internet topologies

provided by CAIDA [7] to evaluate and compare the performance of SPIE and TOPO in

traceback.

In our experiments, we use real world Internet topology captured on Nov. 5, 2005 from

one of CAIDA’s skitter monitor b-root.skitter.caida.org, which is a topology map viewed from

a single origin (128.9.0.109) to 317, 218 destinations11. Each router is assumed to be equipped

with Bloom filters that have the same false positive rate. We simulate the traceback from the

single origin to every destination and calculate the expected number of extra queries, extra

nodes and extra end nodes with respect to the false positive rate of Bloom filters. Figure 4.11

shows our experimental results.
11We only consider the destinations with completed paths in this data set.



122

0.01

0.1

1

10

100

1000

10000

10^-4.0 10^-3.5 10^-3.0 10^-2.5 10^-2.0 10^-1.5 10^-1.0 10^-0.5

False Positive Rate of Bloom Filters

Ex
pe

ct
ed

 N
um

be
r o

f E
xt

ra
 Q

ue
rie

s

SPIE
TOPO

(a) Extra Queries

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10^-4.0 10^-3.5 10^-3.0 10^-2.5 10^-2.0 10^-1.5 10^-1.0 10^-0.5

False Positive Rate of Bloom Filters

Ex
pe

ct
ed

 N
um

be
r o

f E
xt

ra
 N

od
es

SPIE
TOPO

(b) Extra Nodes

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10^-4.0 10^-3.5 10^-3.0 10^-2.5 10^-2.0 10^-1.5 10^-1.0 10^-0.5

False Positive Rate of Bloom Filters

Ex
pe

ct
ed

 N
um

be
r o

f E
xt

ra
 E

nd
 N

od
es

SPIE
TOPO

(c) Extra End Nodes

Figure 4.11 Experimental Results

As shown in Figure 4.11(a), as the false positive rate f of Bloom filters decreases, both

SPIE and TOPO generate less extra queries. However, when f is less than 10−2, the expected

number of extra queries in SPIE almost remains the same (about 156), which indicates that

there exists a lower bound in SPIE on expected number of extra queries. This can be explained

using equation (4.24). Meanwhile, the expected number of extra queries in TOPO always

decreases as f decreases. When f = 0.01, the expected number of extra queries is less than

2, while SPIE’s expected number of extra queries is more than 165 for the same f . Figure

4.11(b) shows the expected number of extra nodes in the attack graph. As f decreases, both

SPIE and TOPO create less extra nodes. However, TOPO has much smaller expected number

of extra nodes than SPIE. Figure 4.11(c) shows that TOPO also has smaller expected number

of extra end nodes compared to SPIE.

In sum, both the theoretical analysis and the experimental results show that TOPO has

better traceback performance compared to SPIE. In other words, TOPO can achieve the same

performance as SPIE with lower memory requirement on Bloom filters. For instance, TOPO

with f = 0.005 can achieve better traceback performance than SPIE with f = 0.0001. This

means that TOPO requires less memory allocated for Bloom filters on routers. Therefore,

TOPO is more efficient with the same traceback capability.
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4.2.4.2 Analysis under Partial Deployment of TOPO

It is difficult to analyze the performance of partially deployed Bloom filter-based IP trace-

back systems because of the varieties of deployment. To simplify the analysis, we consider

partially deployed systems with the following constraint: On all possible paths in the partially

deployed system, there is at least one Bloom filter-equipped router within any S steps.

Let ESPIEpd(x) and ETOPOpd(x) denote the upper bound of the expected number of pa-

rameter x in partially deployed SPIE and TOPO respectively. When S ≥ 2 and dSf < 1, we

have the following theorem:12

Theorem 15.

ESPIEpd(ex query) =
L(dS − 1)
1− dSf

. (4.41)

ESPIEpd(ex all) =
L[dS−1 − 1 + (d− 1)dS−1f ]

1− dSf
. (4.42)

ESPIEpd(ex end) =
L(d− 1)dS−2(1− f)d

1− dSf
. (4.43)

ETOPOpd(ex query) = ESPIEpd(ex all). (4.44)

ETOPOpd(ex end) =

L
1−dSf · [d

S−2 − 1 + (d− 1)dS−2(df + F )] (4.45)

ETOPOpd(ex end) =
L(d− 1)dS−3(1− F )d

1− dSf
, if S > 2 (4.46a)

L(d− 1)df(1− F )d

1− d2f
, if S = 2. (4.46b)

We skip the proof because it is similar to the proof of Theorem 13 and 14. Theorem

15 indicates that the performance of a partially deployed SPIE or TOPO may exponentially
12In the analysis of partially deployed systems, we assume that there are no or little packet transformations

which can be omitted on the common routers without Bloom filters.
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decline as S increases. If a Bloom filter-based IP traceback system is partially deployed in a

network, the Bloom filter-equipped routers should be evenly distributed among all routers.

Comparing Theorem 15 with Theorem 13 and 14, we learn that both partially deployed

SPIE and TOPO would have lower performance than that of the fully deployed systems.

However, partial deployment also saves the total amount of memory. If the saved memory is

used to enlarge the existing Bloom filters, the false positive rate would reduce and thus help

alleviate the performance losing in the partially deployed systems. Based on Theorem 15, if

dSf << 1, we get

Theorem 16.

ETOPOpd(ex query) ≈ 1
d
ESPIEpd(ex query), (4.47)

ETOPOpd(ex all) ≈ 1
d
ESPIEpd(ex all), (4.48)

ETOPOpd(ex end) ≈
1
d
ESPIEpd(ex end), if S > 2 (4.49a)

dfESPIEpd(ex end), if S = 2. (4.49b)

Therefore, TOPO has better performance than SPIE when both of them are partially

deployed in the same way. TOPO is more suitable when the IP traceback system must be

partially deployed on certain networks compared with SPIE.

4.2.4.3 Analysis of k-Adaptive Mechanism

We design an experiment to analyze the performance of k-adaptive mechanism for Bloom

filters. Suppose a router is designed to store traceback information within 1 hour with the

granularity of 1 minute. First, it divides its memory into 61 equal slices and each slice is 1M

bits. 1 slice is used to store the packets in the current minute, and the other 60 slices are for

these 60 archived Bloom filters. The hash function number is fixed to k = 4. Now we divide

the same memory into 63 slices and each slice is 0.968M bits. 3 slices are used as a table to

store the values of 7 Bloom filters with different numbers of hash functions: k1 = 1, k2 = 4,
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k3 = 7, k4 = 10, k5 = 13, k6 = 16, and k7 = 19.

Figure 4.12 shows that when packet number n varies in a large range, although the real

size of single Bloom filters in our k-adaptive mechanism is smaller than the original size, our

mechanism generally can achieve better performance than the original Bloom filter with fixed

number of hash functions. Our performance is very close to the performance when k always

equals the optimal value.
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Figure 4.12 False Positive Rate Comparison

4.2.5 Further Discussions

In this section, we will discuss several considerations when designing and implementing

TOPO.

4.2.5.1 Packet Signature Choice

Packet Signature can be flexible. There are different choices which can meet the requirement

of distinguishing different packets. For instance, a subset of the IP header fields and the first

several bytes of the packet payload are used in [74] and SPIE. PAS only uses a long excerpt

of payload, which is useful when the exact packet header is unavailable. However, the excerpt

must be long enough to identify different packets, and thus the attackers may avoid detect by

attacking through a lot of packets with short payload. In TOPO, it is preferred to use a packet

signature which contains IP header information.
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4.2.5.2 Predecessor Identifier Choice

When a router has only one predecessor at each of its input port, for example, inner routers

on the Internet, we choose the input port of each packet as its predecessor identifier. For a

router that has multiple predecessors at one input port, we can use Layer 2 (i.e., data-link layer)

information (such as source MAC addresses) to differentiate these multiple predecessors. For

instance, on the Ethernet, the multiple predecessors and the router are connected through

the broadcast-based transmission media. When the router receives a packet from one of its

predecessors, the source MAC address of the header of the Ethernet frame can be used as

the predecessor identifier. Similarly, ATM’s VPI/VCI information can also be used for this

purpose on ATM networks.

We propose to use local topology information in TOPO. The local topology information

means the router’s immediate predecessor and immediate successor. In the current system, we

only use predecessor information. We believe the successor information can also be utilized.

We will address this in the future research.

4.2.5.3 Predecessor List Memory Size

In most cases, the memory size of the predecessor list is much smaller than those of the

Bloom filters, and that is why we ignore its influence on Bloom filters when we analyze the

performance of TOPO in Section 4.2.4. Generally, inner routers do not have a large number

of predecessors (which are typically no more than 100), and these predecessors often remain

unchanged for a long time. Therefore, we need not archive the predecessor list often. Instead,

a router may maintain a static list to store all appeared predecessor identifiers for more than

one Bloom filters, and only archive 1 bit for each predecessor on the list when archiving the

Bloom filters: value 1 means that the router receives packets from that predecessor in that

certain time interval, and value 0 not.

To find the direct support to our point of view from the real world Internet, we analyze

CAIDA’s Internet Topology Data Kit #0304 (ITDK0304) [9]. ITDK0304 is the skitter data of

the Internet router-level graph collected between Apr 21 and May 8, 2003. There are a total of
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Table 4.4 Distribution of Internet Routers’ Upstream Degrees

Upstream Degree 0 - 24 25 - 49 50 - 74 75 - 99 100 - 124 125 - 274 ≥ 275 Average: 3.31

Number of Routers 190469 1501 191 52 20 11 0 Total: 192244

Percent of Routers 99.0767% 0.7808% 0.0994% 0.0270% 0.0104% 0.0057% 0

192244 nodes and 636643 directed links. Table 4.4 shows the distribution of Internet routers’

upstream degrees derived from ITDK0304. The average upstream degree is as low as 3.31, and

the maximum upstream degree is only 269. Moreover, more than 99% routers have less than

25 upstream neighbors, and more than 99.98% routers have less than 100 upstream neighbors.

These facts quite support our point of view that the memory sizes of predecessor lists need to

be archived are adequately small compared with the large sizes of Bloom filters.

4.2.5.4 Membership Check Burden on Routers

In TOPO, suppose that there are d predecessors on one router’s predecessor list. When the

router receives a query message, it has to do d membership checks by combining the packet

identifier with each predecessor identifier on the list, while the router in SPIE only need to do 1

membership check. It seems that TOPO complicates the membership check process, and thus

aggravates the computation burden on each router. However, after using topology information

in TOPO, the probability that each innocent router is queried becomes f times of that of

SPIE. Let member check denote the number of membership checks, and we get that

ETOPO(member check) = df · ESPIE(member check). (4.50)

In most cases, d · f << 1, therefore actually TOPO alleviates the membership check burden

on each router which receives fewer query messages and does fewer membership checks.

4.2.5.5 Applying Compressed Bloom Filters

Mitzenmacher [81] introduced compressed Bloom filters. He proposed that Bloom filters

can be compressed to improve their performance by achieving either a lower false positive rate

with the same memory size, or smaller memory size with the same false positive rate. The
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compressed Bloom filters can be used to reduce the number of bits broadcast in sharing Web

cache information. As shown in Table VI in [81], a compressed Bloom filter can achieve the

same false positive rate as the standard Bloom filter while reducing the memory over 20%. The

tradeoff costs are the increased processing requirement for compression and decompression and

larger memory requirements at the endpoint machines.

In Bloom filter-based IP traceback systems, if a router stores a lot of archived pages of

previous Bloom filters, and the received query messages are infrequent, the gain of applying

compressed Bloom filters can overcome the processing costs introduced by compression and

decompression. However, if a router only has a few archived Bloom filters, the memory over-

head of implementing compression will be unacceptable. Furthermore, if the query messages

are frequently received which always query different Bloom filters, the router would be busy in

decompressing the required Bloom filters. The reason is that the router usually has no enough

memory to keep two decompressed Bloom filters at the same time.13

4.2.5.6 Applying Hierarchical Bloom Filters

We also consider applying the Hierarchical Bloom filters [94] in TOPO. However, we find

that actually hierarchical architecture has no benefit to false positive rate compared with the

standard Bloom filters, and is even worse. The authors of [94] referred to the false positive

rate of the standard Bloom filter upon which their Hierarchical Bloom filters are built as basic

false positive rate fo, and referred to the false positive rate resulting from their Hierarchical

Bloom filters as effective false positive rate fe. They showed that fe << fo. We agree with

it. However, hierarchy also introduces more inserted elements into the Bloom filters, which

increases the false positive rate and achieve no benefits eventually. Suppose n packets are

inserted into a Hierarchical Bloom filter using q different strings for each, and the totally

inserted elements are n0 = qn. Then we get

fe = fo
q ≈ (0.6185

m
n0 )q = 0.6185

m
n = f, (4.51)

13Usually, the size of decompressed Bloom filters is over 10 times larger than that of the original Bloom filters.
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where f is exactly the false positive rate when the standard Bloom filter inserts n packets

each using just one string. Therefore there is no benefit to false positive rate using hierarchy.

It makes false positive rate even worse considering that hierarchy needs to check all possible

alignments of payload excerpt.

4.2.6 Conclusion

Several Bloom filter-based IP traceback schemes have been proposed. However, Bloom

filters’ inherent false positives restrain the effectiveness of previous schemes. In this research,

we have proposed TOPO, a topology-aware single packet IP traceback system, in which the

predecessor information is used for traceback purpose. Our analysis showed that TOPO sig-

nificantly reduces not only the number of unnecessary queries but also the false attributions.

In addition, practicability is an important and desired property of IP traceback systems. We

have studied the partial deployment problem of Bloom filter-based IP traceback systems and

carefully designed to allow TOPO to be partially deployed while maintaining its traceback ca-

pability. We also proposed k-adaptive mechanism for Bloom filters which control parameters

may be adaptively adjusted according to the number of actual received packets. Such adjust-

ments can help Bloom filters-based IP traceback systems to achieve the best performance in

terms of false positive rate and storage space requirement when the number of arrival packets

varies significantly over time.

In the future, we will continue to improve the design of TOPO in terms of processing

overhead and memory space requirement.
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CHAPTER 5. RESEARCH IN ONLINE FRAUD DETECTION

5.1 Introduction

With the rapid growth of the Internet, online advertisement plays a more and more impor-

tant role in the advertising market. Among several online advertising models, pay-per-click

model is the most popular one. However, pay-per-click model is suffering serious fraud prob-

lems: attackers earn extra incomes or deplete competitors’ advertising budget by simply click-

ing (seldom by hands, often by automated scripts or bots) the pay-per-click advertisements

without actual interest in the content of the ad’s link. Such fraudulent clicks not only exhaust

online advertisers’ money, but also destroy the trust between online advertisers and adver-

tising publishers, and hence damage the healthiness of online advertising market. Recently,

there are several class action lawsuits against large online advertising publishers. Therefore,

the development of feasible and effective solutions to click fraud problems may benefit both

the advertisers and the publishers.

The source of click fraud may be from search engines, online ad publishers, ad sub-

distributors, competitors and web page crawlers, etc. Fraudulent clicks can be produced in

various forms, such as by hands, by malicious java scripts, or by botnets. Some types of click

fraud such as hit shaving problem [90] and hit inflation attacks [15], have received considerable

attention recently, and several algorithms were proposed to prevent these types of click fraud.

An important issue in defending click fraud is how to deal with duplicate clicks. If we simply

regard all identical clicks as fraudulent clicks, it is unfair to advertisers in some scenarios such

as that an interested client visits the same ad link several times in a week. On the other hand,

if the advertisers are charged for any identical clicks, then it is very easy for an attacker to

make money by continuously clicking the same ad link. A reasonable tradeoff is to define a
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timing threshold and only count identical clicks once within the timing window. Decaying

window models, such as landmark, jumping and sliding window models, are feasible to solve

this problem. However, most traditional duplicate detecting algorithms may not be directly

deployed to address this problem over decaying window models.

One possible solution is to use data streaming algorithms, which have received considerable

attention recently [18, 82]. Many characteristics of large data streams, such as sum, mean,

variance, frequency, quantile, top-k list (hot list), distribution, etc, have been widely studied.

However, the problem of duplicate detection over different decaying window models still lacks

efficient and effective solutions. In this research, we will describe two effective and efficient

algorithms to detect click fraud in pay-per-click streams over different kinds of decaying win-

dows, while using as little space and operation as possible and making only one pass over the

click streams.

5.1.1 Motivation

Although online advertising is an infant comparing with traditional advertising media,

it grows very quickly and plays a more and more important role in the advertising market.

Several studies show that more than ten billion dollars are spent in online advertising market

annually [40, 60]. There are several online advertising models, such as pay-per-action, pay-per-

call, pay-per-click, etc, and pay-per-click model is the most popular one among them. Online

advertisers bid on keywords of search engines or ad links of online publishers such that their

target links can have more chance to be visited by end users. The search engines and/or online

publishers then charge advertisers based on the number of clicks. The price of a click is usually

decided by the market, which varies from less than $0.01 to even above $30. However, click

fraud problem heavily challenges the pay-per-click advertising model: the ad link is clicked

without actual advertising impression. A survey indicates that Internet advertisers paid $0.8

billion for click fraud in 2005 and $1.3 billion estimated in 2006, and about 14.6% clicks are

fraudulent [83].

The possible source of click fraud may be:
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1. Search engines or online ad publishers themselves.

Since they charge advertising fees directly from advertisers, it is possible that some dis-

reputable search engines or ad publishers generate click fraud by themselves to increase their

revenue.

2. Ad sub-distributors.

The ad sub-distributors which are paid by contracted search engines or ad publishers can

also benefit through generating fraudulent clicks, and they are possibly the primary source of

click fraud.

3. Competitors.

The competitors may have intentions to generate click fraud to increase their rival adver-

tisers’ bill. Furthermore, since most advertisers have limited budgets on online advertising,

the competitors can just click the ad links to quickly exhaust their rival companies’ limited

advertisement budgets such that the ad links are removed from search engines or online ad

publishers sooner. For instance, if an advertiser can only afford 5000 clicks per month, then its

competitors can easily generate large number of fraudulent clicks in a week to make their ad

links unavailable to end clients. The competitors can even get a better position in the keyword

search results with a lower price by depleting the higher bidders. There has been a reported

case of such attacks [73].

4. Web page crawlers.

There are a lot of automated web page crawlers which periodically scan the Internet to

update their web page databases for search, archive or other purposes. They may generate

click fraud by entering the ad links inadvertently.

Fraudulent clicks can be produced by hands, by automated scripts, or by botnets, etc.

Several types of click fraud, such as hit shaving problem [90] and hit inflation attacks [15], etc,

have been studied, and several algorithms have been proposed to prevent such types of click

fraud. However, many of them can only be deployed by the advertising publishers. Not all

advertising publishers have enough motivations to deploy these algorithms, since they receive

money for each click, even if it is fraudulent. Therefore, there is a conflict in detecting click
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fraud: Online advertisers have enough motivations to prevent click fraud but little abilities;

Online advertising publishers have more power to play a decent role in defending click fraud but

without enough incentives. Such a conflict may lead to distrust between online advertisers and

publishers. Recently, several class action lawsuits against large online advertising publishers

appear. Google paid 90 million dollars to settle a class action lawsuit about click fraud in

March 2006 [10]. In June 2006, Yahoo settled a similar lawsuit by paying 4.95 million dollars

to plaintiffs’ counsel, and allowing credit refund to advertisers who claim click fraud back

through January 2004 [11].

A possible solution is that both the online advertisers and publishers keep on auditing the

click stream and reach an agreement on the determination of valid clicks. When determining

which are valid clicks in the click streams, an important issue is how to define duplicate clicks.

Should an advertiser be charged once or twice when there are two identical clicks? Let us

consider the following two scenarios.

Scenario 1: A normal client visited an advertiser’s web site by clicking the ad link of a

publisher. One week later, the client visited the same web site again by clicking the same ad

link.

Scenario 2: The competitors or even the publishers control a botnet with thousands of

computers, each of which initiate many clicks to the ad links everyday.

Obviously, the clicks in Scenario 1 should not be considered as click fraud, while those

in Scenario 2 should be determined as click fraud. However, it is very difficult to identify

which scenario the identical clicks belong to. A reasonable countermeasure is to prescribe that

identical clicks will not count if they are within short time interval, and will count if they

happen sparsely. For instance, the advertiser and the publisher can make an agreement that

identical clicks will not count within one day or 100, 000 clicks. For example, suppose that

it is prescribed that the same click that is 4 elements away is considered as valid click. Let

< i, t > denote that a click with identifier i arrives at timestamp t. Suppose we have a stream

of clicks as < i1, 1 >,< i2, 2 >,< i3, 3 >,< i1, 4 >,< i1, 5 >, . . . Then the click < i1, 4 >

should be determined as a duplicate click. However, the click < i1, 5 > is a valid click although
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it is identical to the previous click, since no click with identifier i1 is counted in the previous

4 elements. Unfortunately, although detecting duplicate in a large database has been studied

by many researchers, classical duplicate detecting algorithms cannot be directly utilized to

address the problems in such scenarios.

Therefore, a feasible duplicate detecting algorithm should have a mechanism that is able

to eliminate expired data and only consider fresh information. Decaying window models are

feasible to be utilized to eliminate expired information. Although recently many algorithms

are proposed for capturing different kinds of characteristics of large data streams over decaying

window models [16, 17, 35, 50, 51, 65, 67, 104, 115, 117, 121], the problem of duplicate detection

in data streams over decaying window models still lacks efficient and effective solutions. In the

following, we will discuss a number of useful decaying window models.

5.1.2 Decaying Window Models

Decaying window models can be utilized to eliminate expired information. There are two

common types of decaying windows: count-based windows which maintain the last (most

recent) N items in the data stream, and time-based windows which maintain all items that

arrived in the last T time units. Therefore, the time span of a count-based window may vary,

while the number of items in a time-based window may change from time to time. In this

research, we mainly consider count-based windows, and our algorithms can be easily extended

to time-based windows. How to extend to time-based windows can be found in Section 5.2.1

and 5.3.1.

Landmark window: Landmark windows start and end once N elements arrive. When

processing data streams over landmark windows, a sketch can be maintained using less memory

instead of keeping all elements in current window, since all elements will expire at the same

time and we can delete the expired sketch and begin a new one.

Sliding window: A sliding window, first introduced by Datar et al. [35], only contains

the last N items, which is updated once a new element comes and an old element expires.

Since the elements in a sliding window expire one by one, usually some timing information is
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maintained to update the interested statistics when the window slides.

Jumping window: The jumping window model was first proposed by Zhu and Shasha

[121]. A jumping window is a compromise between the landmark window and the sliding

window. The baseline idea is to divide the entire window equally into several sub-windows, and

the statistics over the entire jumping window is based on the combination of the information

from the smaller sub-windows.

Generally speaking, maintaining stream information over landmark windows is easiest and

requires the least memory, while maintaining streaming information over sliding windows is the

most difficult and requires the most memory. However, the streaming information will have

big jump when an old landmark window expires and a new landmark window begins, while a

sliding window will provide more smooth information. For instance, if a click is in the end of

a landmark window and an identical click happens in the beginning of the following landmark

window, then this identical click will be determined as a valid click in the landmark window

model.

5.1.3 Problem Statement

We first give the definition of a duplicate click in pay-per-click streams over decaying

window models.

Definition 3. A click is classified as a duplicate click if in the current decaying window an

identical click has been determined as a valid click.

Notice that detecting duplicates over different decaying windows on the same click stream

may generate different outputs. For instance, suppose that we have a stream of clicks as

< i1, 1 >,< i2, 2 >,< i3, 3 >,< i3, 4 >,< i3, 5 >, . . . and the window size N is 3. If we apply

landmark window model, then < i3, 4 > is determined as a valid click and only < i3, 5 > is

reported as a duplicate. However, if sliding window model is utilized, then both < i3, 4 > and

< i3, 5 > will be reported as duplicates, since < i3, 3 > has been classified as a valid click and

it is in their current sliding windows.

In this research, we consider the problem stated as follows:



136

Given limited memory and an arbitrary window size N (N elements or N time unites),

how to effectively and efficiently detect duplicates in a click stream over jumping windows or

sliding windows in one pass?

We do not consider the landmark window model since many algorithms have been proposed

which can be directly deployed to detect duplicate clicks over landmark windows.

5.1.4 Our Contributions

In this research, we are the first that address the problem of detecting duplicate clicks

in pay-per-click streams over jumping windows and sliding windows using significantly less

memory space and operations [116]. Since a naive deployment of classical Bloom filters to

jumping windows requires many memory operations, we propose an innovative GBF algorithm

using group Bloom filters which significantly reduces the memory operations when processing

click streams. Our GBF algorithm is effective and efficient over jumping windows with small

number of sub-windows.

However, in a jumping window when there are too many sub-windows, GBF algorithm still

requires many memory operations. To solve this problem, we propose a new data structure

called timing Bloom filter, which records inserted elements’ timing information. We design

a TBF algorithm based on timing Bloom filter which can process click streams over sliding

windows and jumping windows using less memory space and processing time.

One advantage of our GBF algorithm and TBF algorithm is that both of them have no

false negative. Furthermore, both theoretical analysis and experimental results show that our

algorithms are effective and efficient which can achieve low or bounded false positive rate when

detecting duplicate clicks in pay-per-click streams over jumping windows and sliding windows.
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5.2 Detecting Duplicates over Jumping Windows Using Group Bloom

Filters

5.2.1 GBF Algorithm Description

To detect duplicates in click streams over a landmark window, Bloom filters can be directly

deployed [75]. Each click has an predefined identifier, such as the source IP address, or the

cookie, etc. Then each click’s identifier is hashed into the Bloom filter. If a click’s identifier

is present in the Bloom filter before insertion (i.e., all corresponding bits are 1s), then it is

reported as a duplicate.

To detect duplicates in pay-per-click streams over jumping windows, a naive solution is

to evenly divide the entire jumping window into a number of sub-windows and maintain a

separate Bloom filter for each sub-window. To save operation time, all Bloom filters should

use the same set of hash functions. Suppose N is the size of the jumping window which is

divided into Q sub-windows. After the jumping window is full, there will be an expired Bloom

filter after each N
Q elements. Therefore, if we want to use the memory space of the expired

Bloom filter for the upcoming sub-window, we must clean the entire expired Bloom filter

before the first element of the upcoming sub-window can be inserted. However, considering

that cleaning an expired Bloom filter need O(m) operations, where m is the size of the Bloom

filters, we must keep the newly arrived elements in an extra queue before we finish the clean

operations. To solve this problem, we can divide the total available memory space into Q+ 1

pieces. Q pieces are for the Bloom filters of Q active sub-windows, and the additional piece is

used to maintain a Bloom filter for the elements in the upcoming sub-window while we clean

the expired Bloom filter. Then we have more time to clean the expired Bloom filter, since we

only need to clean the expired memory before the next Bloom filter expires. Let M denote the

total number of memory bits, then each Bloom filter has size m = M
Q+1 , and we only need to

clean M/(Q+1)
N/Q = QM

(Q+1)N bits when processing each newly arrived element.

When a new element comes, it is inserted into the Bloom filter of the corresponding sub-

window if and only if it is not a duplicate in the current jumping window (including all active
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sub-windows). To check whether it is a duplicate, we first calculate k hash values using the

element’s identifier. We then have to check each of the Q active Bloom filters (suppose the

jumping window is full) by reading the corresponding k bits. If the set of k bits in any Bloom

filter is all 1s, then this element is reported as a duplicate click; otherwise, the corresponding

k bits in the Bloom filter of the current sub-window are set to 1.

Obviously, such a duplicate-checking procedure may cost about (Q×k) memory operations,

which is very time consuming if Q is large. To solve this problem, we introduce a data structure

called Group Bloom Filters (GBF) which can significantly reduce required memory operations.

The baseline idea is that instead of dividing the entire memory into separate pieces for separate

Bloom filters, the bits with the same index in each Bloom filter are grouped together in GBF.

Then using this data structure, the CPU can visit the required bits in a bunch. For instance,

suppose that Q = 31 and the size of a word in the memory is 32 bits. Then the same bits of

the total 32 Bloom filters will be in the same word in the memory. Suppose that CPU can

read/write one 32-bit word each time, then we can fetch all bits we need using k memory reads.

After we get the k 32-bit words, we AND them into a single 32-bit word. We then mask the

bit which represents the expired Bloom filter in the word by setting the corresponding bit to

0. If the value of this word is none-zero, then the new element is a duplicate; otherwise, we

set each corresponding bit for current sub-window in the k 32-bit words to 1 and write them

back to the memory.

Figure 5.1 shows the description of our GBF algorithm to detect duplicates over jumping

windows using group Bloom filters. Each bit in GBF is initialized to 0 before processing the

date stream, and W [i] denotes the word with index i in GBF. Concurrently with the finish

of the new sub-window after processing N
Q elements, the expired Bloom filter is cleaned and

ready to insert new elements. A counter can be used to determine when a sub-window is full

and a new sub-window starts.

As an example, Figure 5.2 shows how GBF algorithm works. Let x0, x1, x2, · · · denote a

series of clicks. Suppose that the jumping window has size N = 6, which is divided into Q = 3

sub-windows, and thus each sub-window contains 2 clicks. We maintain 4 Bloom filters with
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Step 1: Clean Expired Bloom Filter.
Starting after last cleaned word, set the corresponding bits of the expired Bloom filter of
next QM

(Q+1)N words to 0.

Step 2: Process New Element xt.
Set temporary word W ′ to all 1s except that the bit which represents the expired Bloom
filter is set to 0.
for i← 1 to k
W ′ ←W ′ AND W [hi(xt)]

endfor
if W ′ 6= 0
xt is a duplicate click.

else
for i← 1 to k

Set the corresponding bit of the current sub-window in W [hi(xt)] to 1.
endfor

endif

Figure 5.1 GBF Algorithm Description

size m = 8, and the hash functions are h1() and h2(). Click x0 and x1 will be inserted into

the Column C1, and x2 and x3 will be inserted into the Column C2, and so on. Figure 5.2(a)

shows the status when the 11th click x10 is coming. Then x10 will be inserted into Column

C2. In the beginning, we will execute Step 1 to clean the first 4 bits ([b0 : b3]) of expired

Column C3. Then we hash x10 using h1() and h2() and get indices 7 and 4. We AND words

W [7] and W [4] together and get word W ′ = [0100]. We then mask the corresponding bit of

Column C3 which is expired, and get W ′ = [0000]. Therefore, x10 is a valid click and bit b7

and b4 in Column C2 are set to 1. The gray bits shown in Figure 5.2 indicate that these bits

are changed after processing a new element. When the 12th click x11 is coming, we first clean

the last 4 bits ([b4 : b7]) of Column C3. We then calculate and get two indices 1 and 5. This

time W ′ = [1000]. Therefore, x11 is reported as a duplicate, and not inserted into Column C2.

When the 13th click x12 is coming, notice that now Column C4 is expired and Column C3 is

entirely cleaned and ready to insert new elements.

Extension to Handle Time-Based Windows

GBF algorithm can be easily extended to handle time-based jumping windows. Instead of
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Figure 5.2 An Example of GBF Algorithm

dividing entire jumping window equally by counting elements, the time-based jumping window

is divided into Q sub-windows with same time expansion. Then each sub-window is equally

divided into R time units. In Step 1, the cleaning procedure executes once in each time unit,

and scans M
(Q+1)R entries. Step 2 stills executes once a new element comes.

5.2.2 Theoretical Analysis

When designing algorithms to detect duplicate clicks in pay-per-click streams over jumping

windows, we must consider the false negative rate and false positive rate, the memory require-

ment, and the processing time. The following theorem provides the properties of our GBF

algorithm.

Theorem 17. Let N denote the size of the jumping window, which is divided into Q sub-

windows. Given M -bit memory, and assuming that the CPU can read/write a D-bit word in

each cycle, group Bloom filters can detect duplicates over jumping windows with the following

properties:

1. The false negative rate is 0.

2. The false positive rate is O(Q · 0.6185
M
N ).
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3. The running time to process each element is O(QD ·
M
N ) in worst case.

Proof We proof the performance of GBF algorithm in terms of false negative rate, false

positive rate and running time as follows:

False Negative Rate

False negatives mean that the detection of duplicate clicks is falsely missed. According to

the definition of duplicate over decaying window models, a click is a duplicate if in current

decaying window an identical click has already been determined as a valid click. Then there

are two possible cases when checking a duplicate click xt:

Case 1: A previous identical click is accurately classified as valid click and has been

inserted into GBF.

According to GBF algorithm, since all k corresponding bits have been set to 1, then the

click xt will be reported as duplicate accurately.

Case 2: A previous identical click is falsely classified as duplicate and is not inserted into

GBF due to the inherent false positive property of Bloom filters.

In this case, it is possible that GBF algorithm determines click xt as valid. However, since

the previous valid identical click has been reported as a duplicate, such a missing detection

actually has no effect on the overall result.

False Positive Rate

To simplify the analysis, we assume that all Bloom filters of the sub-windows have the same

false positive rate f0. Since the entire jumping window with N elements is evenly divided into

Q sub-windows, then each sub-window contains n = N
Q elements. GBF algorithm divides

the total memory into Q + 1 pieces, then the size of the Bloom filters of the sub-windows

is m = M
Q+1 . Since GBF algorithm inserts an element if and only if an identical element is

not present in the current window, then actually each Bloom filter in GBF has less elements

inserted compared with a classical Bloom filter. Consequently, each Bloom filter in GBF is

similar to a classical Bloom filter with size m into which N elements are inserted, but has better

false positive rate. To simplify the analysis, we just assume that it has the same false positive

rate as a classical Bloom filter. According to equation (5.1), if all elements in a sub-window
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are distinct and inserted into the Bloom filter, and the number of hash functions, k, is set to

the optimal value, we get

f0 ≈ 0.6185
m
n = 0.6185

QM
(Q+1)N . (5.1)

In GBF algorithm of detecting duplicates over jumping windows using GBF, an innocent

element is falsely reported as a duplicate if and only if it is present in any of the Q active

Bloom filters. Suppose that all Q sub-windows are active, and let f ′ denote the false positive

rate of the most recent Bloom filter which may be not full. Then we have

fGBF ≈ 1− (1− f0)Q−1 · f ′ ≈ 1− (1− f0)Q (5.2)

≈ 1− (1− 0.6185
QM

(Q+1)N )Q (5.3)

≈ 1− (1− 0.6185
M
N )Q (5.4)

When 0.6185
M
N is small, we have

fGBF ≈ Q · 0.6185
M
N . (5.5)

Therefore, given M -bit memory and jumping window size N which is divided into Q sub-

windows, the false positive rate of our GBF algorithm is O(Q · 0.6185
M
N ).

Running Time

As shown in the description of GBF algorithm, when a new element arrives, we only

read/write 2QM
(Q+1)N words or 2QM

N bits in GBF to eliminate expired information in Step 1. Since

each time the CPU can read/write D bits, then there are O(QD ·
M
N ) read/write operations.

Furthermore, to insert a new element, we only check k entries which indices are calculated by

k hash functions. Suppose that the running time to calculate a hash value is O(1), then the

running time of Step 2 is O(k) = O(MN ). Therefore, the running time to process each element

is O(QD ·
M
N ) in worst case.
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5.2.3 Comparison with Previous Work

In [75], the authors proposed to maintain a counting Bloom filter for each sub-window, and

a main Bloom filter which is a combination of all counting Bloom filters and represents the

entire jumping window. When a new sub-window is generated, the eldest window is expired

and subtracted from the main Bloom filter. Combining two counting Bloom filters is performed

by adding the corresponding counters; deleting an old counting Bloom filter is performed by

subtracting its counters from the main Bloom filter.

However, this scheme has two potential drawbacks. One is that subtracting an expired

Bloom filter from the main Bloom filter needs O(m) operations, and false positives increase if

new elements are inserted into the main Bloom filter before subtracting operation completes.

The other drawback is that this scheme may have high false positive rate, especially when the

number of sub-windows is large. There are two reasons for this drawback. First, with the

same limited available memory space, expanding bits in Bloom filters to counters make the

size of Bloom filters smaller. In worst case, the maximum value in the counters of counting

Bloom filters is N
Q , and the maximum value in the counters of the main Bloom filter is N .

Therefore, each counter must have enough bits to avoid saturation, which will generate both

false negatives and false positives. Consequently, the size of the Bloom filters in their algorithm

is much smaller than the size of Bloom filters in our GBF algorithm. According to equation

(5.1), the false positive rate will be much higher than that of GBF algorithm. Second, checking

the presence of an element in the main Bloom filter which is the result of combination of all

counting Bloom filters will generate very high false positive rate, since it is as if all N elements

are inserted into the single main Bloom filter (any entry with a non-zero value in any counting

Bloom filter will set the corresponding entry in the main Bloom filter to non-zero). On the

contrary, each Bloom filter in GBF algorithm is only inserted at most N
Q elements.

Figure 5.3 shows the comparison between the algorithm in [75] and our GBF algorithm.

We draw the false positive rate when Q = 31, m = 220, and N increases from 215 to 221.

We make the observation that with the increasing window size, the false positive rate of the

algorithm in [75] increases more quickly compared with GBF algorithm when both algorithms
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maintain Bloom filters with the same size. For instance, when N = 220, the false positive rate

of the algorithm in [75] is about 0.62, while the false positive rate of GBF algorithm is only

about 0.000011. Notice that when both algorithms maintain Bloom filters with the same size,

the algorithm in [75] requires more memory space since its Bloom filters are counting Bloom

filters which contain more bits in each entry.

Comparison of False Positive Rate
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Figure 5.3 Comparison Between Previous Algorithm and GBF Algorithm

5.3 Detecting Duplicates over Sliding Windows Using Timing Bloom

Filters

GBF algorithm works well over jumping windows with small number of sub-windows. How-

ever, there is a limitation of GBF algorithm that it is not feasible in the sliding window model,

or when the number of sub-windows Q is very large in a jumping window. In sliding windows,

although we can keep N Bloom filters, each of which only hold one element, maintaining N

Bloom filters make the running time unacceptable. For instance, suppose the window size

N = 220, and the CPU can read/write 64 bits per cycle. Before an element is inserted into the

Bloom filter for that sub-window, 16384·k reads must be executed, where k denotes the number

of hash functions. Therefore, the GBF algorithm cannot process high-speed click streams over

sliding windows or jumping windows with large number of sub-windows. We hence devise an

innovative TBF algorithm based on a new data structure called Timing Bloom Filters (TBF)

to detect duplicate clicks over sliding windows and jumping windows with large number of

sub-windows.
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5.3.1 TBF Algorithm Description

We propose a new data structure called timing Bloom filters which contain timing infor-

mation derived from classical Bloom filters. The timing information contained in TBF can be

utilized to evict stale data out of our data structure, and make TBF applicable to process data

streams over sliding windows. Let N denote the sliding window size. An existing element is

called active if it is one of the most recent N elements within the current window, or expired if

it left the current window. For each element xi, an index posi is used to record its timestamp

(i.e., position) in the data stream, which is an indicator of “active” or “expired” by comparing

with pos – the position index of the most recent element.

Our new data structure TBF is based on Bloom filters. To insert timing information into

TBF, each bit in the classical Bloom filter is replaced by an entry with O(logN) bits. At the

beginning of the click stream, all bits in all entries of the TBF are initialized to bit 1. When

a new element arrives, we first calculate the k hash functions and get (at most) k indices. We

then check the corresponding k entries to judge if this element is both present1 in the TBF

and active2 in the current sliding window. If it is present and active, then we just ignore it and

report it as a duplicate click; otherwise, we set the corresponding k entries using this element’s

timestamp. The timestamps are represented by wraparound counters, and the number of bits

in each entry of TBF is set to be large enough such that no timestamp is represented by all 1s.

Our TBF algorithm has two steps when a new element arrives. Step 1 deletes expired

information in TBF; Step 2 processes the new element. When a new element xt comes, the

current timestamp pos is updated. Usually there is an old element expired (except at the

beginning of the click stream when the sliding window is not full). Therefore, besides processing

the new arriving element, the expired timestamps in the TBF must be removed, which means

TBF algorithm only maintains the timestamps of active elements in the current window. To

bound the bits to represent the timestamp in the continuous click stream, we have to use a

wraparound counter. We first consider the scenario that we use a wraparound counter with

maximum N−1 to represent the timestamps, that is, the N -th element’s timestamp is 0 instead
1“Present” means no entry in the k corresponding entries is all 1s.
2“Active” means all timestamps in these k corresponding entries are within the current sliding window.
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of N . Suppose the newly arrived element’s timestamp is P , then in this scenario the expired

element also has timestamp P . Therefore, before inserting the new element into the TBF,

we must first remove these expired timestamps if they have been inserted before. However,

since the expired element is not maintained in memory, we have no knowledge about where

the potential k expired timestamps are in the TBF. Consequently, we must scan the entire

TBF with m entries to find these expired timestamps and replace them by all 1s. Since this is

time consuming which needs O(m) operations, such an algorithm cannot process high-speed

click streams. We therefore propose an advanced update mechanism which only uses O(mN )

operations and only consumes very small additional space.

In our update mechanism, instead of setting N−1 as the maximum value in the wraparound

counter, we set N + C − 2 as the maximum timestamp, where C is a positive integer. Since

now we expand the range of timestamp representation, we get extra time to remove stale

timestamps and thus less entries in TBF need to be scanned each time. As discussed above, if

C = 1, we have to scan entire m entries when processing each new element. If C = 2, we only

need to scan half of the m entries. Therefore, when a new element arrives, we only need to

check m
C entries in TBF. The entire TBF will be scanned thoroughly after C elements arrive.

The choice of value of C is flexible. Since dlog(N +C)e is the number of bits in an entry to

represent timestamps, and m
C is the number of entries that need to be scanned per element to

update the TBF, then a smaller C means less space requirement and larger operation time, and

a larger C means larger space requirement and less operation time. In the following analysis

and experiments, we typically choose C equal to N .

Figure 5.4 shows the description of TBF algorithm to detect duplicates over sliding windows

using timing Bloom filters. In the algorithm description, ipre is initialized to 0 before processing

the click stream, which records the index of entry that has been scanned previously; P [i] denotes

the timing information (i.e. position or timestamp) in entry i of TBF; flagdup indicates whether

the newly arrived element is a duplicate or not.

As an example, Figure 5.5 shows how TBF algorithm works. Let x0, x1, x2, x3, x4, x5, · · ·

denote a series of clicks. Suppose that the sliding window has size N = 4. We maintain a TBF
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Step 1: Delete Expired Information.
pos← (pos+ 1) mod (N+C−1)

for i← ipre to ipre + m
C

if (pos− P [i mod m]) mod (N+C−1) ≥ N
P [i mod m]← [11...1]

endif
endfor
ipre ← (ipre + m

C ) mod m

Step 2: Process New Element xt.
flagdup ← 1
for i← 1 to k

if P [hi(xt)] = [11...1]
or (pos− P [hi(xt)]) mod (N+C−1) ≥ N

flagdup ← 0
break

endif
endfor
if flagdup = 1
xt is a duplicate click.

else
for i← 1 to k
P [hi(xt)]← pos

endfor
endif

Figure 5.4 TBF Algorithm Description
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Figure 5.5 An Example of TBF Algorithm

with size m = 8, and each entry has 3 bits. The hash functions are h1() and h2(). We set

C = 4, which means we only need to scan and update 2 entries when processing each element.

Figure 5.5(a) shows the status when the 5th click x4 is coming. Notice that all entries with

position [000] are expired. In the beginning, we execute Step 1 to scan the first 2 entries, and

P [1] is set to all 1s. Then we hash x4 using h1() and h2() and get indices 6 and 4. Since both

P [6] and P [4] are present and active, x4 is reported as a duplicate. The gray entries shown

in Figure 5.5 indicate that these entries are changed after processing a new element. When

the 6th click x5 is coming, we first scan entries P [2] and P [3], and this time P [2] is set to all

1s. We then calculate and get two indices 0 and 5. Since P [0] = [001] is expired and P [5] is

all 1s, x5 is determined as a valid click, and its position information is inserted into P [0] and

P [5]. Notice that although P [7] = [000] has been expired after x4 comes, it may remain in

the memory until x7 comes. However, its presence does not affect duplicate detection in TBF

algorithm.

Extension to Handle Time-Based Windows

TBF algorithm can be easily extended to handle time-based sliding windows. Suppose the

entire sliding window is equally divided into R time units. In Step 1, the cleaning procedure

executes once in each time unit, and scans m
R entries. Step 2 stills executes once a newly



149

arrived element comes. However, instead of inserting the counting-based position, the time

unit information is inserted into the entries of TBF.

Furthermore, TBF can also be easily extended to handle jumping windows. If TBF is

utilized over a jumping window which is evenly divided into Q sub-windows, then all elements

in the same sub-window will have the same timestamp, and they will be eliminated from TBF

simultaneously. When Q is large, GBF cannot process the click stream efficiently, and TBF is

a better choice.

5.3.2 Theoretical Analysis

The following theorem provides the properties of our TBF algorithm when detecting du-

plicate clicks in pay-per-click streams over sliding windows.

Theorem 18. Let N denote the size of the sliding window. Given M -bit memory, timing

Bloom filters can detect duplicates over sliding windows with the following properties:

1. The false negative rate is 0.

2. The false positive rate is O(0.6185
M

N logN ).

3. The running time to process each element is O( M
N logN ) in worst case.

proof We proof the performance of TBF algorithm in terms of false negative rate, false

positive rate and running time as follows:

False Negative Rate

Since the proof is similar to that in Theorem 17, we skip this part to save space.

False Positive Rate

As shown in TBF algorithm description, TBF only keeps the timestamps of the most recent

N elements, and all expired timestamps will be removed in time. Therefore, in worst case there

are N distinct elements’ timestamps present in TBF when we process a newly arrived element.3

Since TBF algorithm inserts an element if and only if an identical element is not present in

the current window, then actually TBF has less elements inserted compared with a classical
3Although some expired timestamps can survive in TBF for a certain time before they are cleaned, they do

not affect the result when determining whether a new element is a duplicate or not.
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Bloom filter. Consequently, TBF is similar to a classical Bloom filter with size m into which N

elements are inserted, but should have better false positive rate. To simplify the analysis, we

just assume that TBF has the same false positive rate as a classical Bloom filter. Suppose that

we set C = N , then each entry occupies dlog 2Ne bits, and m = M
dlog 2Ne . Similar to equation

(5.1), when the number of hash functions, k, is set to the optimal value, the false positive rate

of TBF is

fTBF ≈ 0.6185
m
N ≈ 0.6185

M
N log 2N . (5.6)

Therefore, the false positive rate of TBF is O(0.6185
M

N logN ).

Running Time

As shown in our TBF algorithm description, each time when a new element arrives, we only

remove expired timestamps in TBF by scanning m
C entries in Step 1. Generally C is O(N),

and O(mC ) = O( M
N logN ). Furthermore, to insert a new element, we only check k entries which

indices are calculated by k hash functions. Assuming that the running time to calculate a hash

value is O(1), then the running time of Step 2 is O(k) = O( M
N logN ). Therefore, the running

time to process each element is O( M
N logN ) in worst case.

5.4 Experimental Evaluation
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Figure 5.6 False Positive Rate of GBF and TBF Algorithm over Sliding
Windows

In this section, we evaluate GBF algorithm and TBF algorithm for duplicate click detection

over jumping windows and sliding windows. Since our algorithms have no false negative, we
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only ran experiments to evaluate the false positive rate of our algorithms. Hence, we simulate

our algorithms by processing synthetic click streams which have no duplicate click.

We first consider the theoretical results. Our algorithms are a little different comparing

with the classical Bloom filters. In our algorithms, we only insert an element if and only if an

identical element is not present in the current window. Therefore, let f denote the false positive

rate of our algorithm, and then only about (1 − f)N expected elements are inserted. In our

GBF algorithm for jumping windows, let f0 denote the false positive rate of the sub-windows,

and fGBF denote the overall false positive rate. Then

fGBF ≈ 1− (1− f0)Q (5.7)

≈ 1− (1− (1− e−(1−fGBF )kn/m)k)Q (5.8)

≈ 1− (1− (1− e−(1−fGBF ) kN
Qm )k)Q (5.9)

For given k, if we set

m =
(1− 2−k)QkN

Q ln 2
, (5.10)

then

fGBF ≈ 1− (1− 2−k)Q. (5.11)

In our TBF algorithm for sliding windows, let fTBF denote the overall false positive rate.

Then

fTBF ≈ (1− e−(1−fTBF )kN/m)k. (5.12)

For given k, if we set

m =
(1− 2−k)kN

ln 2
, (5.13)

then

fTBF ≈ 2−k. (5.14)

In the experiments of evaluating our GBF algorithm over jumping windows, we set the

jumping window size to N = 220, and the number of sub-windows to Q = 8. For given k,
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the size m of each Bloom filter is set using equation (5.10). We generated 20 · N distinct

click identifiers. We counted the false positives within the last 10 ·N clicks to make sure that

GBF has been stable. Figure 5.6(a) shows the theoretical and experimental results. We make

the observation that the experimental result of GBF algorithm is very close to the theoretical

result when detecting duplicates over jumping windows. When k = 10 and m = 1, 876, 246,

the false positive rate is only about 0.007.

In the experiments of evaluating our TBF algorithm over sliding windows, we set the sliding

window size to N = 220. For given k, the size m of TBF is set using equation (5.13). We

generated 20 ·N distinct click identifiers, and counted the false positives within the last 10 ·N

clicks to make sure that the TBF has been stable. Figure 5.6(b) shows the theoretical and

experimental results. We make the observation that the experimental result of TBF algorithm

is very close to the theoretical result when detecting duplicate clicks over sliding windows.

When k = 10 and m = 15, 112, 980, the false positive rate is only about 0.001.

5.5 Conclusions

In this research, we address the problem of detecting duplicate clicks in pay-per-click

streams over jumping windows and sliding windows. We propose group Bloom filters which

significantly reduces the memory operations when processing click streams, and our GBF algo-

rithm based on group Bloom filters is effective and efficient over jumping windows. To detect

duplicate clicks over sliding windows and jumping windows with large number of sub-windows,

we propose an innovative TBF algorithm based on a new data structure called timing Bloom

filter, which can process click streams over sliding windows using less memory space and pro-

cessing time. Both theoretical analysis and experimental results show that our algorithms are

effective and efficient in terms of false negative rate, false positive rate and running time when

detecting duplicate clicks in pay-per-click streams.

In the future, we will continue to explore the issues of click fraud and click quality under

data stream models. We will consider various sophisticated click fraud attacks, and study

advertising network dynamics, new service models, economic and social impacts of click frauds.
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CHAPTER 6. SUMMARY

6.1 Conclusion

In this dissertation, we design effective techniques for detecting and attributing cyber crim-

inals. We consider two kinds of fundamental techniques: forensics-sound attack monitoring

and traceback, and forensics-sound online fraud detection. Our proposed techniques may serve

as fundamental components which can be widely utilized not only in network security, but

also in many other domains, such as database, data mining, computer graphics, etc. The

contributions of our research are as follows:

(1) We propose several innovative algorithms which answer some open problems in fun-

damental statistics estimation over sliding windows. Those algorithms can be used to detect

anomaly and attacks in networks. We also propose efficient and effective algorithms which can

trace back stepping stone attacks and single packet attacks.

• We study the problem of maintaining ε-approximate variance of data streams over sliding

windows. We propose the first ε-approximation algorithm that is optimal in both space

and worst case time. Our algorithm requires O(1
ε logN) space and O(1) running time in

worst case.

• We address the problem of estimating ε-approximate frequency in data streams over

sliding windows. We propose the first efficient deterministic algorithm which can achieve

O(1
ε ) space requirement and only need O(1) running time to process each item in the

data stream and to answer a query.

• we consider the problem of estimating ε-approximate diameter, convex hull and skyline

in data streams over sliding windows. We first present an improved algorithm which
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only requires O((1
ε )

d+1
2 logR) space to estimate the diameter over sliding windows. We

then extend our algorithm to solve convex hull estimation problem. Finally, we propose

a novel algorithm to estimate skyline which requires O( 1
εd

log εR) space.

• Several algorithms are proposed to attribute stepping stone attackers. Our schemes

can effectively detect stepping stones even when delay and chaff perturbations exist

simultaneously.

• A topology-aware single packet IP traceback system, namely TOPO, is proposed to

traceback single packet attacks. We design TOPO to allow partial deployment while

maintaining its traceback capability. A k-adaptive mechanism is designed which can

dynamically adjust parameters of Bloom filters to reduce the false positive rate.

(2) We propose streaming algorithms to detect click fraud in pay-per-click streams of online

advertising networks.

• We address the problem of detecting duplicate clicks in pay-per-click streams over jump-

ing windows and sliding windows, and propose two innovative algorithms that make only

one pass over click streams and require significantly less memory space and operations.

A patent [55] is pending based on our research.

6.2 Future Work

6.2.1 Data Stream Processing

Although our research in this dissertation have answered several open problems in data

stream processing, there still have many unsolved problems in this area.

Currently, basic-counting and variance estimation over sliding windows have been re-

searched and optimal algorithms were proposed. However, higher-ordered moments estimation

problems still lack efficient algorithms.

In geometric computation area, although many algorithms were presented, we still don’t

know the lower bound of high-dimensional diameter, convex hull and skyline, and thus we don’t
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know whether current algorithms are optimal in space requirement or not. Further research is

required in this topic.

6.2.2 Attack Traceback

There are still some open problems in attack detection and traceback.

6.2.2.1 VoIP Attribution

Like the Internet, the VoIP also provides unauthorized services. Therefore, some security

issues existing in the Internet may also appear in the VoIP systems. For instance, a phone

user may receive a call with a qualified caller ID from his/her credit card company, so he/she

would answer the critical questions about social security number and date of birth, and so on.

However, this call comes actually from an attacker who fakes the caller ID using a computer.

Compared with a PSTN phone or mobile phone, IP phone lacks monitoring. Therefore, it is

desirable to provide schemes that can attribute or trace back to the VoIP callers.

6.2.2.2 Botnet Traceback

A botnet is a network of compromised computers, or bots, commandeered by an adversarial

botmaster. Botnets usually spread with virus and communicate through Inter Relay Channel

(IRC) [29]. With the army of bots, the bot controllers can launch many attacks, such as spam,

phishing, key logging, and denial of service. Now, more and more scientists are interested in

how to detect, mitigate, and trace back botnet attacks.

6.2.2.3 Traceback in Anonymous Systems

Another issue is that a lot of anonymous systems, such as Tor [8], exist all over the world.

Tor is a toolset for anonymizing web browsing and publishing, instant messaging, IRC, SSH,

and other applications that use the TCP protocol. It provides anonymity and privacy for

legal users, and at the same time, it is a good platform to launch stepping stone attacks.

Communications over Tor are relayed through several distributed servers called onion routers.
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There are more than 800 onion routers all over the world so far. Since Tor may be seemed as

a special stepping stone attack platform, it is interesting to consider how to trace back attacks

over Tor.

6.2.3 Online Fraud Detection

Online auction networks, such as eBay, have attracted a lot of buyers and sellers. More

and more people begin to purchase goods and services through eBay or other online auction

networks. However, fraud transactions happen everyday. In these online auction systems, users

are often intent on doing transactions with accounts who have high feedbacks. Nevertheless,

fraudsters can easily bypass the feedback systems. One method for a fraudster to build excellent

feedback is to construct a clique and prompt each other. The cliques of accomplices can easily

prompt many fraudsters, while never jump out to cheat directly by themselves, which makes

it difficult to detect these cliques.

Two preliminary papers [87, 86] have been finished with Yanlin Peng1 and Dr. Yong Guan,

and further research is ongoing.

1Yanlin Peng did the majority work including algorithm design, implementation and writing.
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